Properties

Label 2704.2.f.m.337.4
Level $2704$
Weight $2$
Character 2704.337
Analytic conductor $21.592$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2704,2,Mod(337,2704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2704.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2704.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5915487066\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 338)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.4
Root \(1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 2704.337
Dual form 2704.2.f.m.337.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.35690 q^{3} +0.890084i q^{5} -4.49396i q^{7} +2.55496 q^{9} +2.69202i q^{11} -2.09783i q^{15} -3.58211 q^{17} +2.93900i q^{19} +10.5918i q^{21} -6.09783 q^{23} +4.20775 q^{25} +1.04892 q^{27} +2.98792 q^{29} +2.39612i q^{31} -6.34481i q^{33} +4.00000 q^{35} +1.50604i q^{37} -3.65279i q^{41} +0.170915 q^{43} +2.27413i q^{45} +5.20775i q^{47} -13.1957 q^{49} +8.44265 q^{51} +6.09783 q^{53} -2.39612 q^{55} -6.92692i q^{57} +3.07069i q^{59} -13.9758 q^{61} -11.4819i q^{63} -11.0707i q^{67} +14.3720 q^{69} +10.0978i q^{71} -10.9487i q^{73} -9.91723 q^{75} +12.0978 q^{77} -2.81163 q^{79} -10.1371 q^{81} -2.93900i q^{83} -3.18837i q^{85} -7.04221 q^{87} -12.1806i q^{89} -5.64742i q^{93} -2.61596 q^{95} +12.9661i q^{97} +6.87800i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 16 q^{9} - 10 q^{17} - 10 q^{25} - 12 q^{27} - 20 q^{29} + 24 q^{35} + 22 q^{43} - 6 q^{49} - 32 q^{51} - 32 q^{55} - 8 q^{61} + 28 q^{69} - 46 q^{75} + 36 q^{77} + 36 q^{79} - 50 q^{81}+ \cdots - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2704\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1185\) \(2367\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.35690 −1.36075 −0.680377 0.732862i \(-0.738184\pi\)
−0.680377 + 0.732862i \(0.738184\pi\)
\(4\) 0 0
\(5\) 0.890084i 0.398058i 0.979994 + 0.199029i \(0.0637787\pi\)
−0.979994 + 0.199029i \(0.936221\pi\)
\(6\) 0 0
\(7\) − 4.49396i − 1.69856i −0.527945 0.849278i \(-0.677037\pi\)
0.527945 0.849278i \(-0.322963\pi\)
\(8\) 0 0
\(9\) 2.55496 0.851653
\(10\) 0 0
\(11\) 2.69202i 0.811675i 0.913945 + 0.405838i \(0.133020\pi\)
−0.913945 + 0.405838i \(0.866980\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 2.09783i − 0.541659i
\(16\) 0 0
\(17\) −3.58211 −0.868788 −0.434394 0.900723i \(-0.643037\pi\)
−0.434394 + 0.900723i \(0.643037\pi\)
\(18\) 0 0
\(19\) 2.93900i 0.674253i 0.941459 + 0.337127i \(0.109455\pi\)
−0.941459 + 0.337127i \(0.890545\pi\)
\(20\) 0 0
\(21\) 10.5918i 2.31132i
\(22\) 0 0
\(23\) −6.09783 −1.27149 −0.635743 0.771901i \(-0.719306\pi\)
−0.635743 + 0.771901i \(0.719306\pi\)
\(24\) 0 0
\(25\) 4.20775 0.841550
\(26\) 0 0
\(27\) 1.04892 0.201864
\(28\) 0 0
\(29\) 2.98792 0.554843 0.277421 0.960748i \(-0.410520\pi\)
0.277421 + 0.960748i \(0.410520\pi\)
\(30\) 0 0
\(31\) 2.39612i 0.430357i 0.976575 + 0.215178i \(0.0690333\pi\)
−0.976575 + 0.215178i \(0.930967\pi\)
\(32\) 0 0
\(33\) − 6.34481i − 1.10449i
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 1.50604i 0.247592i 0.992308 + 0.123796i \(0.0395068\pi\)
−0.992308 + 0.123796i \(0.960493\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 3.65279i − 0.570470i −0.958458 0.285235i \(-0.907928\pi\)
0.958458 0.285235i \(-0.0920717\pi\)
\(42\) 0 0
\(43\) 0.170915 0.0260643 0.0130322 0.999915i \(-0.495852\pi\)
0.0130322 + 0.999915i \(0.495852\pi\)
\(44\) 0 0
\(45\) 2.27413i 0.339007i
\(46\) 0 0
\(47\) 5.20775i 0.759629i 0.925063 + 0.379814i \(0.124012\pi\)
−0.925063 + 0.379814i \(0.875988\pi\)
\(48\) 0 0
\(49\) −13.1957 −1.88510
\(50\) 0 0
\(51\) 8.44265 1.18221
\(52\) 0 0
\(53\) 6.09783 0.837602 0.418801 0.908078i \(-0.362450\pi\)
0.418801 + 0.908078i \(0.362450\pi\)
\(54\) 0 0
\(55\) −2.39612 −0.323093
\(56\) 0 0
\(57\) − 6.92692i − 0.917493i
\(58\) 0 0
\(59\) 3.07069i 0.399769i 0.979819 + 0.199885i \(0.0640568\pi\)
−0.979819 + 0.199885i \(0.935943\pi\)
\(60\) 0 0
\(61\) −13.9758 −1.78942 −0.894711 0.446645i \(-0.852619\pi\)
−0.894711 + 0.446645i \(0.852619\pi\)
\(62\) 0 0
\(63\) − 11.4819i − 1.44658i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 11.0707i − 1.35250i −0.736672 0.676250i \(-0.763604\pi\)
0.736672 0.676250i \(-0.236396\pi\)
\(68\) 0 0
\(69\) 14.3720 1.73018
\(70\) 0 0
\(71\) 10.0978i 1.19839i 0.800602 + 0.599196i \(0.204513\pi\)
