Properties

Label 2704.2.f.m.337.4
Level 27042704
Weight 22
Character 2704.337
Analytic conductor 21.59221.592
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2704,2,Mod(337,2704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2704.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2704=24132 2704 = 2^{4} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2704.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 21.591548706621.5915487066
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+5x4+6x2+1 x^{6} + 5x^{4} + 6x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 338)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 337.4
Root 1.24698i1.24698i of defining polynomial
Character χ\chi == 2704.337
Dual form 2704.2.f.m.337.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.35690q3+0.890084iq54.49396iq7+2.55496q9+2.69202iq112.09783iq153.58211q17+2.93900iq19+10.5918iq216.09783q23+4.20775q25+1.04892q27+2.98792q29+2.39612iq316.34481iq33+4.00000q35+1.50604iq373.65279iq41+0.170915q43+2.27413iq45+5.20775iq4713.1957q49+8.44265q51+6.09783q532.39612q556.92692iq57+3.07069iq5913.9758q6111.4819iq6311.0707iq67+14.3720q69+10.0978iq7110.9487iq739.91723q75+12.0978q772.81163q7910.1371q812.93900iq833.18837iq857.04221q8712.1806iq895.64742iq932.61596q95+12.9661iq97+6.87800iq99+O(q100)q-2.35690 q^{3} +0.890084i q^{5} -4.49396i q^{7} +2.55496 q^{9} +2.69202i q^{11} -2.09783i q^{15} -3.58211 q^{17} +2.93900i q^{19} +10.5918i q^{21} -6.09783 q^{23} +4.20775 q^{25} +1.04892 q^{27} +2.98792 q^{29} +2.39612i q^{31} -6.34481i q^{33} +4.00000 q^{35} +1.50604i q^{37} -3.65279i q^{41} +0.170915 q^{43} +2.27413i q^{45} +5.20775i q^{47} -13.1957 q^{49} +8.44265 q^{51} +6.09783 q^{53} -2.39612 q^{55} -6.92692i q^{57} +3.07069i q^{59} -13.9758 q^{61} -11.4819i q^{63} -11.0707i q^{67} +14.3720 q^{69} +10.0978i q^{71} -10.9487i q^{73} -9.91723 q^{75} +12.0978 q^{77} -2.81163 q^{79} -10.1371 q^{81} -2.93900i q^{83} -3.18837i q^{85} -7.04221 q^{87} -12.1806i q^{89} -5.64742i q^{93} -2.61596 q^{95} +12.9661i q^{97} +6.87800i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q6q3+16q910q1710q2512q2720q29+24q35+22q436q4932q5132q558q61+28q6946q75+36q77+36q7950q81+36q95+O(q100) 6 q - 6 q^{3} + 16 q^{9} - 10 q^{17} - 10 q^{25} - 12 q^{27} - 20 q^{29} + 24 q^{35} + 22 q^{43} - 6 q^{49} - 32 q^{51} - 32 q^{55} - 8 q^{61} + 28 q^{69} - 46 q^{75} + 36 q^{77} + 36 q^{79} - 50 q^{81}+ \cdots - 36 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2704Z)×\left(\mathbb{Z}/2704\mathbb{Z}\right)^\times.

nn 677677 11851185 23672367
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −2.35690 −1.36075 −0.680377 0.732862i 0.738184π-0.738184\pi
−0.680377 + 0.732862i 0.738184π0.738184\pi
44 0 0
55 0.890084i 0.398058i 0.979994 + 0.199029i 0.0637787π0.0637787\pi
−0.979994 + 0.199029i 0.936221π0.936221\pi
66 0 0
77 − 4.49396i − 1.69856i −0.527945 0.849278i 0.677037π-0.677037\pi
0.527945 0.849278i 0.322963π-0.322963\pi
88 0 0
99 2.55496 0.851653
1010 0 0
1111 2.69202i 0.811675i 0.913945 + 0.405838i 0.133020π0.133020\pi
−0.913945 + 0.405838i 0.866980π0.866980\pi
1212 0 0
1313 0 0
1414 0 0
1515 − 2.09783i − 0.541659i
1616 0 0
1717 −3.58211 −0.868788 −0.434394 0.900723i 0.643037π-0.643037\pi
−0.434394 + 0.900723i 0.643037π0.643037\pi
1818 0 0
1919 2.93900i 0.674253i 0.941459 + 0.337127i 0.109455π0.109455\pi
−0.941459 + 0.337127i 0.890545π0.890545\pi
2020 0 0
2121 10.5918i 2.31132i
2222 0 0
2323 −6.09783 −1.27149 −0.635743 0.771901i 0.719306π-0.719306\pi
−0.635743 + 0.771901i 0.719306π0.719306\pi
2424 0 0
2525 4.20775 0.841550
2626 0 0
2727 1.04892 0.201864
2828 0 0
2929 2.98792 0.554843 0.277421 0.960748i 0.410520π-0.410520\pi
0.277421 + 0.960748i 0.410520π0.410520\pi
3030 0 0
3131 2.39612i 0.430357i 0.976575 + 0.215178i 0.0690333π0.0690333\pi
−0.976575 + 0.215178i 0.930967π0.930967\pi
3232 0 0
3333 − 6.34481i − 1.10449i
3434 0 0
3535 4.00000 0.676123
3636 0 0
3737 1.50604i 0.247592i 0.992308 + 0.123796i 0.0395068π0.0395068\pi
−0.992308 + 0.123796i 0.960493π0.960493\pi
3838 0 0
3939 0 0
4040 0 0
4141 − 3.65279i − 0.570470i −0.958458 0.285235i 0.907928π-0.907928\pi
0.958458 0.285235i 0.0920717π-0.0920717\pi
4242 0 0
4343 0.170915 0.0260643 0.0130322 0.999915i 0.495852π-0.495852\pi
0.0130322 + 0.999915i 0.495852π0.495852\pi
4444 0 0
4545 2.27413i 0.339007i
4646 0 0
4747 5.20775i 0.759629i 0.925063 + 0.379814i 0.124012π0.124012\pi
−0.925063 + 0.379814i 0.875988π0.875988\pi
4848 0 0
4949 −13.1957 −1.88510
5050 0 0
5151 8.44265 1.18221
5252 0 0
