Properties

Label 3042.2.a.bi.1.2
Level $3042$
Weight $2$
Character 3042.1
Self dual yes
Analytic conductor $24.290$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 338)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 3042.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +0.890084 q^{5} +4.49396 q^{7} +1.00000 q^{8} +0.890084 q^{10} +2.69202 q^{11} +4.49396 q^{14} +1.00000 q^{16} -3.58211 q^{17} +2.93900 q^{19} +0.890084 q^{20} +2.69202 q^{22} +6.09783 q^{23} -4.20775 q^{25} +4.49396 q^{28} -2.98792 q^{29} +2.39612 q^{31} +1.00000 q^{32} -3.58211 q^{34} +4.00000 q^{35} +1.50604 q^{37} +2.93900 q^{38} +0.890084 q^{40} -3.65279 q^{41} +0.170915 q^{43} +2.69202 q^{44} +6.09783 q^{46} +5.20775 q^{47} +13.1957 q^{49} -4.20775 q^{50} -6.09783 q^{53} +2.39612 q^{55} +4.49396 q^{56} -2.98792 q^{58} +3.07069 q^{59} -13.9758 q^{61} +2.39612 q^{62} +1.00000 q^{64} -11.0707 q^{67} -3.58211 q^{68} +4.00000 q^{70} -10.0978 q^{71} -10.9487 q^{73} +1.50604 q^{74} +2.93900 q^{76} +12.0978 q^{77} +2.81163 q^{79} +0.890084 q^{80} -3.65279 q^{82} +2.93900 q^{83} -3.18837 q^{85} +0.170915 q^{86} +2.69202 q^{88} +12.1806 q^{89} +6.09783 q^{92} +5.20775 q^{94} +2.61596 q^{95} -12.9661 q^{97} +13.1957 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 2 q^{5} + 4 q^{7} + 3 q^{8} + 2 q^{10} + 3 q^{11} + 4 q^{14} + 3 q^{16} - 5 q^{17} - q^{19} + 2 q^{20} + 3 q^{22} + 5 q^{25} + 4 q^{28} + 10 q^{29} + 16 q^{31} + 3 q^{32} - 5 q^{34}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.890084 0.398058 0.199029 0.979994i \(-0.436221\pi\)
0.199029 + 0.979994i \(0.436221\pi\)
\(6\) 0 0
\(7\) 4.49396 1.69856 0.849278 0.527945i \(-0.177037\pi\)
0.849278 + 0.527945i \(0.177037\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.890084 0.281469
\(11\) 2.69202 0.811675 0.405838 0.913945i \(-0.366980\pi\)
0.405838 + 0.913945i \(0.366980\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 4.49396 1.20106
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.58211 −0.868788 −0.434394 0.900723i \(-0.643037\pi\)
−0.434394 + 0.900723i \(0.643037\pi\)
\(18\) 0 0
\(19\) 2.93900 0.674253 0.337127 0.941459i \(-0.390545\pi\)
0.337127 + 0.941459i \(0.390545\pi\)
\(20\) 0.890084 0.199029
\(21\) 0 0
\(22\) 2.69202 0.573941
\(23\) 6.09783 1.27149 0.635743 0.771901i \(-0.280694\pi\)
0.635743 + 0.771901i \(0.280694\pi\)
\(24\) 0 0
\(25\) −4.20775 −0.841550
\(26\) 0 0
\(27\) 0 0
\(28\) 4.49396 0.849278
\(29\) −2.98792 −0.554843 −0.277421 0.960748i \(-0.589480\pi\)
−0.277421 + 0.960748i \(0.589480\pi\)
\(30\) 0 0
\(31\) 2.39612 0.430357 0.215178 0.976575i \(-0.430967\pi\)
0.215178 + 0.976575i \(0.430967\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.58211 −0.614326
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 1.50604 0.247592 0.123796 0.992308i \(-0.460493\pi\)
0.123796 + 0.992308i \(0.460493\pi\)
\(38\) 2.93900 0.476769
\(39\) 0 0
\(40\) 0.890084 0.140735
\(41\) −3.65279 −0.570470 −0.285235 0.958458i \(-0.592072\pi\)
−0.285235 + 0.958458i \(0.592072\pi\)
\(42\) 0 0
\(43\) 0.170915 0.0260643 0.0130322 0.999915i \(-0.495852\pi\)
0.0130322 + 0.999915i \(0.495852\pi\)
\(44\) 2.69202 0.405838
\(45\) 0 0
\(46\) 6.09783 0.899077
\(47\) 5.20775 0.759629 0.379814 0.925063i \(-0.375988\pi\)
0.379814 + 0.925063i \(0.375988\pi\)
\(48\) 0 0
\(49\) 13.1957 1.88510
\(50\) −4.20775 −0.595066
\(51\) 0 0
\(52\) 0 0
\(53\) −6.09783 −0.837602 −0.418801 0.908078i \(-0.637550\pi\)
−0.418801 + 0.908078i \(0.637550\pi\)
\(54\) 0 0
\(55\) 2.39612 0.323093
\(56\) 4.49396 0.600531
\(57\) 0 0
\(58\) −2.98792 −0.392333
\(59\) 3.07069 0.399769 0.199885 0.979819i \(-0.435943\pi\)
0.199885 + 0.979819i \(0.435943\pi\)
\(60\) 0 0
\(61\) −13.9758 −1.78942 −0.894711 0.446645i \(-0.852619\pi\)
−0.894711 + 0.446645i \(0.852619\pi\)
\(62\) 2.39612 0.304308
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −11.0707 −1.35250 −0.676250 0.736672i \(-0.736396\pi\)