−0.800602 + 0.599196i \(0.795487\pi\)
\(72\) 0 0
\(73\) − 10.9487i − 1.28145i −0.767772 0.640724i \(-0.778634\pi\)
0.767772 0.640724i \(-0.221366\pi\)
\(74\) 0 0
\(75\) −9.91723 −1.14514
\(76\) 0 0
\(77\) 12.0978 1.37868
\(78\) 0 0
\(79\) −2.81163 −0.316333 −0.158166 0.987412i \(-0.550558\pi\)
−0.158166 + 0.987412i \(0.550558\pi\)
\(80\) 0 0
\(81\) −10.1371 −1.12634
\(82\) 0 0
\(83\) − 2.93900i − 0.322597i −0.986906 0.161299i \(-0.948432\pi\)
0.986906 0.161299i \(-0.0515682\pi\)
\(84\) 0 0
\(85\) − 3.18837i − 0.345828i
\(86\) 0 0
\(87\) −7.04221 −0.755004
\(88\) 0 0
\(89\) − 12.1806i − 1.29114i −0.763700 0.645571i \(-0.776620\pi\)
0.763700 0.645571i \(-0.223380\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 5.64742i − 0.585610i
\(94\) 0 0
\(95\) −2.61596 −0.268392
\(96\) 0 0
\(97\) 12.9661i 1.31651i 0.752794 + 0.658256i \(0.228706\pi\)
−0.752794 + 0.658256i \(0.771294\pi\)
\(98\) 0 0
\(99\) 6.87800i 0.691265i
\(100\) 0 0
\(101\) 10.1957 1.01451 0.507254 0.861797i \(-0.330661\pi\)
0.507254 + 0.861797i \(0.330661\pi\)
\(102\) 0 0
\(103\) 10.6703 1.05137 0.525686 0.850679i \(-0.323809\pi\)
0.525686 + 0.850679i \(0.323809\pi\)
\(104\) 0 0
\(105\) −9.42758 −0.920038
\(106\) 0 0
\(107\) 20.5623 1.98783 0.993914 0.110158i \(-0.0351358\pi\)
0.993914 + 0.110158i \(0.0351358\pi\)
\(108\) 0 0
\(109\) 2.71379i 0.259934i 0.991518 + 0.129967i \(0.0414872\pi\)
−0.991518 + 0.129967i \(0.958513\pi\)
\(110\) 0 0
\(111\) − 3.54958i − 0.336911i
\(112\) 0 0
\(113\) 20.6504 1.94263 0.971313 0.237804i \(-0.0764277\pi\)
0.971313 + 0.237804i \(0.0764277\pi\)
\(114\) 0 0
\(115\) − 5.42758i − 0.506125i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 16.0978i 1.47569i
\(120\) 0 0
\(121\) 3.75302 0.341184
\(122\) 0 0
\(123\) 8.60925i 0.776270i
\(124\) 0 0
\(125\) 8.19567i 0.733043i
\(126\) 0 0
\(127\) 12.7681 1.13298 0.566492 0.824067i \(-0.308300\pi\)
0.566492 + 0.824067i \(0.308300\pi\)
\(128\) 0 0
\(129\) −0.402829 −0.0354671
\(130\) 0 0
\(131\) 5.15883 0.450729 0.225365 0.974274i \(-0.427643\pi\)
0.225365 + 0.974274i \(0.427643\pi\)
\(132\) 0 0
\(133\) 13.2078 1.14526
\(134\) 0 0
\(135\) 0.933624i 0.0803536i
\(136\) 0 0
\(137\) 3.30127i 0.282047i 0.990006 + 0.141023i \(0.0450393\pi\)
−0.990006 + 0.141023i \(0.954961\pi\)
\(138\) 0 0
\(139\) 6.49157 0.550607 0.275304 0.961357i \(-0.411222\pi\)
0.275304 + 0.961357i \(0.411222\pi\)
\(140\) 0 0
\(141\) − 12.2741i − 1.03367i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.65950i 0.220859i
\(146\) 0 0
\(147\) 31.1008 2.56515
\(148\) 0 0
\(149\) 5.03146i 0.412193i 0.978532 + 0.206097i \(0.0660761\pi\)
−0.978532 + 0.206097i \(0.933924\pi\)
\(150\) 0 0
\(151\) − 1.72587i − 0.140450i −0.997531 0.0702248i \(-0.977628\pi\)
0.997531 0.0702248i \(-0.0223717\pi\)
\(152\) 0 0
\(153\) −9.15213 −0.739906
\(154\) 0 0
\(155\) −2.13275 −0.171307
\(156\) 0 0
\(157\) 15.5060 1.23752 0.618758 0.785581i \(-0.287636\pi\)
0.618758 + 0.785581i \(0.287636\pi\)
\(158\) 0 0
\(159\) −14.3720 −1.13977
\(160\) 0 0
\(161\) 27.4034i 2.15969i
\(162\) 0 0
\(163\) − 19.7235i − 1.54486i −0.635099 0.772431i \(-0.719041\pi\)
0.635099 0.772431i \(-0.280959\pi\)
\(164\) 0 0
\(165\) 5.64742 0.439651
\(166\) 0 0
\(167\) − 14.0000i − 1.08335i −0.840587 0.541676i \(-0.817790\pi\)
0.840587 0.541676i \(-0.182210\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 7.50902i 0.574229i
\(172\) 0 0
\(173\) −1.20775 −0.0918236 −0.0459118 0.998945i \(-0.514619\pi\)
−0.0459118 + 0.998945i \(0.514619\pi\)
\(174\) 0 0
\(175\) − 18.9095i − 1.42942i
\(176\) 0 0
\(177\) − 7.23729i − 0.543988i
\(178\) 0 0
\(179\) 16.5157 1.23444 0.617222 0.786789i \(-0.288258\pi\)
0.617222 + 0.786789i \(0.288258\pi\)
\(180\) 0 0
\(181\) −6.37196 −0.473624 −0.236812 0.971555i \(-0.576103\pi\)
−0.236812 + 0.971555i \(0.576103\pi\)
\(182\) 0 0
\(183\) 32.9396 2.43496
\(184\) 0 0
\(185\) −1.34050 −0.0985557
\(186\) 0 0
\(187\) − 9.64310i − 0.705174i
\(188\) 0 0
\(189\) − 4.71379i − 0.342878i
\(190\) 0 0
\(191\) 2.49396 0.180457 0.0902283 0.995921i \(-0.471240\pi\)
0.0902283 + 0.995921i \(0.471240\pi\)
\(192\) 0 0
\(193\) 4.00538i 0.288313i 0.989555 + 0.144157i \(0.0460469\pi\)
−0.989555 + 0.144157i \(0.953953\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.6340i 1.68385i 0.539592 + 0.841927i \(0.318578\pi\)
−0.539592 + 0.841927i \(0.681422\pi\)
\(198\) 0 0