5353 6.09783 0.837602 0.418801 0.908078i 0.362450π-0.362450\pi
0.418801 + 0.908078i 0.362450π0.362450\pi
5454 0 0
5555 −2.39612 −0.323093
5656 0 0
5757 − 6.92692i − 0.917493i
5858 0 0
5959 3.07069i 0.399769i 0.979819 + 0.199885i 0.0640568π0.0640568\pi
−0.979819 + 0.199885i 0.935943π0.935943\pi
6060 0 0
6161 −13.9758 −1.78942 −0.894711 0.446645i 0.852619π-0.852619\pi
−0.894711 + 0.446645i 0.852619π0.852619\pi
6262 0 0
6363 − 11.4819i − 1.44658i
6464 0 0
6565 0 0
6666 0 0
6767 − 11.0707i − 1.35250i −0.736672 0.676250i 0.763604π-0.763604\pi
0.736672 0.676250i 0.236396π-0.236396\pi
6868 0 0
6969 14.3720 1.73018
7070 0 0
7171 10.0978i 1.19839i 0.800602 + 0.599196i 0.204513π0.204513\pi
−0.800602 + 0.599196i 0.795487π0.795487\pi
7272 0 0
7373 − 10.9487i − 1.28145i −0.767772 0.640724i 0.778634π-0.778634\pi
0.767772 0.640724i 0.221366π-0.221366\pi
7474 0 0
7575 −9.91723 −1.14514
7676 0 0
7777 12.0978 1.37868
7878 0 0
7979 −2.81163 −0.316333 −0.158166 0.987412i 0.550558π-0.550558\pi
−0.158166 + 0.987412i 0.550558π0.550558\pi
8080 0 0
8181 −10.1371 −1.12634
8282 0 0
8383 − 2.93900i − 0.322597i −0.986906 0.161299i 0.948432π-0.948432\pi
0.986906 0.161299i 0.0515682π-0.0515682\pi
8484 0 0
8585 − 3.18837i − 0.345828i
8686 0 0
8787 −7.04221 −0.755004
8888 0 0
8989 − 12.1806i − 1.29114i −0.763700 0.645571i 0.776620π-0.776620\pi
0.763700 0.645571i 0.223380π-0.223380\pi
9090 0 0
9191 0 0
9292 0 0
9393 − 5.64742i − 0.585610i
9494 0 0
9595 −2.61596 −0.268392
9696 0 0
9797 12.9661i 1.31651i 0.752794 + 0.658256i 0.228706π0.228706\pi
−0.752794 + 0.658256i 0.771294π0.771294\pi
9898 0 0
9999 6.87800i 0.691265i
100100 0 0
101101 10.1957 1.01451 0.507254 0.861797i 0.330661π-0.330661\pi
0.507254 + 0.861797i 0.330661π0.330661\pi
102102 0 0
103103 10.6703 1.05137 0.525686 0.850679i 0.323809π-0.323809\pi
0.525686 + 0.850679i 0.323809π0.323809\pi
104104 0 0
105105 −9.42758 −0.920038
106106 0 0
107107 20.5623 1.98783 0.993914 0.110158i 0.0351358π-0.0351358\pi
0.993914 + 0.110158i 0.0351358π0.0351358\pi
108108 0 0
109109 2.71379i 0.259934i 0.991518 + 0.129967i 0.0414872π0.0414872\pi
−0.991518 + 0.129967i 0.958513π0.958513\pi
110110 0 0
111111 − 3.54958i − 0.336911i
112112 0 0
113113 20.6504 1.94263 0.971313 0.237804i 0.0764277π-0.0764277\pi
0.971313 + 0.237804i 0.0764277π0.0764277\pi
114114 0 0
115115 − 5.42758i − 0.506125i
116116 0 0
117117 0 0
118118 0 0
119119 16.0978i 1.47569i
120120 0 0
121121 3.75302 0.341184
122122 0 0
123123 8.60925i 0.776270i
124124 0 0
125125 8.19567i 0.733043i
126126 0 0
127127 12.7681 1.13298 0.566492 0.824067i 0.308300π-0.308300\pi
0.566492 + 0.824067i 0.308300π0.308300\pi
128128 0 0
129129 −0.402829 −0.0354671
130130 0 0
131131 5.15883 0.450729 0.225365 0.974274i 0.427643π-0.427643\pi
0.225365 + 0.974274i 0.427643π0.427643\pi
132132 0 0
133133 13.2078 1.14526
134134 0 0
135135 0.933624i 0.0803536i
136136 0 0
137137 3.30127i 0.282047i 0.990006 + 0.141023i 0.0450393π0.0450393\pi
−0.990006 + 0.141023i 0.954961π0.954961\pi
138138 0 0
139139 6.49157 0.550607 0.275304 0.961357i 0.411222π-0.411222\pi
0.275304 + 0.961357i 0.411222π0.411222\pi
140140 0 0
141141 − 12.2741i − 1.03367i
142142 0 0
143143 0 0
144144 0 0
145145 2.65950i 0.220859i
146146 0 0
147147 31.1008 2.56515
148148 0 0
149149 5.03146i 0.412193i 0.978532 + 0.206097i 0.0660761π0.0660761\pi
−0.978532 + 0.206097i 0.933924π0.933924\pi
150150 0 0
151151 − 1.72587i − 0.140450i −0.997531 0.0702248i 0.977628π-0.977628\pi
0.997531 0.0702248i 0.0223717π-0.0223717\pi
152152 0 0
153153 −9.15213 −0.739906
154154 0 0
155155 −2.13275 −0.171307
156156 0 0
157157 15.5060 1.23752 0.618758 0.785581i 0.287636π-0.287636\pi
0.618758 + 0.785581i 0.287636π0.287636\pi
158158 0 0
159159 −14.3720 −1.13977
160160 0 0
161161 27.4034i 2.15969i
162162 0 0
163163 − 19.7235i − 1.54486i −0.635099 0.772431i 0.719041π-0.719041\pi
0.635099 0.772431i 0.280959π-0.280959\pi
164164 0 0
165165 5.64742 0.439651
166166 0 0
167167 − 14.0000i − 1.08335i −0.840587 0.541676i 0.817790π-0.817790\pi
0.840587 0.541676i 0.182210π-0.182210\pi
168168 0 0
169169 0 0
170170 0 0
171171 7.50902i 0.574229i
172172 0 0
173173 −1.20775 −0.0918236 −0.0459118 0.998945i 0.514619π-0.514619\pi
−0.0459118 + 0.998945i 0.514619π0.514619\pi
174174 0 0
175175 − 18.9095i − 1.42942i
176176 0 0
177177 − 7.23729i − 0.543988i
178178 0 0
179179 16.5157 1.23444 0.617222 0.786789i 0.288258π-0.288258\pi
0.617222 + 0.786789i 0.288258π0.288258\pi
180180 0 0
181181 −6.37196 −0.473624 −0.236812 0.971555i 0.576103π-0.576103\pi