−0.676250 + 0.736672i \(0.736396\pi\)
\(68\) −3.58211 −0.434394
\(69\) 0 0
\(70\) 4.00000 0.478091
\(71\) −10.0978 −1.19839 −0.599196 0.800602i \(-0.704513\pi\)
−0.599196 + 0.800602i \(0.704513\pi\)
\(72\) 0 0
\(73\) −10.9487 −1.28145 −0.640724 0.767772i \(-0.721366\pi\)
−0.640724 + 0.767772i \(0.721366\pi\)
\(74\) 1.50604 0.175074
\(75\) 0 0
\(76\) 2.93900 0.337127
\(77\) 12.0978 1.37868
\(78\) 0 0
\(79\) 2.81163 0.316333 0.158166 0.987412i \(-0.449442\pi\)
0.158166 + 0.987412i \(0.449442\pi\)
\(80\) 0.890084 0.0995144
\(81\) 0 0
\(82\) −3.65279 −0.403383
\(83\) 2.93900 0.322597 0.161299 0.986906i \(-0.448432\pi\)
0.161299 + 0.986906i \(0.448432\pi\)
\(84\) 0 0
\(85\) −3.18837 −0.345828
\(86\) 0.170915 0.0184303
\(87\) 0 0
\(88\) 2.69202 0.286970
\(89\) 12.1806 1.29114 0.645571 0.763700i \(-0.276620\pi\)
0.645571 + 0.763700i \(0.276620\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.09783 0.635743
\(93\) 0 0
\(94\) 5.20775 0.537138
\(95\) 2.61596 0.268392
\(96\) 0 0
\(97\) −12.9661 −1.31651 −0.658256 0.752794i \(-0.728706\pi\)
−0.658256 + 0.752794i \(0.728706\pi\)
\(98\) 13.1957 1.33296
\(99\) 0 0
\(100\) −4.20775 −0.420775
\(101\) 10.1957 1.01451 0.507254 0.861797i \(-0.330661\pi\)
0.507254 + 0.861797i \(0.330661\pi\)
\(102\) 0 0
\(103\) 10.6703 1.05137 0.525686 0.850679i \(-0.323809\pi\)
0.525686 + 0.850679i \(0.323809\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −6.09783 −0.592274
\(107\) 20.5623 1.98783 0.993914 0.110158i \(-0.0351358\pi\)
0.993914 + 0.110158i \(0.0351358\pi\)
\(108\) 0 0
\(109\) −2.71379 −0.259934 −0.129967 0.991518i \(-0.541487\pi\)
−0.129967 + 0.991518i \(0.541487\pi\)
\(110\) 2.39612 0.228462
\(111\) 0 0
\(112\) 4.49396 0.424639
\(113\) −20.6504 −1.94263 −0.971313 0.237804i \(-0.923572\pi\)
−0.971313 + 0.237804i \(0.923572\pi\)
\(114\) 0 0
\(115\) 5.42758 0.506125
\(116\) −2.98792 −0.277421
\(117\) 0 0
\(118\) 3.07069 0.282680
\(119\) −16.0978 −1.47569
\(120\) 0 0
\(121\) −3.75302 −0.341184
\(122\) −13.9758 −1.26531
\(123\) 0 0
\(124\) 2.39612 0.215178
\(125\) −8.19567 −0.733043
\(126\) 0 0
\(127\) 12.7681 1.13298 0.566492 0.824067i \(-0.308300\pi\)
0.566492 + 0.824067i \(0.308300\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 5.15883 0.450729 0.225365 0.974274i \(-0.427643\pi\)
0.225365 + 0.974274i \(0.427643\pi\)
\(132\) 0 0
\(133\) 13.2078 1.14526
\(134\) −11.0707 −0.956362
\(135\) 0 0
\(136\) −3.58211 −0.307163
\(137\) −3.30127 −0.282047 −0.141023 0.990006i \(-0.545039\pi\)
−0.141023 + 0.990006i \(0.545039\pi\)
\(138\) 0 0
\(139\) −6.49157 −0.550607 −0.275304 0.961357i \(-0.588778\pi\)
−0.275304 + 0.961357i \(0.588778\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) −10.0978 −0.847391
\(143\) 0 0
\(144\) 0 0
\(145\) −2.65950 −0.220859
\(146\) −10.9487 −0.906120
\(147\) 0 0
\(148\) 1.50604 0.123796
\(149\) 5.03146 0.412193 0.206097 0.978532i \(-0.433924\pi\)
0.206097 + 0.978532i \(0.433924\pi\)
\(150\) 0 0
\(151\) 1.72587 0.140450 0.0702248 0.997531i \(-0.477628\pi\)
0.0702248 + 0.997531i \(0.477628\pi\)
\(152\) 2.93900 0.238384
\(153\) 0 0
\(154\) 12.0978 0.974871
\(155\) 2.13275 0.171307
\(156\) 0 0
\(157\) 15.5060 1.23752 0.618758 0.785581i \(-0.287636\pi\)
0.618758 + 0.785581i \(0.287636\pi\)
\(158\) 2.81163 0.223681
\(159\) 0 0
\(160\) 0.890084 0.0703673
\(161\) 27.4034 2.15969
\(162\) 0 0
\(163\) 19.7235 1.54486 0.772431 0.635099i \(-0.219041\pi\)
0.772431 + 0.635099i \(0.219041\pi\)
\(164\) −3.65279 −0.285235
\(165\) 0 0
\(166\) 2.93900 0.228111
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −3.18837 −0.244537
\(171\) 0 0
\(172\) 0.170915 0.0130322
\(173\) −1.20775 −0.0918236 −0.0459118 0.998945i \(-0.514619\pi\)
−0.0459118 + 0.998945i \(0.514619\pi\)
\(174\) 0 0
\(175\) −18.9095 −1.42942
\(176\) 2.69202 0.202919
\(177\) 0 0
\(178\) 12.1806 0.912975
\(179\) −16.5157 −1.23444 −0.617222 0.786789i \(-0.711742\pi\)