\(199\) 16.5375 1.17231 0.586156 0.810198i \(-0.300641\pi\)
0.586156 + 0.810198i \(0.300641\pi\)
\(200\) 0 0
\(201\) 26.0925i 1.84042i
\(202\) 0 0
\(203\) − 13.4276i − 0.942432i
\(204\) 0 0
\(205\) 3.25129 0.227080
\(206\) 0 0
\(207\) −15.5797 −1.08286
\(208\) 0 0
\(209\) −7.91185 −0.547274
\(210\) 0 0
\(211\) 1.66056 0.114318 0.0571589 0.998365i \(-0.481796\pi\)
0.0571589 + 0.998365i \(0.481796\pi\)
\(212\) 0 0
\(213\) − 23.7995i − 1.63072i
\(214\) 0 0
\(215\) 0.152129i 0.0103751i
\(216\) 0 0
\(217\) 10.7681 0.730985
\(218\) 0 0
\(219\) 25.8049i 1.74374i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.792249i 0.0530529i 0.999648 + 0.0265265i \(0.00844463\pi\)
−0.999648 + 0.0265265i \(0.991555\pi\)
\(224\) 0 0
\(225\) 10.7506 0.716708
\(226\) 0 0
\(227\) 21.7603i 1.44428i 0.691745 + 0.722141i \(0.256842\pi\)
−0.691745 + 0.722141i \(0.743158\pi\)
\(228\) 0 0
\(229\) 1.97584i 0.130567i 0.997867 + 0.0652835i \(0.0207952\pi\)
−0.997867 + 0.0652835i \(0.979205\pi\)
\(230\) 0 0
\(231\) −28.5133 −1.87604
\(232\) 0 0
\(233\) −18.2349 −1.19461 −0.597304 0.802015i \(-0.703761\pi\)
−0.597304 + 0.802015i \(0.703761\pi\)
\(234\) 0 0
\(235\) −4.63533 −0.302376
\(236\) 0 0
\(237\) 6.62671 0.430451
\(238\) 0 0
\(239\) 22.0737i 1.42783i 0.700234 + 0.713914i \(0.253079\pi\)
−0.700234 + 0.713914i \(0.746921\pi\)
\(240\) 0 0
\(241\) − 6.98792i − 0.450131i −0.974344 0.225066i \(-0.927740\pi\)
0.974344 0.225066i \(-0.0722597\pi\)
\(242\) 0 0
\(243\) 20.7453 1.33081
\(244\) 0 0
\(245\) − 11.7453i − 0.750377i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.92692i 0.438976i
\(250\) 0 0
\(251\) −12.5593 −0.792734 −0.396367 0.918092i \(-0.629729\pi\)
−0.396367 + 0.918092i \(0.629729\pi\)
\(252\) 0 0
\(253\) − 16.4155i − 1.03203i
\(254\) 0 0
\(255\) 7.51466i 0.470587i
\(256\) 0 0
\(257\) 16.9933 1.06001 0.530006 0.847994i \(-0.322190\pi\)
0.530006 + 0.847994i \(0.322190\pi\)
\(258\) 0 0
\(259\) 6.76809 0.420548
\(260\) 0 0
\(261\) 7.63401 0.472533
\(262\) 0 0
\(263\) 4.39612 0.271077 0.135538 0.990772i \(-0.456724\pi\)
0.135538 + 0.990772i \(0.456724\pi\)
\(264\) 0 0
\(265\) 5.42758i 0.333414i
\(266\) 0 0
\(267\) 28.7084i 1.75693i
\(268\) 0 0
\(269\) 15.5603 0.948730 0.474365 0.880328i \(-0.342678\pi\)
0.474365 + 0.880328i \(0.342678\pi\)
\(270\) 0 0
\(271\) − 21.9952i − 1.33611i −0.744110 0.668057i \(-0.767126\pi\)
0.744110 0.668057i \(-0.232874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.3274i 0.683065i
\(276\) 0 0
\(277\) 1.87800 0.112838 0.0564191 0.998407i \(-0.482032\pi\)
0.0564191 + 0.998407i \(0.482032\pi\)
\(278\) 0 0
\(279\) 6.12200i 0.366514i
\(280\) 0 0
\(281\) − 9.20536i − 0.549146i −0.961566 0.274573i \(-0.911464\pi\)
0.961566 0.274573i \(-0.0885364\pi\)
\(282\) 0 0
\(283\) 4.70841 0.279886 0.139943 0.990160i \(-0.455308\pi\)
0.139943 + 0.990160i \(0.455308\pi\)
\(284\) 0 0
\(285\) 6.16554 0.365215
\(286\) 0 0
\(287\) −16.4155 −0.968976
\(288\) 0 0
\(289\) −4.16852 −0.245207
\(290\) 0 0
\(291\) − 30.5599i − 1.79145i
\(292\) 0 0
\(293\) 13.7017i 0.800462i 0.916414 + 0.400231i \(0.131070\pi\)
−0.916414 + 0.400231i \(0.868930\pi\)
\(294\) 0 0
\(295\) −2.73317 −0.159131
\(296\) 0 0
\(297\) 2.82371i 0.163848i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 0.768086i − 0.0442717i
\(302\) 0 0
\(303\) −24.0301 −1.38049
\(304\) 0 0
\(305\) − 12.4397i − 0.712293i
\(306\) 0 0
\(307\) 8.03252i 0.458440i 0.973375 + 0.229220i \(0.0736176\pi\)
−0.973375 + 0.229220i \(0.926382\pi\)
\(308\) 0 0
\(309\) −25.1487 −1.43066
\(310\) 0 0
\(311\) 4.09783 0.232367 0.116183 0.993228i \(-0.462934\pi\)
0.116183 + 0.993228i \(0.462934\pi\)
\(312\) 0 0
\(313\) 4.37435 0.247253 0.123627 0.992329i \(-0.460548\pi\)
0.123627 + 0.992329i \(0.460548\pi\)
\(314\) 0 0
\(315\) 10.2198 0.575822
\(316\) 0 0
\(317\) − 20.3612i − 1.14360i −0.820393 0.571800i \(-0.806245\pi\)
0.820393 0.571800i \(-0.193755\pi\)
\(318\) 0 0
\(319\) 8.04354i 0.450352i
\(320\) 0 0
\(321\) −48.4631 −2.70495
\(322\) 0 0
\(323\) − 10.5278i − 0.585783i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 6.39612i − 0.353706i
\(328\) 0 0
\(329\) 23.4034 1.29027
\(330\) 0 0
\(331\) − 6.13275i − 0.337087i −0.985694 0.168543i \(-0.946094\pi\)
0.985694 0.168543i \(-0.0539063\pi\)
\(332\) 0 0
\(333\) 3.84787i 0.210862i
\(334\) 0 0
\(335\) 9.85384 0.538373
\(336\) 0 0
\(337\) 27.8485 1.51700 0.758501 0.651672i \(-0.225932\pi\)