−0.236812 + 0.971555i 0.576103π0.576103\pi
182182 0 0
183183 32.9396 2.43496
184184 0 0
185185 −1.34050 −0.0985557
186186 0 0
187187 − 9.64310i − 0.705174i
188188 0 0
189189 − 4.71379i − 0.342878i
190190 0 0
191191 2.49396 0.180457 0.0902283 0.995921i 0.471240π-0.471240\pi
0.0902283 + 0.995921i 0.471240π0.471240\pi
192192 0 0
193193 4.00538i 0.288313i 0.989555 + 0.144157i 0.0460469π0.0460469\pi
−0.989555 + 0.144157i 0.953953π0.953953\pi
194194 0 0
195195 0 0
196196 0 0
197197 23.6340i 1.68385i 0.539592 + 0.841927i 0.318578π0.318578\pi
−0.539592 + 0.841927i 0.681422π0.681422\pi
198198 0 0
199199 16.5375 1.17231 0.586156 0.810198i 0.300641π-0.300641\pi
0.586156 + 0.810198i 0.300641π0.300641\pi
200200 0 0
201201 26.0925i 1.84042i
202202 0 0
203203 − 13.4276i − 0.942432i
204204 0 0
205205 3.25129 0.227080
206206 0 0
207207 −15.5797 −1.08286
208208 0 0
209209 −7.91185 −0.547274
210210 0 0
211211 1.66056 0.114318 0.0571589 0.998365i 0.481796π-0.481796\pi
0.0571589 + 0.998365i 0.481796π0.481796\pi
212212 0 0
213213 − 23.7995i − 1.63072i
214214 0 0
215215 0.152129i 0.0103751i
216216 0 0
217217 10.7681 0.730985
218218 0 0
219219 25.8049i 1.74374i
220220 0 0
221221 0 0
222222 0 0
223223 0.792249i 0.0530529i 0.999648 + 0.0265265i 0.00844463π0.00844463\pi
−0.999648 + 0.0265265i 0.991555π0.991555\pi
224224 0 0
225225 10.7506 0.716708
226226 0 0
227227 21.7603i 1.44428i 0.691745 + 0.722141i 0.256842π0.256842\pi
−0.691745 + 0.722141i 0.743158π0.743158\pi
228228 0 0
229229 1.97584i 0.130567i 0.997867 + 0.0652835i 0.0207952π0.0207952\pi
−0.997867 + 0.0652835i 0.979205π0.979205\pi
230230 0 0
231231 −28.5133 −1.87604
232232 0 0
233233 −18.2349 −1.19461 −0.597304 0.802015i 0.703761π-0.703761\pi
−0.597304 + 0.802015i 0.703761π0.703761\pi
234234 0 0
235235 −4.63533 −0.302376
236236 0 0
237237 6.62671 0.430451
238238 0 0
239239 22.0737i 1.42783i 0.700234 + 0.713914i 0.253079π0.253079\pi
−0.700234 + 0.713914i 0.746921π0.746921\pi
240240 0 0
241241 − 6.98792i − 0.450131i −0.974344 0.225066i 0.927740π-0.927740\pi
0.974344 0.225066i 0.0722597π-0.0722597\pi
242242 0 0
243243 20.7453 1.33081
244244 0 0
245245 − 11.7453i − 0.750377i
246246 0 0
247247 0 0
248248 0 0
249249 6.92692i 0.438976i
250250 0 0
251251 −12.5593 −0.792734 −0.396367 0.918092i 0.629729π-0.629729\pi
−0.396367 + 0.918092i 0.629729π0.629729\pi
252252 0 0
253253 − 16.4155i − 1.03203i
254254 0 0
255255 7.51466i 0.470587i
256256 0 0
257257 16.9933 1.06001 0.530006 0.847994i 0.322190π-0.322190\pi
0.530006 + 0.847994i 0.322190π0.322190\pi
258258 0 0
259259 6.76809 0.420548
260260 0 0
261261 7.63401 0.472533
262262 0 0
263263 4.39612 0.271077 0.135538 0.990772i 0.456724π-0.456724\pi
0.135538 + 0.990772i 0.456724π0.456724\pi
264264 0 0
265265 5.42758i 0.333414i
266266 0 0
267267 28.7084i 1.75693i
268268 0 0
269269 15.5603 0.948730 0.474365 0.880328i 0.342678π-0.342678\pi
0.474365 + 0.880328i 0.342678π0.342678\pi
270270 0 0
271271 − 21.9952i − 1.33611i −0.744110 0.668057i 0.767126π-0.767126\pi
0.744110 0.668057i 0.232874π-0.232874\pi
272272 0 0
273273 0 0
274274 0 0
275275 11.3274i 0.683065i
276276 0 0
277277 1.87800 0.112838 0.0564191 0.998407i 0.482032π-0.482032\pi
0.0564191 + 0.998407i 0.482032π0.482032\pi
278278 0 0
279279 6.12200i 0.366514i
280280 0 0
281281 − 9.20536i − 0.549146i −0.961566 0.274573i 0.911464π-0.911464\pi
0.961566 0.274573i 0.0885364π-0.0885364\pi
282282 0 0
283283 4.70841 0.279886 0.139943 0.990160i 0.455308π-0.455308\pi
0.139943 + 0.990160i 0.455308π0.455308\pi
284284 0 0
285285 6.16554 0.365215
286286 0 0
287287 −16.4155 −0.968976
288288 0 0
289289 −4.16852 −0.245207
290290 0 0
291291 − 30.5599i − 1.79145i
292292 0 0
293293 13.7017i 0.800462i 0.916414 + 0.400231i 0.131070π0.131070\pi
−0.916414 + 0.400231i 0.868930π0.868930\pi
294294 0 0
295295 −2.73317 −0.159131
296296 0 0
297297 2.82371i 0.163848i
298298 0 0
299299 0 0
300300 0 0
301301 − 0.768086i − 0.0442717i
302302 0 0
303303 −24.0301 −1.38049
304304 0 0
305305 − 12.4397i − 0.712293i
306306 0 0
307307 8.03252i 0.458440i 0.973375 + 0.229220i 0.0736176π0.0736176\pi
−0.973375 + 0.229220i 0.926382π0.926382\pi
308308 0 0
309309 −25.1487 −1.43066
310310 0 0
311311 4.09783 0.232367 0.116183 0.993228i 0.462934π-0.462934\pi
0.116183 + 0.993228i 0.462934π0.462934\pi
312312 0 0
313313 4.37435 0.247253 0.123627 0.992329i 0.460548π-0.460548\pi
0.123627 + 0.992329i 0.460548π0.460548\pi
314314 0 0
315315 10.2198 0.575822
316316 0 0
317317 − 20.3612i − 1.14360i −0.820393 0.571800i 0.806245π-0.806245\pi