−0.617222 + 0.786789i \(0.711742\pi\)
\(180\) 0 0
\(181\) 6.37196 0.473624 0.236812 0.971555i \(-0.423897\pi\)
0.236812 + 0.971555i \(0.423897\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.09783 0.449538
\(185\) 1.34050 0.0985557
\(186\) 0 0
\(187\) −9.64310 −0.705174
\(188\) 5.20775 0.379814
\(189\) 0 0
\(190\) 2.61596 0.189781
\(191\) 2.49396 0.180457 0.0902283 0.995921i \(-0.471240\pi\)
0.0902283 + 0.995921i \(0.471240\pi\)
\(192\) 0 0
\(193\) 4.00538 0.288313 0.144157 0.989555i \(-0.453953\pi\)
0.144157 + 0.989555i \(0.453953\pi\)
\(194\) −12.9661 −0.930915
\(195\) 0 0
\(196\) 13.1957 0.942548
\(197\) 23.6340 1.68385 0.841927 0.539592i \(-0.181422\pi\)
0.841927 + 0.539592i \(0.181422\pi\)
\(198\) 0 0
\(199\) 16.5375 1.17231 0.586156 0.810198i \(-0.300641\pi\)
0.586156 + 0.810198i \(0.300641\pi\)
\(200\) −4.20775 −0.297533
\(201\) 0 0
\(202\) 10.1957 0.717365
\(203\) −13.4276 −0.942432
\(204\) 0 0
\(205\) −3.25129 −0.227080
\(206\) 10.6703 0.743432
\(207\) 0 0
\(208\) 0 0
\(209\) 7.91185 0.547274
\(210\) 0 0
\(211\) −1.66056 −0.114318 −0.0571589 0.998365i \(-0.518204\pi\)
−0.0571589 + 0.998365i \(0.518204\pi\)
\(212\) −6.09783 −0.418801
\(213\) 0 0
\(214\) 20.5623 1.40561
\(215\) 0.152129 0.0103751
\(216\) 0 0
\(217\) 10.7681 0.730985
\(218\) −2.71379 −0.183801
\(219\) 0 0
\(220\) 2.39612 0.161547
\(221\) 0 0
\(222\) 0 0
\(223\) 0.792249 0.0530529 0.0265265 0.999648i \(-0.491555\pi\)
0.0265265 + 0.999648i \(0.491555\pi\)
\(224\) 4.49396 0.300265
\(225\) 0 0
\(226\) −20.6504 −1.37364
\(227\) −21.7603 −1.44428 −0.722141 0.691745i \(-0.756842\pi\)
−0.722141 + 0.691745i \(0.756842\pi\)
\(228\) 0 0
\(229\) 1.97584 0.130567 0.0652835 0.997867i \(-0.479205\pi\)
0.0652835 + 0.997867i \(0.479205\pi\)
\(230\) 5.42758 0.357884
\(231\) 0 0
\(232\) −2.98792 −0.196166
\(233\) −18.2349 −1.19461 −0.597304 0.802015i \(-0.703761\pi\)
−0.597304 + 0.802015i \(0.703761\pi\)
\(234\) 0 0
\(235\) 4.63533 0.302376
\(236\) 3.07069 0.199885
\(237\) 0 0
\(238\) −16.0978 −1.04347
\(239\) −22.0737 −1.42783 −0.713914 0.700234i \(-0.753079\pi\)
−0.713914 + 0.700234i \(0.753079\pi\)
\(240\) 0 0
\(241\) −6.98792 −0.450131 −0.225066 0.974344i \(-0.572260\pi\)
−0.225066 + 0.974344i \(0.572260\pi\)
\(242\) −3.75302 −0.241253
\(243\) 0 0
\(244\) −13.9758 −0.894711
\(245\) 11.7453 0.750377
\(246\) 0 0
\(247\) 0 0
\(248\) 2.39612 0.152154
\(249\) 0 0
\(250\) −8.19567 −0.518340
\(251\) 12.5593 0.792734 0.396367 0.918092i \(-0.370271\pi\)
0.396367 + 0.918092i \(0.370271\pi\)
\(252\) 0 0
\(253\) 16.4155 1.03203
\(254\) 12.7681 0.801141
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.9933 1.06001 0.530006 0.847994i \(-0.322190\pi\)
0.530006 + 0.847994i \(0.322190\pi\)
\(258\) 0 0
\(259\) 6.76809 0.420548
\(260\) 0 0
\(261\) 0 0
\(262\) 5.15883 0.318714
\(263\) 4.39612 0.271077 0.135538 0.990772i \(-0.456724\pi\)
0.135538 + 0.990772i \(0.456724\pi\)
\(264\) 0 0
\(265\) −5.42758 −0.333414
\(266\) 13.2078 0.809819
\(267\) 0 0
\(268\) −11.0707 −0.676250
\(269\) −15.5603 −0.948730 −0.474365 0.880328i \(-0.657322\pi\)
−0.474365 + 0.880328i \(0.657322\pi\)
\(270\) 0 0
\(271\) 21.9952 1.33611 0.668057 0.744110i \(-0.267126\pi\)
0.668057 + 0.744110i \(0.267126\pi\)
\(272\) −3.58211 −0.217197
\(273\) 0 0
\(274\) −3.30127 −0.199437
\(275\) −11.3274 −0.683065
\(276\) 0 0
\(277\) −1.87800 −0.112838 −0.0564191 0.998407i \(-0.517968\pi\)
−0.0564191 + 0.998407i \(0.517968\pi\)
\(278\) −6.49157 −0.389338
\(279\) 0 0
\(280\) 4.00000 0.239046
\(281\) 9.20536 0.549146 0.274573 0.961566i \(-0.411464\pi\)
0.274573 + 0.961566i \(0.411464\pi\)
\(282\) 0 0
\(283\) 4.70841 0.279886 0.139943 0.990160i \(-0.455308\pi\)
0.139943 + 0.990160i \(0.455308\pi\)
\(284\) −10.0978 −0.599196
\(285\) 0 0
\(286\) 0 0
\(287\) −16.4155 −0.968976
\(288\) 0 0
\(289\) −4.16852 −0.245207
\(290\) −2.65950 −0.156171
\(291\) 0 0