0.758501 + 0.651672i \(0.225932\pi\)
\(338\) 0 0
\(339\) −48.6708 −2.64344
\(340\) 0 0
\(341\) −6.45042 −0.349310
\(342\) 0 0
\(343\) 27.8431i 1.50339i
\(344\) 0 0
\(345\) 12.7922i 0.688712i
\(346\) 0 0
\(347\) −4.43967 −0.238334 −0.119167 0.992874i \(-0.538022\pi\)
−0.119167 + 0.992874i \(0.538022\pi\)
\(348\) 0 0
\(349\) 19.9215i 1.06638i 0.845997 + 0.533188i \(0.179006\pi\)
−0.845997 + 0.533188i \(0.820994\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 30.5894i − 1.62811i −0.580788 0.814055i \(-0.697256\pi\)
0.580788 0.814055i \(-0.302744\pi\)
\(354\) 0 0
\(355\) −8.98792 −0.477029
\(356\) 0 0
\(357\) − 37.9409i − 2.00805i
\(358\) 0 0
\(359\) − 21.6039i − 1.14021i −0.821572 0.570104i \(-0.806903\pi\)
0.821572 0.570104i \(-0.193097\pi\)
\(360\) 0 0
\(361\) 10.3623 0.545383
\(362\) 0 0
\(363\) −8.84548 −0.464267
\(364\) 0 0
\(365\) 9.74525 0.510090
\(366\) 0 0
\(367\) −18.7681 −0.979686 −0.489843 0.871811i \(-0.662946\pi\)
−0.489843 + 0.871811i \(0.662946\pi\)
\(368\) 0 0
\(369\) − 9.33273i − 0.485843i
\(370\) 0 0
\(371\) − 27.4034i − 1.42271i
\(372\) 0 0
\(373\) −9.42758 −0.488142 −0.244071 0.969757i \(-0.578483\pi\)
−0.244071 + 0.969757i \(0.578483\pi\)
\(374\) 0 0
\(375\) − 19.3163i − 0.997491i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 32.0103i − 1.64426i −0.569302 0.822129i \(-0.692786\pi\)
0.569302 0.822129i \(-0.307214\pi\)
\(380\) 0 0
\(381\) −30.0930 −1.54171
\(382\) 0 0
\(383\) − 15.9517i − 0.815092i −0.913185 0.407546i \(-0.866385\pi\)
0.913185 0.407546i \(-0.133615\pi\)
\(384\) 0 0
\(385\) 10.7681i 0.548792i
\(386\) 0 0
\(387\) 0.436681 0.0221978
\(388\) 0 0
\(389\) 18.8659 0.956540 0.478270 0.878213i \(-0.341264\pi\)
0.478270 + 0.878213i \(0.341264\pi\)
\(390\) 0 0
\(391\) 21.8431 1.10465
\(392\) 0 0
\(393\) −12.1588 −0.613332
\(394\) 0 0
\(395\) − 2.50258i − 0.125919i
\(396\) 0 0
\(397\) − 37.6969i − 1.89195i −0.324233 0.945977i \(-0.605106\pi\)
0.324233 0.945977i \(-0.394894\pi\)
\(398\) 0 0
\(399\) −31.1293 −1.55841
\(400\) 0 0
\(401\) 3.22952i 0.161275i 0.996744 + 0.0806373i \(0.0256955\pi\)
−0.996744 + 0.0806373i \(0.974304\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 9.02284i − 0.448348i
\(406\) 0 0
\(407\) −4.05429 −0.200964
\(408\) 0 0
\(409\) − 3.54527i − 0.175302i −0.996151 0.0876511i \(-0.972064\pi\)
0.996151 0.0876511i \(-0.0279361\pi\)
\(410\) 0 0
\(411\) − 7.78076i − 0.383797i
\(412\) 0 0
\(413\) 13.7995 0.679031
\(414\) 0 0
\(415\) 2.61596 0.128412
\(416\) 0 0
\(417\) −15.2999 −0.749242
\(418\) 0 0
\(419\) 14.4155 0.704243 0.352122 0.935954i \(-0.385460\pi\)
0.352122 + 0.935954i \(0.385460\pi\)
\(420\) 0 0
\(421\) 10.0978i 0.492138i 0.969252 + 0.246069i \(0.0791390\pi\)
−0.969252 + 0.246069i \(0.920861\pi\)
\(422\) 0 0
\(423\) 13.3056i 0.646940i
\(424\) 0 0
\(425\) −15.0726 −0.731129
\(426\) 0 0
\(427\) 62.8068i 3.03944i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.2198i 0.973955i 0.873414 + 0.486978i \(0.161901\pi\)
−0.873414 + 0.486978i \(0.838099\pi\)
\(432\) 0 0
\(433\) −36.4849 −1.75335 −0.876675 0.481083i \(-0.840244\pi\)
−0.876675 + 0.481083i \(0.840244\pi\)
\(434\) 0 0
\(435\) − 6.26816i − 0.300535i
\(436\) 0 0
\(437\) − 17.9215i − 0.857304i
\(438\) 0 0
\(439\) −28.3612 −1.35361 −0.676803 0.736164i \(-0.736635\pi\)
−0.676803 + 0.736164i \(0.736635\pi\)
\(440\) 0 0
\(441\) −33.7144 −1.60545
\(442\) 0 0
\(443\) −2.80061 −0.133061 −0.0665305 0.997784i \(-0.521193\pi\)
−0.0665305 + 0.997784i \(0.521193\pi\)
\(444\) 0 0
\(445\) 10.8418 0.513949
\(446\) 0 0
\(447\) − 11.8586i − 0.560894i
\(448\) 0 0
\(449\) 13.2760i 0.626535i 0.949665 + 0.313268i \(0.101424\pi\)
−0.949665 + 0.313268i \(0.898576\pi\)
\(450\) 0 0
\(451\) 9.83340 0.463037
\(452\) 0 0
\(453\) 4.06770i 0.191117i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 13.6474i − 0.638399i −0.947688 0.319200i \(-0.896586\pi\)
0.947688 0.319200i \(-0.103414\pi\)
\(458\) 0 0
\(459\) −3.75733 −0.175377
\(460\) 0 0
\(461\) 12.1655i 0.566606i 0.959031 + 0.283303i \(0.0914301\pi\)
−0.959031 + 0.283303i \(0.908570\pi\)
\(462\) 0 0
\(463\) − 4.24996i − 0.197513i −0.995112 0.0987563i \(-0.968514\pi\)
0.995112 0.0987563i \(-0.0314864\pi\)
\(464\) 0 0
\(465\) 5.02667 0.233106
\(466\) 0 0
\(467\) 8.21552 0.380169 0.190084 0.981768i \(-0.439124\pi\)
0.190084 + 0.981768i \(0.439124\pi\)
\(468\) 0 0
\(469\) −49.7512 −2.29730
\(470\) 0 0
\(471\) −36.5461 −1.68396