0.820393 0.571800i 0.193755π-0.193755\pi
318318 0 0
319319 8.04354i 0.450352i
320320 0 0
321321 −48.4631 −2.70495
322322 0 0
323323 − 10.5278i − 0.585783i
324324 0 0
325325 0 0
326326 0 0
327327 − 6.39612i − 0.353706i
328328 0 0
329329 23.4034 1.29027
330330 0 0
331331 − 6.13275i − 0.337087i −0.985694 0.168543i 0.946094π-0.946094\pi
0.985694 0.168543i 0.0539063π-0.0539063\pi
332332 0 0
333333 3.84787i 0.210862i
334334 0 0
335335 9.85384 0.538373
336336 0 0
337337 27.8485 1.51700 0.758501 0.651672i 0.225932π-0.225932\pi
0.758501 + 0.651672i 0.225932π0.225932\pi
338338 0 0
339339 −48.6708 −2.64344
340340 0 0
341341 −6.45042 −0.349310
342342 0 0
343343 27.8431i 1.50339i
344344 0 0
345345 12.7922i 0.688712i
346346 0 0
347347 −4.43967 −0.238334 −0.119167 0.992874i 0.538022π-0.538022\pi
−0.119167 + 0.992874i 0.538022π0.538022\pi
348348 0 0
349349 19.9215i 1.06638i 0.845997 + 0.533188i 0.179006π0.179006\pi
−0.845997 + 0.533188i 0.820994π0.820994\pi
350350 0 0
351351 0 0
352352 0 0
353353 − 30.5894i − 1.62811i −0.580788 0.814055i 0.697256π-0.697256\pi
0.580788 0.814055i 0.302744π-0.302744\pi
354354 0 0
355355 −8.98792 −0.477029
356356 0 0
357357 − 37.9409i − 2.00805i
358358 0 0
359359 − 21.6039i − 1.14021i −0.821572 0.570104i 0.806903π-0.806903\pi
0.821572 0.570104i 0.193097π-0.193097\pi
360360 0 0
361361 10.3623 0.545383
362362 0 0
363363 −8.84548 −0.464267
364364 0 0
365365 9.74525 0.510090
366366 0 0
367367 −18.7681 −0.979686 −0.489843 0.871811i 0.662946π-0.662946\pi
−0.489843 + 0.871811i 0.662946π0.662946\pi
368368 0 0
369369 − 9.33273i − 0.485843i
370370 0 0
371371 − 27.4034i − 1.42271i
372372 0 0
373373 −9.42758 −0.488142 −0.244071 0.969757i 0.578483π-0.578483\pi
−0.244071 + 0.969757i 0.578483π0.578483\pi
374374 0 0
375375 − 19.3163i − 0.997491i
376376 0 0
377377 0 0
378378 0 0
379379 − 32.0103i − 1.64426i −0.569302 0.822129i 0.692786π-0.692786\pi
0.569302 0.822129i 0.307214π-0.307214\pi
380380 0 0
381381 −30.0930 −1.54171
382382 0 0
383383 − 15.9517i − 0.815092i −0.913185 0.407546i 0.866385π-0.866385\pi
0.913185 0.407546i 0.133615π-0.133615\pi
384384 0 0
385385 10.7681i 0.548792i
386386 0 0
387387 0.436681 0.0221978
388388 0 0
389389 18.8659 0.956540 0.478270 0.878213i 0.341264π-0.341264\pi
0.478270 + 0.878213i 0.341264π0.341264\pi
390390 0 0
391391 21.8431 1.10465
392392 0 0
393393 −12.1588 −0.613332
394394 0 0
395395 − 2.50258i − 0.125919i
396396 0 0
397397 − 37.6969i − 1.89195i −0.324233 0.945977i 0.605106π-0.605106\pi
0.324233 0.945977i 0.394894π-0.394894\pi
398398 0 0
399399 −31.1293 −1.55841
400400 0 0
401401 3.22952i 0.161275i 0.996744 + 0.0806373i 0.0256955π0.0256955\pi
−0.996744 + 0.0806373i 0.974304π0.974304\pi
402402 0 0
403403 0 0
404404 0 0
405405 − 9.02284i − 0.448348i
406406 0 0
407407 −4.05429 −0.200964
408408 0 0
409409 − 3.54527i − 0.175302i −0.996151 0.0876511i 0.972064π-0.972064\pi
0.996151 0.0876511i 0.0279361π-0.0279361\pi
410410 0 0
411411 − 7.78076i − 0.383797i
412412 0 0
413413 13.7995 0.679031
414414 0 0
415415 2.61596 0.128412
416416 0 0
417417 −15.2999 −0.749242
418418 0 0
419419 14.4155 0.704243 0.352122 0.935954i 0.385460π-0.385460\pi
0.352122 + 0.935954i 0.385460π0.385460\pi
420420 0 0
421421 10.0978i 0.492138i 0.969252 + 0.246069i 0.0791390π0.0791390\pi
−0.969252 + 0.246069i 0.920861π0.920861\pi
422422 0 0
423423 13.3056i 0.646940i
424424 0 0
425425 −15.0726 −0.731129
426426 0 0
427427 62.8068i 3.03944i
428428 0 0
429429 0 0
430430 0 0
431431 20.2198i 0.973955i 0.873414 + 0.486978i 0.161901π0.161901\pi
−0.873414 + 0.486978i 0.838099π0.838099\pi
432432 0 0
433433 −36.4849 −1.75335 −0.876675 0.481083i 0.840244π-0.840244\pi
−0.876675 + 0.481083i 0.840244π0.840244\pi
434434 0 0
435435 − 6.26816i − 0.300535i
436436 0 0
437437 − 17.9215i − 0.857304i
438438 0 0
439439 −28.3612 −1.35361 −0.676803 0.736164i 0.736635π-0.736635\pi
−0.676803 + 0.736164i 0.736635π0.736635\pi
440440 0 0
441441 −33.7144 −1.60545
442442 0 0
443443 −2.80061 −0.133061 −0.0665305 0.997784i 0.521193π-0.521193\pi
−0.0665305 + 0.997784i 0.521193π0.521193\pi
444444 0 0
445445 10.8418 0.513949
446446 0 0
447447 − 11.8586i − 0.560894i
448448 0 0
449449 13.2760i 0.626535i 0.949665 + 0.313268i 0.101424π0.101424\pi
−0.949665 + 0.313268i 0.898576π0.898576\pi
450450 0 0
451451 9.83340 0.463037
452452 0 0
453453 4.06770i 0.191117i
454454 0 0
455455 0 0
456456 0 0
457457 − 13.6474i − 0.638399i −0.947688 0.319200i 0.896586π-0.896586\pi
0.947688 0.319200i 0.103414π-0.103414\pi
458458 0 0
459459 −3.75733 −0.175377
460460 0 0