\(292\) −10.9487 −0.640724
\(293\) −13.7017 −0.800462 −0.400231 0.916414i \(-0.631070\pi\)
−0.400231 + 0.916414i \(0.631070\pi\)
\(294\) 0 0
\(295\) 2.73317 0.159131
\(296\) 1.50604 0.0875368
\(297\) 0 0
\(298\) 5.03146 0.291465
\(299\) 0 0
\(300\) 0 0
\(301\) 0.768086 0.0442717
\(302\) 1.72587 0.0993128
\(303\) 0 0
\(304\) 2.93900 0.168563
\(305\) −12.4397 −0.712293
\(306\) 0 0
\(307\) −8.03252 −0.458440 −0.229220 0.973375i \(-0.573618\pi\)
−0.229220 + 0.973375i \(0.573618\pi\)
\(308\) 12.0978 0.689338
\(309\) 0 0
\(310\) 2.13275 0.121132
\(311\) −4.09783 −0.232367 −0.116183 0.993228i \(-0.537066\pi\)
−0.116183 + 0.993228i \(0.537066\pi\)
\(312\) 0 0
\(313\) 4.37435 0.247253 0.123627 0.992329i \(-0.460548\pi\)
0.123627 + 0.992329i \(0.460548\pi\)
\(314\) 15.5060 0.875057
\(315\) 0 0
\(316\) 2.81163 0.158166
\(317\) −20.3612 −1.14360 −0.571800 0.820393i \(-0.693755\pi\)
−0.571800 + 0.820393i \(0.693755\pi\)
\(318\) 0 0
\(319\) −8.04354 −0.450352
\(320\) 0.890084 0.0497572
\(321\) 0 0
\(322\) 27.4034 1.52713
\(323\) −10.5278 −0.585783
\(324\) 0 0
\(325\) 0 0
\(326\) 19.7235 1.09238
\(327\) 0 0
\(328\) −3.65279 −0.201692
\(329\) 23.4034 1.29027
\(330\) 0 0
\(331\) −6.13275 −0.337087 −0.168543 0.985694i \(-0.553906\pi\)
−0.168543 + 0.985694i \(0.553906\pi\)
\(332\) 2.93900 0.161299
\(333\) 0 0
\(334\) −14.0000 −0.766046
\(335\) −9.85384 −0.538373
\(336\) 0 0
\(337\) −27.8485 −1.51700 −0.758501 0.651672i \(-0.774068\pi\)
−0.758501 + 0.651672i \(0.774068\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −3.18837 −0.172914
\(341\) 6.45042 0.349310
\(342\) 0 0
\(343\) 27.8431 1.50339
\(344\) 0.170915 0.00921513
\(345\) 0 0
\(346\) −1.20775 −0.0649291
\(347\) −4.43967 −0.238334 −0.119167 0.992874i \(-0.538022\pi\)
−0.119167 + 0.992874i \(0.538022\pi\)
\(348\) 0 0
\(349\) 19.9215 1.06638 0.533188 0.845997i \(-0.320994\pi\)
0.533188 + 0.845997i \(0.320994\pi\)
\(350\) −18.9095 −1.01075
\(351\) 0 0
\(352\) 2.69202 0.143485
\(353\) −30.5894 −1.62811 −0.814055 0.580788i \(-0.802744\pi\)
−0.814055 + 0.580788i \(0.802744\pi\)
\(354\) 0 0
\(355\) −8.98792 −0.477029
\(356\) 12.1806 0.645571
\(357\) 0 0
\(358\) −16.5157 −0.872883
\(359\) −21.6039 −1.14021 −0.570104 0.821572i \(-0.693097\pi\)
−0.570104 + 0.821572i \(0.693097\pi\)
\(360\) 0 0
\(361\) −10.3623 −0.545383
\(362\) 6.37196 0.334903
\(363\) 0 0
\(364\) 0 0
\(365\) −9.74525 −0.510090
\(366\) 0 0
\(367\) 18.7681 0.979686 0.489843 0.871811i \(-0.337054\pi\)
0.489843 + 0.871811i \(0.337054\pi\)
\(368\) 6.09783 0.317872
\(369\) 0 0
\(370\) 1.34050 0.0696894
\(371\) −27.4034 −1.42271
\(372\) 0 0
\(373\) −9.42758 −0.488142 −0.244071 0.969757i \(-0.578483\pi\)
−0.244071 + 0.969757i \(0.578483\pi\)
\(374\) −9.64310 −0.498633
\(375\) 0 0
\(376\) 5.20775 0.268569
\(377\) 0 0
\(378\) 0 0
\(379\) −32.0103 −1.64426 −0.822129 0.569302i \(-0.807214\pi\)
−0.822129 + 0.569302i \(0.807214\pi\)
\(380\) 2.61596 0.134196
\(381\) 0 0
\(382\) 2.49396 0.127602
\(383\) 15.9517 0.815092 0.407546 0.913185i \(-0.366385\pi\)
0.407546 + 0.913185i \(0.366385\pi\)
\(384\) 0 0
\(385\) 10.7681 0.548792
\(386\) 4.00538 0.203868
\(387\) 0 0
\(388\) −12.9661 −0.658256
\(389\) 18.8659 0.956540 0.478270 0.878213i \(-0.341264\pi\)
0.478270 + 0.878213i \(0.341264\pi\)
\(390\) 0 0
\(391\) −21.8431 −1.10465
\(392\) 13.1957 0.666482
\(393\) 0 0
\(394\) 23.6340 1.19066
\(395\) 2.50258 0.125919
\(396\) 0 0
\(397\) −37.6969 −1.89195 −0.945977 0.324233i \(-0.894894\pi\)
−0.945977 + 0.324233i \(0.894894\pi\)
\(398\) 16.5375 0.828950
\(399\) 0 0
\(400\) −4.20775 −0.210388
\(401\) −3.22952 −0.161275 −0.0806373 0.996744i \(-0.525696\pi\)
−0.0806373 + 0.996744i \(0.525696\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 10.1957 0.507254
\(405\) 0 0
\(406\) −13.4276 −0.666400
\(407\) 4.05429 0.200964
\(408\) 0 0
\(409\) 3.54527 0.175302 0.0876511 0.996151i \(-0.472064\pi\)