\(472\) 0 0
\(473\) 0.460107i 0.0211558i
\(474\) 0 0
\(475\) 12.3666i 0.567418i
\(476\) 0 0
\(477\) 15.5797 0.713346
\(478\) 0 0
\(479\) 31.0267i 1.41764i 0.705387 + 0.708822i \(0.250773\pi\)
−0.705387 + 0.708822i \(0.749227\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 64.5870i − 2.93881i
\(484\) 0 0
\(485\) −11.5410 −0.524048
\(486\) 0 0
\(487\) 10.9987i 0.498397i 0.968452 + 0.249199i \(0.0801672\pi\)
−0.968452 + 0.249199i \(0.919833\pi\)
\(488\) 0 0
\(489\) 46.4862i 2.10218i
\(490\) 0 0
\(491\) 21.2336 0.958258 0.479129 0.877745i \(-0.340953\pi\)
0.479129 + 0.877745i \(0.340953\pi\)
\(492\) 0 0
\(493\) −10.7030 −0.482041
\(494\) 0 0
\(495\) −6.12200 −0.275163
\(496\) 0 0
\(497\) 45.3793 2.03554
\(498\) 0 0
\(499\) 16.8635i 0.754915i 0.926027 + 0.377458i \(0.123202\pi\)
−0.926027 + 0.377458i \(0.876798\pi\)
\(500\) 0 0
\(501\) 32.9965i 1.47418i
\(502\) 0 0
\(503\) −20.3806 −0.908725 −0.454363 0.890817i \(-0.650133\pi\)
−0.454363 + 0.890817i \(0.650133\pi\)
\(504\) 0 0
\(505\) 9.07500i 0.403832i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.9215i 0.971655i 0.874055 + 0.485828i \(0.161482\pi\)
−0.874055 + 0.485828i \(0.838518\pi\)
\(510\) 0 0
\(511\) −49.2030 −2.17661
\(512\) 0 0
\(513\) 3.08277i 0.136108i
\(514\) 0 0
\(515\) 9.49742i 0.418506i
\(516\) 0 0
\(517\) −14.0194 −0.616572
\(518\) 0 0
\(519\) 2.84654 0.124949
\(520\) 0 0
\(521\) 26.1564 1.14593 0.572967 0.819578i \(-0.305792\pi\)
0.572967 + 0.819578i \(0.305792\pi\)
\(522\) 0 0
\(523\) −4.91185 −0.214780 −0.107390 0.994217i \(-0.534249\pi\)
−0.107390 + 0.994217i \(0.534249\pi\)
\(524\) 0 0
\(525\) 44.5676i 1.94509i
\(526\) 0 0
\(527\) − 8.58317i − 0.373889i
\(528\) 0 0
\(529\) 14.1836 0.616678
\(530\) 0 0
\(531\) 7.84548i 0.340465i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 18.3021i 0.791270i
\(536\) 0 0
\(537\) −38.9259 −1.67977
\(538\) 0 0
\(539\) − 35.5230i − 1.53009i
\(540\) 0 0
\(541\) − 0.459042i − 0.0197358i −0.999951 0.00986789i \(-0.996859\pi\)
0.999951 0.00986789i \(-0.00314110\pi\)
\(542\) 0 0
\(543\) 15.0180 0.644486
\(544\) 0 0
\(545\) −2.41550 −0.103469
\(546\) 0 0
\(547\) 20.3327 0.869365 0.434682 0.900584i \(-0.356861\pi\)
0.434682 + 0.900584i \(0.356861\pi\)
\(548\) 0 0
\(549\) −35.7077 −1.52397
\(550\) 0 0
\(551\) 8.78150i 0.374104i
\(552\) 0 0
\(553\) 12.6353i 0.537309i
\(554\) 0 0
\(555\) 3.15942 0.134110
\(556\) 0 0
\(557\) 43.9469i 1.86209i 0.364905 + 0.931045i \(0.381101\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 22.7278i 0.959568i
\(562\) 0 0
\(563\) 43.5991 1.83748 0.918741 0.394860i \(-0.129207\pi\)
0.918741 + 0.394860i \(0.129207\pi\)
\(564\) 0 0
\(565\) 18.3806i 0.773277i
\(566\) 0 0
\(567\) 45.5555i 1.91315i
\(568\) 0 0
\(569\) −8.28919 −0.347501 −0.173751 0.984790i \(-0.555589\pi\)
−0.173751 + 0.984790i \(0.555589\pi\)
\(570\) 0 0
\(571\) −22.9836 −0.961834 −0.480917 0.876766i \(-0.659696\pi\)
−0.480917 + 0.876766i \(0.659696\pi\)
\(572\) 0 0
\(573\) −5.87800 −0.245557
\(574\) 0 0
\(575\) −25.6582 −1.07002
\(576\) 0 0
\(577\) 0.553630i 0.0230479i 0.999934 + 0.0115240i \(0.00366827\pi\)
−0.999934 + 0.0115240i \(0.996332\pi\)
\(578\) 0 0
\(579\) − 9.44026i − 0.392324i
\(580\) 0 0
\(581\) −13.2078 −0.547950
\(582\) 0 0
\(583\) 16.4155i 0.679861i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.0355i 0.661856i 0.943656 + 0.330928i \(0.107362\pi\)
−0.943656 + 0.330928i \(0.892638\pi\)
\(588\) 0 0
\(589\) −7.04221 −0.290169
\(590\) 0 0
\(591\) − 55.7029i − 2.29131i
\(592\) 0 0
\(593\) − 25.9976i − 1.06759i −0.845613 0.533797i \(-0.820765\pi\)
0.845613 0.533797i \(-0.179235\pi\)
\(594\) 0 0
\(595\) −14.3284 −0.587408
\(596\) 0 0
\(597\) −38.9772 −1.59523
\(598\) 0 0
\(599\) 16.2150 0.662529 0.331264 0.943538i \(-0.392525\pi\)
0.331264 + 0.943538i \(0.392525\pi\)
\(600\) 0 0
\(601\) −29.5200 −1.20415 −0.602074 0.798440i \(-0.705659\pi\)
−0.602074 + 0.798440i \(0.705659\pi\)
\(602\) 0 0
\(603\) − 28.2851i − 1.15186i
\(604\) 0 0
\(605\) 3.34050i 0.135811i
\(606\) 0 0
\(607\) −37.4228 −1.51894 −0.759472 0.650540i \(-0.774543\pi\)
−0.759472 + 0.650540i \(0.774543\pi\)
\(608\) 0 0
\(609\) 31.6474i 1.28242i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 38.0737i − 1.53778i −0.639380 0.768891i \(-0.720809\pi\)
0.639380 0.768891i \(-0.279191\pi\)
\(614\) 0 0
\(615\) −7.66296 −0.309000
\(616\) 0 0
\(617\) − 41.6383i − 1.67630i −0.545443 0.838148i \(-0.683639\pi\)