461461 12.1655i 0.566606i 0.959031 + 0.283303i 0.0914301π0.0914301\pi
−0.959031 + 0.283303i 0.908570π0.908570\pi
462462 0 0
463463 − 4.24996i − 0.197513i −0.995112 0.0987563i 0.968514π-0.968514\pi
0.995112 0.0987563i 0.0314864π-0.0314864\pi
464464 0 0
465465 5.02667 0.233106
466466 0 0
467467 8.21552 0.380169 0.190084 0.981768i 0.439124π-0.439124\pi
0.190084 + 0.981768i 0.439124π0.439124\pi
468468 0 0
469469 −49.7512 −2.29730
470470 0 0
471471 −36.5461 −1.68396
472472 0 0
473473 0.460107i 0.0211558i
474474 0 0
475475 12.3666i 0.567418i
476476 0 0
477477 15.5797 0.713346
478478 0 0
479479 31.0267i 1.41764i 0.705387 + 0.708822i 0.250773π0.250773\pi
−0.705387 + 0.708822i 0.749227π0.749227\pi
480480 0 0
481481 0 0
482482 0 0
483483 − 64.5870i − 2.93881i
484484 0 0
485485 −11.5410 −0.524048
486486 0 0
487487 10.9987i 0.498397i 0.968452 + 0.249199i 0.0801672π0.0801672\pi
−0.968452 + 0.249199i 0.919833π0.919833\pi
488488 0 0
489489 46.4862i 2.10218i
490490 0 0
491491 21.2336 0.958258 0.479129 0.877745i 0.340953π-0.340953\pi
0.479129 + 0.877745i 0.340953π0.340953\pi
492492 0 0
493493 −10.7030 −0.482041
494494 0 0
495495 −6.12200 −0.275163
496496 0 0
497497 45.3793 2.03554
498498 0 0
499499 16.8635i 0.754915i 0.926027 + 0.377458i 0.123202π0.123202\pi
−0.926027 + 0.377458i 0.876798π0.876798\pi
500500 0 0
501501 32.9965i 1.47418i
502502 0 0
503503 −20.3806 −0.908725 −0.454363 0.890817i 0.650133π-0.650133\pi
−0.454363 + 0.890817i 0.650133π0.650133\pi
504504 0 0
505505 9.07500i 0.403832i
506506 0 0
507507 0 0
508508 0 0
509509 21.9215i 0.971655i 0.874055 + 0.485828i 0.161482π0.161482\pi
−0.874055 + 0.485828i 0.838518π0.838518\pi
510510 0 0
511511 −49.2030 −2.17661
512512 0 0
513513 3.08277i 0.136108i
514514 0 0
515515 9.49742i 0.418506i
516516 0 0
517517 −14.0194 −0.616572
518518 0 0
519519 2.84654 0.124949
520520 0 0
521521 26.1564 1.14593 0.572967 0.819578i 0.305792π-0.305792\pi
0.572967 + 0.819578i 0.305792π0.305792\pi
522522 0 0
523523 −4.91185 −0.214780 −0.107390 0.994217i 0.534249π-0.534249\pi
−0.107390 + 0.994217i 0.534249π0.534249\pi
524524 0 0
525525 44.5676i 1.94509i
526526 0 0
527527 − 8.58317i − 0.373889i
528528 0 0
529529 14.1836 0.616678
530530 0 0
531531 7.84548i 0.340465i
532532 0 0
533533 0 0
534534 0 0
535535 18.3021i 0.791270i
536536 0 0
537537 −38.9259 −1.67977
538538 0 0
539539 − 35.5230i − 1.53009i
540540 0 0
541541 − 0.459042i − 0.0197358i −0.999951 0.00986789i 0.996859π-0.996859\pi
0.999951 0.00986789i 0.00314110π-0.00314110\pi
542542 0 0
543543 15.0180 0.644486
544544 0 0
545545 −2.41550 −0.103469
546546 0 0
547547 20.3327 0.869365 0.434682 0.900584i 0.356861π-0.356861\pi
0.434682 + 0.900584i 0.356861π0.356861\pi
548548 0 0
549549 −35.7077 −1.52397
550550 0 0
551551 8.78150i 0.374104i
552552 0 0
553553 12.6353i 0.537309i
554554 0 0
555555 3.15942 0.134110
556556 0 0
557557 43.9469i 1.86209i 0.364905 + 0.931045i 0.381101π0.381101\pi
−0.364905 + 0.931045i 0.618899π0.618899\pi
558558 0 0
559559 0 0
560560 0 0
561561 22.7278i 0.959568i
562562 0 0
563563 43.5991 1.83748 0.918741 0.394860i 0.129207π-0.129207\pi
0.918741 + 0.394860i 0.129207π0.129207\pi
564564 0 0
565565 18.3806i 0.773277i
566566 0 0
567567 45.5555i 1.91315i
568568 0 0
569569 −8.28919 −0.347501 −0.173751 0.984790i 0.555589π-0.555589\pi
−0.173751 + 0.984790i 0.555589π0.555589\pi
570570 0 0
571571 −22.9836 −0.961834 −0.480917 0.876766i 0.659696π-0.659696\pi
−0.480917 + 0.876766i 0.659696π0.659696\pi
572572 0 0
573573 −5.87800 −0.245557
574574 0 0
575575 −25.6582 −1.07002
576576 0 0
577577 0.553630i 0.0230479i 0.999934 + 0.0115240i 0.00366827π0.00366827\pi
−0.999934 + 0.0115240i 0.996332π0.996332\pi
578578 0 0
579579 − 9.44026i − 0.392324i
580580 0 0
581581 −13.2078 −0.547950
582582 0 0
583583 16.4155i 0.679861i
584584 0 0
585585 0 0
586586 0 0
587587 16.0355i 0.661856i 0.943656 + 0.330928i 0.107362π0.107362\pi
−0.943656 + 0.330928i 0.892638π0.892638\pi
588588 0 0
589589 −7.04221 −0.290169
590590 0 0
591591 − 55.7029i − 2.29131i
592592 0 0
593593 − 25.9976i − 1.06759i −0.845613 0.533797i 0.820765π-0.820765\pi
0.845613 0.533797i 0.179235π-0.179235\pi
594594 0 0
595595 −14.3284 −0.587408
596596 0 0
597597 −38.9772 −1.59523
598598 0 0
599599 16.2150 0.662529 0.331264 0.943538i 0.392525π-0.392525\pi
0.331264 + 0.943538i 0.392525π0.392525\pi
600600 0 0
601601 −29.5200 −1.20415 −0.602074 0.798440i 0.705659π-0.705659\pi
−0.602074 + 0.798440i 0.705659π0.705659\pi
602602 0 0
603603 − 28.2851i − 1.15186i
604604 0 0
605605 3.34050i 0.135811i
606606 0 0