0.0876511 + 0.996151i \(0.472064\pi\)
\(410\) −3.25129 −0.160570
\(411\) 0 0
\(412\) 10.6703 0.525686
\(413\) 13.7995 0.679031
\(414\) 0 0
\(415\) 2.61596 0.128412
\(416\) 0 0
\(417\) 0 0
\(418\) 7.91185 0.386981
\(419\) 14.4155 0.704243 0.352122 0.935954i \(-0.385460\pi\)
0.352122 + 0.935954i \(0.385460\pi\)
\(420\) 0 0
\(421\) −10.0978 −0.492138 −0.246069 0.969252i \(-0.579139\pi\)
−0.246069 + 0.969252i \(0.579139\pi\)
\(422\) −1.66056 −0.0808349
\(423\) 0 0
\(424\) −6.09783 −0.296137
\(425\) 15.0726 0.731129
\(426\) 0 0
\(427\) −62.8068 −3.03944
\(428\) 20.5623 0.993914
\(429\) 0 0
\(430\) 0.152129 0.00733630
\(431\) −20.2198 −0.973955 −0.486978 0.873414i \(-0.661901\pi\)
−0.486978 + 0.873414i \(0.661901\pi\)
\(432\) 0 0
\(433\) 36.4849 1.75335 0.876675 0.481083i \(-0.159756\pi\)
0.876675 + 0.481083i \(0.159756\pi\)
\(434\) 10.7681 0.516885
\(435\) 0 0
\(436\) −2.71379 −0.129967
\(437\) 17.9215 0.857304
\(438\) 0 0
\(439\) −28.3612 −1.35361 −0.676803 0.736164i \(-0.736635\pi\)
−0.676803 + 0.736164i \(0.736635\pi\)
\(440\) 2.39612 0.114231
\(441\) 0 0
\(442\) 0 0
\(443\) −2.80061 −0.133061 −0.0665305 0.997784i \(-0.521193\pi\)
−0.0665305 + 0.997784i \(0.521193\pi\)
\(444\) 0 0
\(445\) 10.8418 0.513949
\(446\) 0.792249 0.0375141
\(447\) 0 0
\(448\) 4.49396 0.212320
\(449\) −13.2760 −0.626535 −0.313268 0.949665i \(-0.601424\pi\)
−0.313268 + 0.949665i \(0.601424\pi\)
\(450\) 0 0
\(451\) −9.83340 −0.463037
\(452\) −20.6504 −0.971313
\(453\) 0 0
\(454\) −21.7603 −1.02126
\(455\) 0 0
\(456\) 0 0
\(457\) 13.6474 0.638399 0.319200 0.947688i \(-0.396586\pi\)
0.319200 + 0.947688i \(0.396586\pi\)
\(458\) 1.97584 0.0923248
\(459\) 0 0
\(460\) 5.42758 0.253062
\(461\) 12.1655 0.566606 0.283303 0.959031i \(-0.408570\pi\)
0.283303 + 0.959031i \(0.408570\pi\)
\(462\) 0 0
\(463\) 4.24996 0.197513 0.0987563 0.995112i \(-0.468514\pi\)
0.0987563 + 0.995112i \(0.468514\pi\)
\(464\) −2.98792 −0.138711
\(465\) 0 0
\(466\) −18.2349 −0.844715
\(467\) −8.21552 −0.380169 −0.190084 0.981768i \(-0.560876\pi\)
−0.190084 + 0.981768i \(0.560876\pi\)
\(468\) 0 0
\(469\) −49.7512 −2.29730
\(470\) 4.63533 0.213812
\(471\) 0 0
\(472\) 3.07069 0.141340
\(473\) 0.460107 0.0211558
\(474\) 0 0
\(475\) −12.3666 −0.567418
\(476\) −16.0978 −0.737843
\(477\) 0 0
\(478\) −22.0737 −1.00963
\(479\) 31.0267 1.41764 0.708822 0.705387i \(-0.249227\pi\)
0.708822 + 0.705387i \(0.249227\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −6.98792 −0.318291
\(483\) 0 0
\(484\) −3.75302 −0.170592
\(485\) −11.5410 −0.524048
\(486\) 0 0
\(487\) 10.9987 0.498397 0.249199 0.968452i \(-0.419833\pi\)
0.249199 + 0.968452i \(0.419833\pi\)
\(488\) −13.9758 −0.632656
\(489\) 0 0
\(490\) 11.7453 0.530596
\(491\) −21.2336 −0.958258 −0.479129 0.877745i \(-0.659047\pi\)
−0.479129 + 0.877745i \(0.659047\pi\)
\(492\) 0 0
\(493\) 10.7030 0.482041
\(494\) 0 0
\(495\) 0 0
\(496\) 2.39612 0.107589
\(497\) −45.3793 −2.03554
\(498\) 0 0
\(499\) 16.8635 0.754915 0.377458 0.926027i \(-0.376798\pi\)
0.377458 + 0.926027i \(0.376798\pi\)
\(500\) −8.19567 −0.366521
\(501\) 0 0
\(502\) 12.5593 0.560548
\(503\) −20.3806 −0.908725 −0.454363 0.890817i \(-0.650133\pi\)
−0.454363 + 0.890817i \(0.650133\pi\)
\(504\) 0 0
\(505\) 9.07500 0.403832
\(506\) 16.4155 0.729758
\(507\) 0 0
\(508\) 12.7681 0.566492
\(509\) 21.9215 0.971655 0.485828 0.874055i \(-0.338518\pi\)
0.485828 + 0.874055i \(0.338518\pi\)
\(510\) 0 0
\(511\) −49.2030 −2.17661
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 16.9933 0.749542
\(515\) 9.49742 0.418506
\(516\) 0 0
\(517\) 14.0194 0.616572
\(518\) 6.76809 0.297373
\(519\) 0 0
\(520\) 0 0
\(521\) −26.1564 −1.14593 −0.572967 0.819578i \(-0.694208\pi\)
−0.572967 + 0.819578i \(0.694208\pi\)
\(522\) 0 0
\(523\) 4.91185 0.214780 0.107390 0.994217i \(-0.465751\pi\)
0.107390 + 0.994217i \(0.465751\pi\)
\(524\) 5.15883 0.225365
\(525\) 0 0
\(526\) 4.39612 0.191680