0.545443 0.838148i \(-0.316361\pi\)
\(618\) 0 0
\(619\) 1.67158i 0.0671864i 0.999436 + 0.0335932i \(0.0106951\pi\)
−0.999436 + 0.0335932i \(0.989305\pi\)
\(620\) 0 0
\(621\) −6.39612 −0.256668
\(622\) 0 0
\(623\) −54.7391 −2.19308
\(624\) 0 0
\(625\) 13.7439 0.549757
\(626\) 0 0
\(627\) 18.6474 0.744706
\(628\) 0 0
\(629\) − 5.39480i − 0.215105i
\(630\) 0 0
\(631\) − 8.70304i − 0.346462i −0.984881 0.173231i \(-0.944579\pi\)
0.984881 0.173231i \(-0.0554208\pi\)
\(632\) 0 0
\(633\) −3.91377 −0.155559
\(634\) 0 0
\(635\) 11.3647i 0.450993i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 25.7995i 1.02061i
\(640\) 0 0
\(641\) 19.9075 0.786301 0.393150 0.919474i \(-0.371385\pi\)
0.393150 + 0.919474i \(0.371385\pi\)
\(642\) 0 0
\(643\) 27.0756i 1.06776i 0.845561 + 0.533879i \(0.179266\pi\)
−0.845561 + 0.533879i \(0.820734\pi\)
\(644\) 0 0
\(645\) − 0.358552i − 0.0141180i
\(646\) 0 0
\(647\) 9.43237 0.370825 0.185412 0.982661i \(-0.440638\pi\)
0.185412 + 0.982661i \(0.440638\pi\)
\(648\) 0 0
\(649\) −8.26636 −0.324483
\(650\) 0 0
\(651\) −25.3793 −0.994692
\(652\) 0 0
\(653\) −37.6292 −1.47255 −0.736273 0.676685i \(-0.763416\pi\)
−0.736273 + 0.676685i \(0.763416\pi\)
\(654\) 0 0
\(655\) 4.59179i 0.179416i
\(656\) 0 0
\(657\) − 27.9734i − 1.09135i
\(658\) 0 0
\(659\) 32.7724 1.27663 0.638316 0.769775i \(-0.279631\pi\)
0.638316 + 0.769775i \(0.279631\pi\)
\(660\) 0 0
\(661\) − 20.1957i − 0.785520i −0.919641 0.392760i \(-0.871520\pi\)
0.919641 0.392760i \(-0.128480\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 11.7560i 0.455878i
\(666\) 0 0
\(667\) −18.2198 −0.705475
\(668\) 0 0
\(669\) − 1.86725i − 0.0721920i
\(670\) 0 0
\(671\) − 37.6233i − 1.45243i
\(672\) 0 0
\(673\) 30.3435 1.16966 0.584828 0.811158i \(-0.301162\pi\)
0.584828 + 0.811158i \(0.301162\pi\)
\(674\) 0 0
\(675\) 4.41358 0.169879
\(676\) 0 0
\(677\) −21.1642 −0.813407 −0.406703 0.913560i \(-0.633322\pi\)
−0.406703 + 0.913560i \(0.633322\pi\)
\(678\) 0 0
\(679\) 58.2693 2.23617
\(680\) 0 0
\(681\) − 51.2868i − 1.96531i
\(682\) 0 0
\(683\) 35.4873i 1.35788i 0.734193 + 0.678941i \(0.237561\pi\)
−0.734193 + 0.678941i \(0.762439\pi\)
\(684\) 0 0
\(685\) −2.93841 −0.112271
\(686\) 0 0
\(687\) − 4.65684i − 0.177670i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 36.7472i 1.39793i 0.715157 + 0.698964i \(0.246355\pi\)
−0.715157 + 0.698964i \(0.753645\pi\)
\(692\) 0 0
\(693\) 30.9095 1.17415
\(694\) 0 0
\(695\) 5.77804i 0.219173i
\(696\) 0 0
\(697\) 13.0847i 0.495618i
\(698\) 0 0
\(699\) 42.9778 1.62557
\(700\) 0 0
\(701\) −19.7668 −0.746580 −0.373290 0.927715i \(-0.621770\pi\)
−0.373290 + 0.927715i \(0.621770\pi\)
\(702\) 0 0
\(703\) −4.42626 −0.166939
\(704\) 0 0
\(705\) 10.9250 0.411459
\(706\) 0 0
\(707\) − 45.8189i − 1.72320i
\(708\) 0 0
\(709\) 11.6280i 0.436700i 0.975871 + 0.218350i \(0.0700675\pi\)
−0.975871 + 0.218350i \(0.929933\pi\)
\(710\) 0 0
\(711\) −7.18359 −0.269406
\(712\) 0 0
\(713\) − 14.6112i − 0.547193i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 52.0253i − 1.94292i
\(718\) 0 0
\(719\) −1.06638 −0.0397691 −0.0198846 0.999802i \(-0.506330\pi\)
−0.0198846 + 0.999802i \(0.506330\pi\)
\(720\) 0 0
\(721\) − 47.9517i − 1.78581i
\(722\) 0 0
\(723\) 16.4698i 0.612518i
\(724\) 0 0
\(725\) 12.5724 0.466928
\(726\) 0 0
\(727\) −1.26205 −0.0468067 −0.0234033 0.999726i \(-0.507450\pi\)
−0.0234033 + 0.999726i \(0.507450\pi\)
\(728\) 0 0
\(729\) −18.4832 −0.684563
\(730\) 0 0
\(731\) −0.612236 −0.0226444
\(732\) 0 0
\(733\) 20.6789i 0.763792i 0.924205 + 0.381896i \(0.124729\pi\)
−0.924205 + 0.381896i \(0.875271\pi\)
\(734\) 0 0
\(735\) 27.6823i 1.02108i
\(736\) 0 0
\(737\) 29.8025 1.09779
\(738\) 0 0
\(739\) − 5.17331i − 0.190303i −0.995463 0.0951516i \(-0.969666\pi\)
0.995463 0.0951516i \(-0.0303336\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 10.4397i − 0.382994i −0.981493 0.191497i \(-0.938666\pi\)
0.981493 0.191497i \(-0.0613343\pi\)
\(744\) 0 0
\(745\) −4.47842 −0.164077
\(746\) 0 0
\(747\) − 7.50902i − 0.274741i
\(748\) 0 0
\(749\) − 92.4059i − 3.37644i
\(750\) 0 0
\(751\) −14.0435 −0.512456 −0.256228 0.966616i \(-0.582480\pi\)
−0.256228 + 0.966616i \(0.582480\pi\)
\(752\) 0 0
\(753\) 29.6009 1.07872
\(754\) 0 0
\(755\) 1.53617 0.0559070
\(756\) 0 0
\(757\) −9.30559 −0.338217 −0.169109 0.985597i \(-0.554089\pi\)
−0.169109 + 0.985597i \(0.554089\pi\)