607607 −37.4228 −1.51894 −0.759472 0.650540i 0.774543π-0.774543\pi
−0.759472 + 0.650540i 0.774543π0.774543\pi
608608 0 0
609609 31.6474i 1.28242i
610610 0 0
611611 0 0
612612 0 0
613613 − 38.0737i − 1.53778i −0.639380 0.768891i 0.720809π-0.720809\pi
0.639380 0.768891i 0.279191π-0.279191\pi
614614 0 0
615615 −7.66296 −0.309000
616616 0 0
617617 − 41.6383i − 1.67630i −0.545443 0.838148i 0.683639π-0.683639\pi
0.545443 0.838148i 0.316361π-0.316361\pi
618618 0 0
619619 1.67158i 0.0671864i 0.999436 + 0.0335932i 0.0106951π0.0106951\pi
−0.999436 + 0.0335932i 0.989305π0.989305\pi
620620 0 0
621621 −6.39612 −0.256668
622622 0 0
623623 −54.7391 −2.19308
624624 0 0
625625 13.7439 0.549757
626626 0 0
627627 18.6474 0.744706
628628 0 0
629629 − 5.39480i − 0.215105i
630630 0 0
631631 − 8.70304i − 0.346462i −0.984881 0.173231i 0.944579π-0.944579\pi
0.984881 0.173231i 0.0554208π-0.0554208\pi
632632 0 0
633633 −3.91377 −0.155559
634634 0 0
635635 11.3647i 0.450993i
636636 0 0
637637 0 0
638638 0 0
639639 25.7995i 1.02061i
640640 0 0
641641 19.9075 0.786301 0.393150 0.919474i 0.371385π-0.371385\pi
0.393150 + 0.919474i 0.371385π0.371385\pi
642642 0 0
643643 27.0756i 1.06776i 0.845561 + 0.533879i 0.179266π0.179266\pi
−0.845561 + 0.533879i 0.820734π0.820734\pi
644644 0 0
645645 − 0.358552i − 0.0141180i
646646 0 0
647647 9.43237 0.370825 0.185412 0.982661i 0.440638π-0.440638\pi
0.185412 + 0.982661i 0.440638π0.440638\pi
648648 0 0
649649 −8.26636 −0.324483
650650 0 0
651651 −25.3793 −0.994692
652652 0 0
653653 −37.6292 −1.47255 −0.736273 0.676685i 0.763416π-0.763416\pi
−0.736273 + 0.676685i 0.763416π0.763416\pi
654654 0 0
655655 4.59179i 0.179416i
656656 0 0
657657 − 27.9734i − 1.09135i
658658 0 0
659659 32.7724 1.27663 0.638316 0.769775i 0.279631π-0.279631\pi
0.638316 + 0.769775i 0.279631π0.279631\pi
660660 0 0
661661 − 20.1957i − 0.785520i −0.919641 0.392760i 0.871520π-0.871520\pi
0.919641 0.392760i 0.128480π-0.128480\pi
662662 0 0
663663 0 0
664664 0 0
665665 11.7560i 0.455878i
666666 0 0
667667 −18.2198 −0.705475
668668 0 0
669669 − 1.86725i − 0.0721920i
670670 0 0
671671 − 37.6233i − 1.45243i
672672 0 0
673673 30.3435 1.16966 0.584828 0.811158i 0.301162π-0.301162\pi
0.584828 + 0.811158i 0.301162π0.301162\pi
674674 0 0
675675 4.41358 0.169879
676676 0 0
677677 −21.1642 −0.813407 −0.406703 0.913560i 0.633322π-0.633322\pi
−0.406703 + 0.913560i 0.633322π0.633322\pi
678678 0 0
679679 58.2693 2.23617
680680 0 0
681681 − 51.2868i − 1.96531i
682682 0 0
683683 35.4873i 1.35788i 0.734193 + 0.678941i 0.237561π0.237561\pi
−0.734193 + 0.678941i 0.762439π0.762439\pi
684684 0 0
685685 −2.93841 −0.112271
686686 0 0
687687 − 4.65684i − 0.177670i
688688 0 0
689689 0 0
690690 0 0
691691 36.7472i 1.39793i 0.715157 + 0.698964i 0.246355π0.246355\pi
−0.715157 + 0.698964i 0.753645π0.753645\pi
692692 0 0
693693 30.9095 1.17415
694694 0 0
695695 5.77804i 0.219173i
696696 0 0
697697 13.0847i 0.495618i
698698 0 0
699699 42.9778 1.62557
700700 0 0
701701 −19.7668 −0.746580 −0.373290 0.927715i 0.621770π-0.621770\pi
−0.373290 + 0.927715i 0.621770π0.621770\pi
702702 0 0
703703 −4.42626 −0.166939
704704 0 0
705705 10.9250 0.411459
706706 0 0
707707 − 45.8189i − 1.72320i
708708 0 0
709709 11.6280i 0.436700i 0.975871 + 0.218350i 0.0700675π0.0700675\pi
−0.975871 + 0.218350i 0.929933π0.929933\pi
710710 0 0
711711 −7.18359 −0.269406
712712 0 0
713713 − 14.6112i − 0.547193i
714714 0 0
715715 0 0
716716 0 0
717717 − 52.0253i − 1.94292i
718718 0 0
719719 −1.06638 −0.0397691 −0.0198846 0.999802i 0.506330π-0.506330\pi
−0.0198846 + 0.999802i 0.506330π0.506330\pi
720720 0 0
721721 − 47.9517i − 1.78581i
722722 0 0
723723 16.4698i 0.612518i
724724 0 0
725725 12.5724 0.466928
726726 0 0
727727 −1.26205 −0.0468067 −0.0234033 0.999726i 0.507450π-0.507450\pi
−0.0234033 + 0.999726i 0.507450π0.507450\pi
728728 0 0
729729 −18.4832 −0.684563
730730 0 0
731731 −0.612236 −0.0226444
732732 0 0
733733 20.6789i 0.763792i 0.924205 + 0.381896i 0.124729π0.124729\pi
−0.924205 + 0.381896i 0.875271π0.875271\pi
734734 0 0
735735 27.6823i 1.02108i
736736 0 0
737737 29.8025 1.09779
738738 0 0
739739 − 5.17331i − 0.190303i −0.995463 0.0951516i 0.969666π-0.969666\pi
0.995463 0.0951516i 0.0303336π-0.0303336\pi
740740 0 0
741741 0 0
742742 0 0
743743 − 10.4397i − 0.382994i −0.981493 0.191497i 0.938666π-0.938666\pi
0.981493 0.191497i 0.0613343π-0.0613343\pi
744744 0 0
745745 −4.47842 −0.164077
746746 0 0
747747 − 7.50902i − 0.274741i
748748 0 0
749749 − 92.4059i − 3.37644i
750750 0 0