\(527\) −8.58317 −0.373889
\(528\) 0 0
\(529\) 14.1836 0.616678
\(530\) −5.42758 −0.235759
\(531\) 0 0
\(532\) 13.2078 0.572629
\(533\) 0 0
\(534\) 0 0
\(535\) 18.3021 0.791270
\(536\) −11.0707 −0.478181
\(537\) 0 0
\(538\) −15.5603 −0.670854
\(539\) 35.5230 1.53009
\(540\) 0 0
\(541\) −0.459042 −0.0197358 −0.00986789 0.999951i \(-0.503141\pi\)
−0.00986789 + 0.999951i \(0.503141\pi\)
\(542\) 21.9952 0.944775
\(543\) 0 0
\(544\) −3.58211 −0.153581
\(545\) −2.41550 −0.103469
\(546\) 0 0
\(547\) −20.3327 −0.869365 −0.434682 0.900584i \(-0.643139\pi\)
−0.434682 + 0.900584i \(0.643139\pi\)
\(548\) −3.30127 −0.141023
\(549\) 0 0
\(550\) −11.3274 −0.483000
\(551\) −8.78150 −0.374104
\(552\) 0 0
\(553\) 12.6353 0.537309
\(554\) −1.87800 −0.0797887
\(555\) 0 0
\(556\) −6.49157 −0.275304
\(557\) −43.9469 −1.86209 −0.931045 0.364905i \(-0.881101\pi\)
−0.931045 + 0.364905i \(0.881101\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 9.20536 0.388305
\(563\) −43.5991 −1.83748 −0.918741 0.394860i \(-0.870793\pi\)
−0.918741 + 0.394860i \(0.870793\pi\)
\(564\) 0 0
\(565\) −18.3806 −0.773277
\(566\) 4.70841 0.197909
\(567\) 0 0
\(568\) −10.0978 −0.423696
\(569\) −8.28919 −0.347501 −0.173751 0.984790i \(-0.555589\pi\)
−0.173751 + 0.984790i \(0.555589\pi\)
\(570\) 0 0
\(571\) −22.9836 −0.961834 −0.480917 0.876766i \(-0.659696\pi\)
−0.480917 + 0.876766i \(0.659696\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −16.4155 −0.685170
\(575\) −25.6582 −1.07002
\(576\) 0 0
\(577\) −0.553630 −0.0230479 −0.0115240 0.999934i \(-0.503668\pi\)
−0.0115240 + 0.999934i \(0.503668\pi\)
\(578\) −4.16852 −0.173388
\(579\) 0 0
\(580\) −2.65950 −0.110430
\(581\) 13.2078 0.547950
\(582\) 0 0
\(583\) −16.4155 −0.679861
\(584\) −10.9487 −0.453060
\(585\) 0 0
\(586\) −13.7017 −0.566012
\(587\) −16.0355 −0.661856 −0.330928 0.943656i \(-0.607362\pi\)
−0.330928 + 0.943656i \(0.607362\pi\)
\(588\) 0 0
\(589\) 7.04221 0.290169
\(590\) 2.73317 0.112523
\(591\) 0 0
\(592\) 1.50604 0.0618979
\(593\) 25.9976 1.06759 0.533797 0.845613i \(-0.320765\pi\)
0.533797 + 0.845613i \(0.320765\pi\)
\(594\) 0 0
\(595\) −14.3284 −0.587408
\(596\) 5.03146 0.206097
\(597\) 0 0
\(598\) 0 0
\(599\) 16.2150 0.662529 0.331264 0.943538i \(-0.392525\pi\)
0.331264 + 0.943538i \(0.392525\pi\)
\(600\) 0 0
\(601\) −29.5200 −1.20415 −0.602074 0.798440i \(-0.705659\pi\)
−0.602074 + 0.798440i \(0.705659\pi\)
\(602\) 0.768086 0.0313048
\(603\) 0 0
\(604\) 1.72587 0.0702248
\(605\) −3.34050 −0.135811
\(606\) 0 0
\(607\) 37.4228 1.51894 0.759472 0.650540i \(-0.225457\pi\)
0.759472 + 0.650540i \(0.225457\pi\)
\(608\) 2.93900 0.119192
\(609\) 0 0
\(610\) −12.4397 −0.503667
\(611\) 0 0
\(612\) 0 0
\(613\) 38.0737 1.53778 0.768891 0.639380i \(-0.220809\pi\)
0.768891 + 0.639380i \(0.220809\pi\)
\(614\) −8.03252 −0.324166
\(615\) 0 0
\(616\) 12.0978 0.487436
\(617\) −41.6383 −1.67630 −0.838148 0.545443i \(-0.816361\pi\)
−0.838148 + 0.545443i \(0.816361\pi\)
\(618\) 0 0
\(619\) −1.67158 −0.0671864 −0.0335932 0.999436i \(-0.510695\pi\)
−0.0335932 + 0.999436i \(0.510695\pi\)
\(620\) 2.13275 0.0856534
\(621\) 0 0
\(622\) −4.09783 −0.164308
\(623\) 54.7391 2.19308
\(624\) 0 0
\(625\) 13.7439 0.549757
\(626\) 4.37435 0.174834
\(627\) 0 0
\(628\) 15.5060 0.618758
\(629\) −5.39480 −0.215105
\(630\) 0 0
\(631\) 8.70304 0.346462 0.173231 0.984881i \(-0.444579\pi\)
0.173231 + 0.984881i \(0.444579\pi\)
\(632\) 2.81163 0.111840
\(633\) 0 0
\(634\) −20.3612 −0.808647
\(635\) 11.3647 0.450993
\(636\) 0 0
\(637\) 0 0
\(638\) −8.04354 −0.318447
\(639\) 0 0
\(640\) 0.890084 0.0351836
\(641\) 19.9075 0.786301 0.393150 0.919474i \(-0.371385\pi\)
0.393150 + 0.919474i \(0.371385\pi\)
\(642\) 0 0
\(643\) 27.0756 1.06776 0.533879 0.845561i \(-0.320734\pi\)
0.533879 + 0.845561i \(0.320734\pi\)
\(644\) 27.4034 1.07985
\(645\) 0 0
\(646\) −10.5278 −0.414211