\(758\) 0 0
\(759\) 38.6896i 1.40434i
\(760\) 0 0
\(761\) − 9.56273i − 0.346649i −0.984865 0.173324i \(-0.944549\pi\)
0.984865 0.173324i \(-0.0554509\pi\)
\(762\) 0 0
\(763\) 12.1957 0.441513
\(764\) 0 0
\(765\) − 8.14616i − 0.294525i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 31.9299i 1.15142i 0.817653 + 0.575711i \(0.195275\pi\)
−0.817653 + 0.575711i \(0.804725\pi\)
\(770\) 0 0
\(771\) −40.0514 −1.44242
\(772\) 0 0
\(773\) 34.1172i 1.22711i 0.789652 + 0.613555i \(0.210261\pi\)
−0.789652 + 0.613555i \(0.789739\pi\)
\(774\) 0 0
\(775\) 10.0823i 0.362167i
\(776\) 0 0
\(777\) −15.9517 −0.572263
\(778\) 0 0
\(779\) 10.7356 0.384641
\(780\) 0 0
\(781\) −27.1836 −0.972705
\(782\) 0 0
\(783\) 3.13408 0.112003
\(784\) 0 0
\(785\) 13.8017i 0.492603i
\(786\) 0 0
\(787\) 37.3467i 1.33127i 0.746279 + 0.665634i \(0.231839\pi\)
−0.746279 + 0.665634i \(0.768161\pi\)
\(788\) 0 0
\(789\) −10.3612 −0.368869
\(790\) 0 0
\(791\) − 92.8021i − 3.29966i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 12.7922i − 0.453694i
\(796\) 0 0
\(797\) 14.9831 0.530730 0.265365 0.964148i \(-0.414508\pi\)
0.265365 + 0.964148i \(0.414508\pi\)
\(798\) 0 0
\(799\) − 18.6547i − 0.659956i
\(800\) 0 0
\(801\) − 31.1209i − 1.09960i
\(802\) 0 0
\(803\) 29.4741 1.04012
\(804\) 0 0
\(805\) −24.3913 −0.859682
\(806\) 0 0
\(807\) −36.6741 −1.29099
\(808\) 0 0
\(809\) 25.6770 0.902754 0.451377 0.892333i \(-0.350933\pi\)
0.451377 + 0.892333i \(0.350933\pi\)
\(810\) 0 0
\(811\) 8.66786i 0.304370i 0.988352 + 0.152185i \(0.0486309\pi\)
−0.988352 + 0.152185i \(0.951369\pi\)
\(812\) 0 0
\(813\) 51.8404i 1.81812i
\(814\) 0 0
\(815\) 17.5555 0.614944
\(816\) 0 0
\(817\) 0.502320i 0.0175739i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 54.6547i 1.90746i 0.300660 + 0.953731i \(0.402793\pi\)
−0.300660 + 0.953731i \(0.597207\pi\)
\(822\) 0 0
\(823\) −6.33704 −0.220895 −0.110448 0.993882i \(-0.535228\pi\)
−0.110448 + 0.993882i \(0.535228\pi\)
\(824\) 0 0
\(825\) − 26.6974i − 0.929484i
\(826\) 0 0
\(827\) − 35.5405i − 1.23586i −0.786232 0.617932i \(-0.787971\pi\)
0.786232 0.617932i \(-0.212029\pi\)
\(828\) 0 0
\(829\) 41.5555 1.44328 0.721642 0.692267i \(-0.243388\pi\)
0.721642 + 0.692267i \(0.243388\pi\)
\(830\) 0 0
\(831\) −4.42626 −0.153545
\(832\) 0 0
\(833\) 47.2683 1.63775
\(834\) 0 0
\(835\) 12.4612 0.431237
\(836\) 0 0
\(837\) 2.51334i 0.0868736i
\(838\) 0 0
\(839\) − 17.5496i − 0.605879i −0.953010 0.302939i \(-0.902032\pi\)
0.953010 0.302939i \(-0.0979680\pi\)
\(840\) 0 0
\(841\) −20.0723 −0.692150
\(842\) 0 0
\(843\) 21.6961i 0.747252i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 16.8659i − 0.579520i
\(848\) 0 0
\(849\) −11.0972 −0.380856
\(850\) 0 0
\(851\) − 9.18359i − 0.314809i
\(852\) 0 0
\(853\) 20.1414i 0.689628i 0.938671 + 0.344814i \(0.112058\pi\)
−0.938671 + 0.344814i \(0.887942\pi\)
\(854\) 0 0
\(855\) −6.68366 −0.228576
\(856\) 0 0
\(857\) 8.85756 0.302568 0.151284 0.988490i \(-0.451659\pi\)
0.151284 + 0.988490i \(0.451659\pi\)
\(858\) 0 0
\(859\) −28.8810 −0.985407 −0.492703 0.870197i \(-0.663991\pi\)
−0.492703 + 0.870197i \(0.663991\pi\)
\(860\) 0 0
\(861\) 38.6896 1.31854
\(862\) 0 0
\(863\) 3.90813i 0.133034i 0.997785 + 0.0665172i \(0.0211887\pi\)
−0.997785 + 0.0665172i \(0.978811\pi\)
\(864\) 0 0
\(865\) − 1.07500i − 0.0365511i
\(866\) 0 0
\(867\) 9.82477 0.333667
\(868\) 0 0
\(869\) − 7.56896i − 0.256759i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 33.1280i 1.12121i
\(874\) 0 0
\(875\) 36.8310 1.24512
\(876\) 0 0
\(877\) 44.9879i 1.51913i 0.650429 + 0.759567i \(0.274589\pi\)
−0.650429 + 0.759567i \(0.725411\pi\)
\(878\) 0 0
\(879\) − 32.2935i − 1.08923i
\(880\) 0 0
\(881\) 14.1933 0.478184 0.239092 0.970997i \(-0.423150\pi\)
0.239092 + 0.970997i \(0.423150\pi\)
\(882\) 0 0
\(883\) 48.4626 1.63090 0.815448 0.578830i \(-0.196490\pi\)
0.815448 + 0.578830i \(0.196490\pi\)
\(884\) 0 0
\(885\) 6.44179 0.216539
\(886\) 0 0
\(887\) −30.8611 −1.03622 −0.518108 0.855315i \(-0.673363\pi\)
−0.518108 + 0.855315i \(0.673363\pi\)
\(888\) 0 0
\(889\) − 57.3793i − 1.92444i
\(890\) 0 0
\(891\) − 27.2892i − 0.914222i
\(892\) 0 0
\(893\) −15.3056 −0.512182
\(894\) 0 0
\(895\) 14.7004i 0.491380i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.15942i 0.238780i
\(900\) 0 0
\(901\) −21.8431 −0.727699
\(902\) 0 0
\(903\) 1.81030i 0.0602430i
\(904\) 0 0