751751 −14.0435 −0.512456 −0.256228 0.966616i 0.582480π-0.582480\pi
−0.256228 + 0.966616i 0.582480π0.582480\pi
752752 0 0
753753 29.6009 1.07872
754754 0 0
755755 1.53617 0.0559070
756756 0 0
757757 −9.30559 −0.338217 −0.169109 0.985597i 0.554089π-0.554089\pi
−0.169109 + 0.985597i 0.554089π0.554089\pi
758758 0 0
759759 38.6896i 1.40434i
760760 0 0
761761 − 9.56273i − 0.346649i −0.984865 0.173324i 0.944549π-0.944549\pi
0.984865 0.173324i 0.0554509π-0.0554509\pi
762762 0 0
763763 12.1957 0.441513
764764 0 0
765765 − 8.14616i − 0.294525i
766766 0 0
767767 0 0
768768 0 0
769769 31.9299i 1.15142i 0.817653 + 0.575711i 0.195275π0.195275\pi
−0.817653 + 0.575711i 0.804725π0.804725\pi
770770 0 0
771771 −40.0514 −1.44242
772772 0 0
773773 34.1172i 1.22711i 0.789652 + 0.613555i 0.210261π0.210261\pi
−0.789652 + 0.613555i 0.789739π0.789739\pi
774774 0 0
775775 10.0823i 0.362167i
776776 0 0
777777 −15.9517 −0.572263
778778 0 0
779779 10.7356 0.384641
780780 0 0
781781 −27.1836 −0.972705
782782 0 0
783783 3.13408 0.112003
784784 0 0
785785 13.8017i 0.492603i
786786 0 0
787787 37.3467i 1.33127i 0.746279 + 0.665634i 0.231839π0.231839\pi
−0.746279 + 0.665634i 0.768161π0.768161\pi
788788 0 0
789789 −10.3612 −0.368869
790790 0 0
791791 − 92.8021i − 3.29966i
792792 0 0
793793 0 0
794794 0 0
795795 − 12.7922i − 0.453694i
796796 0 0
797797 14.9831 0.530730 0.265365 0.964148i 0.414508π-0.414508\pi
0.265365 + 0.964148i 0.414508π0.414508\pi
798798 0 0
799799 − 18.6547i − 0.659956i
800800 0 0
801801 − 31.1209i − 1.09960i
802802 0 0
803803 29.4741 1.04012
804804 0 0
805805 −24.3913 −0.859682
806806 0 0
807807 −36.6741 −1.29099
808808 0 0
809809 25.6770 0.902754 0.451377 0.892333i 0.350933π-0.350933\pi
0.451377 + 0.892333i 0.350933π0.350933\pi
810810 0 0
811811 8.66786i 0.304370i 0.988352 + 0.152185i 0.0486309π0.0486309\pi
−0.988352 + 0.152185i 0.951369π0.951369\pi
812812 0 0
813813 51.8404i 1.81812i
814814 0 0
815815 17.5555 0.614944
816816 0 0
817817 0.502320i 0.0175739i
818818 0 0
819819 0 0
820820 0 0
821821 54.6547i 1.90746i 0.300660 + 0.953731i 0.402793π0.402793\pi
−0.300660 + 0.953731i 0.597207π0.597207\pi
822822 0 0
823823 −6.33704 −0.220895 −0.110448 0.993882i 0.535228π-0.535228\pi
−0.110448 + 0.993882i 0.535228π0.535228\pi
824824 0 0
825825 − 26.6974i − 0.929484i
826826 0 0
827827 − 35.5405i − 1.23586i −0.786232 0.617932i 0.787971π-0.787971\pi
0.786232 0.617932i 0.212029π-0.212029\pi
828828 0 0
829829 41.5555 1.44328 0.721642 0.692267i 0.243388π-0.243388\pi
0.721642 + 0.692267i 0.243388π0.243388\pi
830830 0 0
831831 −4.42626 −0.153545
832832 0 0
833833 47.2683 1.63775
834834 0 0
835835 12.4612 0.431237
836836 0 0
837837 2.51334i 0.0868736i
838838 0 0
839839 − 17.5496i − 0.605879i −0.953010 0.302939i 0.902032π-0.902032\pi
0.953010 0.302939i 0.0979680π-0.0979680\pi
840840 0 0
841841 −20.0723 −0.692150
842842 0 0
843843 21.6961i 0.747252i
844844 0 0
845845 0 0
846846 0 0
847847 − 16.8659i − 0.579520i
848848 0 0
849849 −11.0972 −0.380856
850850 0 0
851851 − 9.18359i − 0.314809i
852852 0 0
853853 20.1414i 0.689628i 0.938671 + 0.344814i 0.112058π0.112058\pi
−0.938671 + 0.344814i 0.887942π0.887942\pi
854854 0 0
855855 −6.68366 −0.228576
856856 0 0
857857 8.85756 0.302568 0.151284 0.988490i 0.451659π-0.451659\pi
0.151284 + 0.988490i 0.451659π0.451659\pi
858858 0 0
859859 −28.8810 −0.985407 −0.492703 0.870197i 0.663991π-0.663991\pi
−0.492703 + 0.870197i 0.663991π0.663991\pi
860860 0 0
861861 38.6896 1.31854
862862 0 0
863863 3.90813i 0.133034i 0.997785 + 0.0665172i 0.0211887π0.0211887\pi
−0.997785 + 0.0665172i 0.978811π0.978811\pi
864864 0 0
865865 − 1.07500i − 0.0365511i
866866 0 0
867867 9.82477 0.333667
868868 0 0
869869 − 7.56896i − 0.256759i
870870 0 0
871871 0 0
872872 0 0
873873 33.1280i 1.12121i
874874 0 0
875875 36.8310 1.24512
876876 0 0
877877 44.9879i 1.51913i 0.650429 + 0.759567i 0.274589π0.274589\pi
−0.650429 + 0.759567i 0.725411π0.725411\pi
878878 0 0
879879 − 32.2935i − 1.08923i
880880 0 0
881881 14.1933 0.478184 0.239092 0.970997i 0.423150π-0.423150\pi
0.239092 + 0.970997i 0.423150π0.423150\pi
882882 0 0
883883 48.4626 1.63090 0.815448 0.578830i 0.196490π-0.196490\pi
0.815448 + 0.578830i 0.196490π0.196490\pi
884884 0 0
885885 6.44179 0.216539
886886 0 0
887887 −30.8611 −1.03622 −0.518108 0.855315i 0.673363π-0.673363\pi
−0.518108 + 0.855315i 0.673363π0.673363\pi
888888 0 0
889889 − 57.3793i − 1.92444i
890890 0 0
891891 − 27.2892i − 0.914222i
892892 0 0
893893 −15.3056 −0.512182
894894 0 0
895895 14.7004i 0.491380i
896896 0 0
897897 0 0