\(647\) −9.43237 −0.370825 −0.185412 0.982661i \(-0.559362\pi\)
−0.185412 + 0.982661i \(0.559362\pi\)
\(648\) 0 0
\(649\) 8.26636 0.324483
\(650\) 0 0
\(651\) 0 0
\(652\) 19.7235 0.772431
\(653\) 37.6292 1.47255 0.736273 0.676685i \(-0.236584\pi\)
0.736273 + 0.676685i \(0.236584\pi\)
\(654\) 0 0
\(655\) 4.59179 0.179416
\(656\) −3.65279 −0.142618
\(657\) 0 0
\(658\) 23.4034 0.912360
\(659\) 32.7724 1.27663 0.638316 0.769775i \(-0.279631\pi\)
0.638316 + 0.769775i \(0.279631\pi\)
\(660\) 0 0
\(661\) −20.1957 −0.785520 −0.392760 0.919641i \(-0.628480\pi\)
−0.392760 + 0.919641i \(0.628480\pi\)
\(662\) −6.13275 −0.238356
\(663\) 0 0
\(664\) 2.93900 0.114055
\(665\) 11.7560 0.455878
\(666\) 0 0
\(667\) −18.2198 −0.705475
\(668\) −14.0000 −0.541676
\(669\) 0 0
\(670\) −9.85384 −0.380687
\(671\) −37.6233 −1.45243
\(672\) 0 0
\(673\) −30.3435 −1.16966 −0.584828 0.811158i \(-0.698838\pi\)
−0.584828 + 0.811158i \(0.698838\pi\)
\(674\) −27.8485 −1.07268
\(675\) 0 0
\(676\) 0 0
\(677\) 21.1642 0.813407 0.406703 0.913560i \(-0.366678\pi\)
0.406703 + 0.913560i \(0.366678\pi\)
\(678\) 0 0
\(679\) −58.2693 −2.23617
\(680\) −3.18837 −0.122269
\(681\) 0 0
\(682\) 6.45042 0.246999
\(683\) 35.4873 1.35788 0.678941 0.734193i \(-0.262439\pi\)
0.678941 + 0.734193i \(0.262439\pi\)
\(684\) 0 0
\(685\) −2.93841 −0.112271
\(686\) 27.8431 1.06305
\(687\) 0 0
\(688\) 0.170915 0.00651608
\(689\) 0 0
\(690\) 0 0
\(691\) 36.7472 1.39793 0.698964 0.715157i \(-0.253645\pi\)
0.698964 + 0.715157i \(0.253645\pi\)
\(692\) −1.20775 −0.0459118
\(693\) 0 0
\(694\) −4.43967 −0.168527
\(695\) −5.77804 −0.219173
\(696\) 0 0
\(697\) 13.0847 0.495618
\(698\) 19.9215 0.754042
\(699\) 0 0
\(700\) −18.9095 −0.714710
\(701\) −19.7668 −0.746580 −0.373290 0.927715i \(-0.621770\pi\)
−0.373290 + 0.927715i \(0.621770\pi\)
\(702\) 0 0
\(703\) 4.42626 0.166939
\(704\) 2.69202 0.101459
\(705\) 0 0
\(706\) −30.5894 −1.15125
\(707\) 45.8189 1.72320
\(708\) 0 0
\(709\) 11.6280 0.436700 0.218350 0.975871i \(-0.429933\pi\)
0.218350 + 0.975871i \(0.429933\pi\)
\(710\) −8.98792 −0.337311
\(711\) 0 0
\(712\) 12.1806 0.456487
\(713\) 14.6112 0.547193
\(714\) 0 0
\(715\) 0 0
\(716\) −16.5157 −0.617222
\(717\) 0 0
\(718\) −21.6039 −0.806249
\(719\) 1.06638 0.0397691 0.0198846 0.999802i \(-0.493670\pi\)
0.0198846 + 0.999802i \(0.493670\pi\)
\(720\) 0 0
\(721\) 47.9517 1.78581
\(722\) −10.3623 −0.385644
\(723\) 0 0
\(724\) 6.37196 0.236812
\(725\) 12.5724 0.466928
\(726\) 0 0
\(727\) −1.26205 −0.0468067 −0.0234033 0.999726i \(-0.507450\pi\)
−0.0234033 + 0.999726i \(0.507450\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −9.74525 −0.360688
\(731\) −0.612236 −0.0226444
\(732\) 0 0
\(733\) −20.6789 −0.763792 −0.381896 0.924205i \(-0.624729\pi\)
−0.381896 + 0.924205i \(0.624729\pi\)
\(734\) 18.7681 0.692743
\(735\) 0 0
\(736\) 6.09783 0.224769
\(737\) −29.8025 −1.09779
\(738\) 0 0
\(739\) 5.17331 0.190303 0.0951516 0.995463i \(-0.469666\pi\)
0.0951516 + 0.995463i \(0.469666\pi\)
\(740\) 1.34050 0.0492778
\(741\) 0 0
\(742\) −27.4034 −1.00601
\(743\) 10.4397 0.382994 0.191497 0.981493i \(-0.438666\pi\)
0.191497 + 0.981493i \(0.438666\pi\)
\(744\) 0 0
\(745\) 4.47842 0.164077
\(746\) −9.42758 −0.345168
\(747\) 0 0
\(748\) −9.64310 −0.352587
\(749\) 92.4059 3.37644
\(750\) 0 0
\(751\) −14.0435 −0.512456 −0.256228 0.966616i \(-0.582480\pi\)
−0.256228 + 0.966616i \(0.582480\pi\)
\(752\) 5.20775 0.189907
\(753\) 0 0
\(754\) 0 0
\(755\) 1.53617 0.0559070
\(756\) 0 0
\(757\) −9.30559 −0.338217 −0.169109 0.985597i \(-0.554089\pi\)
−0.169109 + 0.985597i \(0.554089\pi\)
\(758\) −32.0103 −1.16267
\(759\) 0 0
\(760\) 2.61596 0.0948907
\(761\) 9.56273 0.346649 0.173324 0.984865i \(-0.444549\pi\)
0.173324 + 0.984865i \(0.444549\pi\)
\(762\) 0 0
\(763\) −12.1957 −0.441513
\(764\) 2.49396 0.0902283
\(765\) 0 0
\(766\) 15.9517 0.576357
\(767\) 0 0
\(768\) 0 0
\(769\) −31.9299 −1.15142 −0.575711 0.817653i \(-0.695275\pi\)