\(905\) − 5.67158i − 0.188530i
\(906\) 0 0
\(907\) 3.94139 0.130872 0.0654359 0.997857i \(-0.479156\pi\)
0.0654359 + 0.997857i \(0.479156\pi\)
\(908\) 0 0
\(909\) 26.0495 0.864008
\(910\) 0 0
\(911\) 37.1943 1.23230 0.616152 0.787627i \(-0.288691\pi\)
0.616152 + 0.787627i \(0.288691\pi\)
\(912\) 0 0
\(913\) 7.91185 0.261844
\(914\) 0 0
\(915\) 29.3190i 0.969256i
\(916\) 0 0
\(917\) − 23.1836i − 0.765590i
\(918\) 0 0
\(919\) −0.681005 −0.0224643 −0.0112321 0.999937i \(-0.503575\pi\)
−0.0112321 + 0.999937i \(0.503575\pi\)
\(920\) 0 0
\(921\) − 18.9318i − 0.623825i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.33704i 0.208361i
\(926\) 0 0
\(927\) 27.2620 0.895403
\(928\) 0 0
\(929\) − 32.4355i − 1.06417i −0.846690 0.532087i \(-0.821408\pi\)
0.846690 0.532087i \(-0.178592\pi\)
\(930\) 0 0
\(931\) − 38.7821i − 1.27103i
\(932\) 0 0
\(933\) −9.65817 −0.316194
\(934\) 0 0
\(935\) 8.58317 0.280700
\(936\) 0 0
\(937\) −14.6165 −0.477502 −0.238751 0.971081i \(-0.576738\pi\)
−0.238751 + 0.971081i \(0.576738\pi\)
\(938\) 0 0
\(939\) −10.3099 −0.336451
\(940\) 0 0
\(941\) 30.1763i 0.983719i 0.870675 + 0.491860i \(0.163683\pi\)
−0.870675 + 0.491860i \(0.836317\pi\)
\(942\) 0 0
\(943\) 22.2741i 0.725345i
\(944\) 0 0
\(945\) 4.19567 0.136485
\(946\) 0 0
\(947\) 20.6708i 0.671712i 0.941913 + 0.335856i \(0.109026\pi\)
−0.941913 + 0.335856i \(0.890974\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 47.9892i 1.55616i
\(952\) 0 0
\(953\) 47.2411 1.53029 0.765145 0.643858i \(-0.222667\pi\)
0.765145 + 0.643858i \(0.222667\pi\)
\(954\) 0 0
\(955\) 2.21983i 0.0718321i
\(956\) 0 0
\(957\) − 18.9578i − 0.612818i
\(958\) 0 0
\(959\) 14.8358 0.479073
\(960\) 0 0
\(961\) 25.2586 0.814793
\(962\) 0 0
\(963\) 52.5357 1.69294
\(964\) 0 0
\(965\) −3.56512 −0.114765
\(966\) 0 0
\(967\) − 53.9517i − 1.73497i −0.497464 0.867484i \(-0.665735\pi\)
0.497464 0.867484i \(-0.334265\pi\)
\(968\) 0 0
\(969\) 24.8130i 0.797107i
\(970\) 0 0
\(971\) −49.8920 −1.60111 −0.800555 0.599259i \(-0.795462\pi\)
−0.800555 + 0.599259i \(0.795462\pi\)
\(972\) 0 0
\(973\) − 29.1728i − 0.935238i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.1299i 0.931948i 0.884799 + 0.465974i \(0.154296\pi\)
−0.884799 + 0.465974i \(0.845704\pi\)
\(978\) 0 0
\(979\) 32.7904 1.04799
\(980\) 0 0
\(981\) 6.93362i 0.221374i
\(982\) 0 0
\(983\) − 41.3309i − 1.31825i −0.752033 0.659126i \(-0.770926\pi\)
0.752033 0.659126i \(-0.229074\pi\)
\(984\) 0 0
\(985\) −21.0362 −0.670270
\(986\) 0 0
\(987\) −55.1594 −1.75574
\(988\) 0 0
\(989\) −1.04221 −0.0331404
\(990\) 0 0
\(991\) −19.2185 −0.610496 −0.305248 0.952273i \(-0.598739\pi\)
−0.305248 + 0.952273i \(0.598739\pi\)
\(992\) 0 0
\(993\) 14.4543i 0.458692i
\(994\) 0 0
\(995\) 14.7198i 0.466648i
\(996\) 0 0
\(997\) 22.4940 0.712391 0.356195 0.934411i \(-0.384074\pi\)
0.356195 + 0.934411i \(0.384074\pi\)
\(998\) 0 0
\(999\) 1.57971i 0.0499799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2704.2.f.m.337.4 6
4.3 odd 2 338.2.b.d.337.5 6
12.11 even 2 3042.2.b.n.1351.2 6
13.5 odd 4 2704.2.a.w.1.2 3
13.8 odd 4 2704.2.a.v.1.2 3
13.12 even 2 inner 2704.2.f.m.337.3 6
52.3 odd 6 338.2.e.e.147.2 12
52.7 even 12 338.2.c.i.315.2 6
52.11 even 12 338.2.c.i.191.2 6
52.15 even 12 338.2.c.h.191.2 6
52.19 even 12 338.2.c.h.315.2 6
52.23 odd 6 338.2.e.e.147.5 12
52.31 even 4 338.2.a.h.1.2 yes 3
52.35 odd 6 338.2.e.e.23.5 12
52.43 odd 6 338.2.e.e.23.2 12
52.47 even 4 338.2.a.g.1.2 3
52.51 odd 2 338.2.b.d.337.2 6
156.47 odd 4 3042.2.a.bi.1.2 3
156.83 odd 4 3042.2.a.z.1.2 3
156.155 even 2 3042.2.b.n.1351.5 6
260.99 even 4 8450.2.a.bx.1.2 3
260.239 even 4 8450.2.a.bn.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.2 3 52.47 even 4
338.2.a.h.1.2 yes 3 52.31 even 4
338.2.b.d.337.2 6 52.51 odd 2
338.2.b.d.337.5 6 4.3 odd 2
338.2.c.h.191.2 6 52.15 even 12
338.2.c.h.315.2 6 52.19 even 12
338.2.c.i.191.2 6 52.11 even 12
338.2.c.i.315.2 6 52.7 even 12
338.2.e.e.23.2 12 52.43 odd 6
338.2.e.e.23.5 12 52.35 odd 6
338.2.e.e.147.2 12 52.3 odd 6
338.2.e.e.147.5 12 52.23 odd 6
2704.2.a.v.1.2 3 13.8 odd 4
2704.2.a.w.1.2 3 13.5 odd 4
2704.2.f.m.337.3 6 13.12 even 2 inner
2704.2.f.m.337.4 6 1.1 even 1 trivial
3042.2.a.z.1.2 3 156.83 odd 4
3042.2.a.bi.1.2 3 156.47 odd 4
3042.2.b.n.1351.2 6 12.11 even 2
3042.2.b.n.1351.5 6 156.155 even 2
8450.2.a.bn.1.2 3 260.239 even 4
8450.2.a.bx.1.2 3 260.99 even 4