898898 0 0
899899 7.15942i 0.238780i
900900 0 0
901901 −21.8431 −0.727699
902902 0 0
903903 1.81030i 0.0602430i
904904 0 0
905905 − 5.67158i − 0.188530i
906906 0 0
907907 3.94139 0.130872 0.0654359 0.997857i 0.479156π-0.479156\pi
0.0654359 + 0.997857i 0.479156π0.479156\pi
908908 0 0
909909 26.0495 0.864008
910910 0 0
911911 37.1943 1.23230 0.616152 0.787627i 0.288691π-0.288691\pi
0.616152 + 0.787627i 0.288691π0.288691\pi
912912 0 0
913913 7.91185 0.261844
914914 0 0
915915 29.3190i 0.969256i
916916 0 0
917917 − 23.1836i − 0.765590i
918918 0 0
919919 −0.681005 −0.0224643 −0.0112321 0.999937i 0.503575π-0.503575\pi
−0.0112321 + 0.999937i 0.503575π0.503575\pi
920920 0 0
921921 − 18.9318i − 0.623825i
922922 0 0
923923 0 0
924924 0 0
925925 6.33704i 0.208361i
926926 0 0
927927 27.2620 0.895403
928928 0 0
929929 − 32.4355i − 1.06417i −0.846690 0.532087i 0.821408π-0.821408\pi
0.846690 0.532087i 0.178592π-0.178592\pi
930930 0 0
931931 − 38.7821i − 1.27103i
932932 0 0
933933 −9.65817 −0.316194
934934 0 0
935935 8.58317 0.280700
936936 0 0
937937 −14.6165 −0.477502 −0.238751 0.971081i 0.576738π-0.576738\pi
−0.238751 + 0.971081i 0.576738π0.576738\pi
938938 0 0
939939 −10.3099 −0.336451
940940 0 0
941941 30.1763i 0.983719i 0.870675 + 0.491860i 0.163683π0.163683\pi
−0.870675 + 0.491860i 0.836317π0.836317\pi
942942 0 0
943943 22.2741i 0.725345i
944944 0 0
945945 4.19567 0.136485
946946 0 0
947947 20.6708i 0.671712i 0.941913 + 0.335856i 0.109026π0.109026\pi
−0.941913 + 0.335856i 0.890974π0.890974\pi
948948 0 0
949949 0 0
950950 0 0
951951 47.9892i 1.55616i
952952 0 0
953953 47.2411 1.53029 0.765145 0.643858i 0.222667π-0.222667\pi
0.765145 + 0.643858i 0.222667π0.222667\pi
954954 0 0
955955 2.21983i 0.0718321i
956956 0 0
957957 − 18.9578i − 0.612818i
958958 0 0
959959 14.8358 0.479073
960960 0 0
961961 25.2586 0.814793
962962 0 0
963963 52.5357 1.69294
964964 0 0
965965 −3.56512 −0.114765
966966 0 0
967967 − 53.9517i − 1.73497i −0.497464 0.867484i 0.665735π-0.665735\pi
0.497464 0.867484i 0.334265π-0.334265\pi
968968 0 0
969969 24.8130i 0.797107i
970970 0 0
971971 −49.8920 −1.60111 −0.800555 0.599259i 0.795462π-0.795462\pi
−0.800555 + 0.599259i 0.795462π0.795462\pi
972972 0 0
973973 − 29.1728i − 0.935238i
974974 0 0
975975 0 0
976976 0 0
977977 29.1299i 0.931948i 0.884799 + 0.465974i 0.154296π0.154296\pi
−0.884799 + 0.465974i 0.845704π0.845704\pi
978978 0 0
979979 32.7904 1.04799
980980 0 0
981981 6.93362i 0.221374i
982982 0 0
983983 − 41.3309i − 1.31825i −0.752033 0.659126i 0.770926π-0.770926\pi
0.752033 0.659126i 0.229074π-0.229074\pi
984984 0 0
985985 −21.0362 −0.670270
986986 0 0
987987 −55.1594 −1.75574
988988 0 0
989989 −1.04221 −0.0331404
990990 0 0
991991 −19.2185 −0.610496 −0.305248 0.952273i 0.598739π-0.598739\pi
−0.305248 + 0.952273i 0.598739π0.598739\pi
992992 0 0
993993 14.4543i 0.458692i
994994 0 0
995995 14.7198i 0.466648i
996996 0 0
997997 22.4940 0.712391 0.356195 0.934411i 0.384074π-0.384074\pi
0.356195 + 0.934411i 0.384074π0.384074\pi
998998 0 0
999999 1.57971i 0.0499799i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2704.2.f.m.337.4 6
4.3 odd 2 338.2.b.d.337.5 6
12.11 even 2 3042.2.b.n.1351.2 6
13.5 odd 4 2704.2.a.w.1.2 3
13.8 odd 4 2704.2.a.v.1.2 3
13.12 even 2 inner 2704.2.f.m.337.3 6
52.3 odd 6 338.2.e.e.147.2 12
52.7 even 12 338.2.c.i.315.2 6
52.11 even 12 338.2.c.i.191.2 6
52.15 even 12 338.2.c.h.191.2 6
52.19 even 12 338.2.c.h.315.2 6
52.23 odd 6 338.2.e.e.147.5 12
52.31 even 4 338.2.a.h.1.2 yes 3
52.35 odd 6 338.2.e.e.23.5 12
52.43 odd 6 338.2.e.e.23.2 12
52.47 even 4 338.2.a.g.1.2 3
52.51 odd 2 338.2.b.d.337.2 6
156.47 odd 4 3042.2.a.bi.1.2 3
156.83 odd 4 3042.2.a.z.1.2 3
156.155 even 2 3042.2.b.n.1351.5 6
260.99 even 4 8450.2.a.bx.1.2 3
260.239 even 4 8450.2.a.bn.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.2 3 52.47 even 4
338.2.a.h.1.2 yes 3 52.31 even 4
338.2.b.d.337.2 6 52.51 odd 2
338.2.b.d.337.5 6 4.3 odd 2
338.2.c.h.191.2 6 52.15 even 12
338.2.c.h.315.2 6 52.19 even 12
338.2.c.i.191.2 6 52.11 even 12
338.2.c.i.315.2 6 52.7 even 12
338.2.e.e.23.2 12 52.43 odd 6
338.2.e.e.23.5 12 52.35 odd 6
338.2.e.e.147.2 12 52.3 odd 6
338.2.e.e.147.5 12 52.23 odd 6
2704.2.a.v.1.2 3 13.8 odd 4
2704.2.a.w.1.2 3 13.5 odd 4
2704.2.f.m.337.3 6 13.12 even 2 inner
2704.2.f.m.337.4 6 1.1 even 1 trivial
3042.2.a.z.1.2 3 156.83 odd 4
3042.2.a.bi.1.2 3 156.47 odd 4
3042.2.b.n.1351.2 6 12.11 even 2
3042.2.b.n.1351.5 6 156.155 even 2
8450.2.a.bn.1.2 3 260.239 even 4
8450.2.a.bx.1.2 3 260.99 even 4