−0.575711 + 0.817653i \(0.695275\pi\)
\(770\) 10.7681 0.388055
\(771\) 0 0
\(772\) 4.00538 0.144157
\(773\) 34.1172 1.22711 0.613555 0.789652i \(-0.289739\pi\)
0.613555 + 0.789652i \(0.289739\pi\)
\(774\) 0 0
\(775\) −10.0823 −0.362167
\(776\) −12.9661 −0.465458
\(777\) 0 0
\(778\) 18.8659 0.676376
\(779\) −10.7356 −0.384641
\(780\) 0 0
\(781\) −27.1836 −0.972705
\(782\) −21.8431 −0.781107
\(783\) 0 0
\(784\) 13.1957 0.471274
\(785\) 13.8017 0.492603
\(786\) 0 0
\(787\) −37.3467 −1.33127 −0.665634 0.746279i \(-0.731839\pi\)
−0.665634 + 0.746279i \(0.731839\pi\)
\(788\) 23.6340 0.841927
\(789\) 0 0
\(790\) 2.50258 0.0890379
\(791\) −92.8021 −3.29966
\(792\) 0 0
\(793\) 0 0
\(794\) −37.6969 −1.33781
\(795\) 0 0
\(796\) 16.5375 0.586156
\(797\) 14.9831 0.530730 0.265365 0.964148i \(-0.414508\pi\)
0.265365 + 0.964148i \(0.414508\pi\)
\(798\) 0 0
\(799\) −18.6547 −0.659956
\(800\) −4.20775 −0.148766
\(801\) 0 0
\(802\) −3.22952 −0.114038
\(803\) −29.4741 −1.04012
\(804\) 0 0
\(805\) 24.3913 0.859682
\(806\) 0 0
\(807\) 0 0
\(808\) 10.1957 0.358682
\(809\) −25.6770 −0.902754 −0.451377 0.892333i \(-0.649067\pi\)
−0.451377 + 0.892333i \(0.649067\pi\)
\(810\) 0 0
\(811\) 8.66786 0.304370 0.152185 0.988352i \(-0.451369\pi\)
0.152185 + 0.988352i \(0.451369\pi\)
\(812\) −13.4276 −0.471216
\(813\) 0 0
\(814\) 4.05429 0.142103
\(815\) 17.5555 0.614944
\(816\) 0 0
\(817\) 0.502320 0.0175739
\(818\) 3.54527 0.123957
\(819\) 0 0
\(820\) −3.25129 −0.113540
\(821\) 54.6547 1.90746 0.953731 0.300660i \(-0.0972070\pi\)
0.953731 + 0.300660i \(0.0972070\pi\)
\(822\) 0 0
\(823\) −6.33704 −0.220895 −0.110448 0.993882i \(-0.535228\pi\)
−0.110448 + 0.993882i \(0.535228\pi\)
\(824\) 10.6703 0.371716
\(825\) 0 0
\(826\) 13.7995 0.480148
\(827\) −35.5405 −1.23586 −0.617932 0.786232i \(-0.712029\pi\)
−0.617932 + 0.786232i \(0.712029\pi\)
\(828\) 0 0
\(829\) −41.5555 −1.44328 −0.721642 0.692267i \(-0.756612\pi\)
−0.721642 + 0.692267i \(0.756612\pi\)
\(830\) 2.61596 0.0908012
\(831\) 0 0
\(832\) 0 0
\(833\) −47.2683 −1.63775
\(834\) 0 0
\(835\) −12.4612 −0.431237
\(836\) 7.91185 0.273637
\(837\) 0 0
\(838\) 14.4155 0.497975
\(839\) −17.5496 −0.605879 −0.302939 0.953010i \(-0.597968\pi\)
−0.302939 + 0.953010i \(0.597968\pi\)
\(840\) 0 0
\(841\) −20.0723 −0.692150
\(842\) −10.0978 −0.347994
\(843\) 0 0
\(844\) −1.66056 −0.0571589
\(845\) 0 0
\(846\) 0 0
\(847\) −16.8659 −0.579520
\(848\) −6.09783 −0.209401
\(849\) 0 0
\(850\) 15.0726 0.516986
\(851\) 9.18359 0.314809
\(852\) 0 0
\(853\) 20.1414 0.689628 0.344814 0.938671i \(-0.387942\pi\)
0.344814 + 0.938671i \(0.387942\pi\)
\(854\) −62.8068 −2.14921
\(855\) 0 0
\(856\) 20.5623 0.702803
\(857\) 8.85756 0.302568 0.151284 0.988490i \(-0.451659\pi\)
0.151284 + 0.988490i \(0.451659\pi\)
\(858\) 0 0
\(859\) 28.8810 0.985407 0.492703 0.870197i \(-0.336009\pi\)
0.492703 + 0.870197i \(0.336009\pi\)
\(860\) 0.152129 0.00518755
\(861\) 0 0
\(862\) −20.2198 −0.688690
\(863\) −3.90813 −0.133034 −0.0665172 0.997785i \(-0.521189\pi\)
−0.0665172 + 0.997785i \(0.521189\pi\)
\(864\) 0 0
\(865\) −1.07500 −0.0365511
\(866\) 36.4849 1.23981
\(867\) 0 0
\(868\) 10.7681 0.365493
\(869\) 7.56896 0.256759
\(870\) 0 0
\(871\) 0 0
\(872\) −2.71379 −0.0919006
\(873\) 0 0
\(874\) 17.9215 0.606205
\(875\) −36.8310 −1.24512
\(876\) 0 0
\(877\) −44.9879 −1.51913 −0.759567 0.650429i \(-0.774589\pi\)
−0.759567 + 0.650429i \(0.774589\pi\)
\(878\) −28.3612 −0.957144
\(879\) 0 0
\(880\) 2.39612 0.0807733
\(881\) 14.1933 0.478184 0.239092 0.970997i \(-0.423150\pi\)
0.239092 + 0.970997i \(0.423150\pi\)
\(882\) 0 0
\(883\) 48.4626 1.63090 0.815448 0.578830i \(-0.196490\pi\)
0.815448 + 0.578830i \(0.196490\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −2.80061 −0.0940883
\(887\) −30.8611 −1.03622 −0.518108 0.855315i \(-0.673363\pi\)
−0.518108 + 0.855315i \(0.673363\pi\)
\(888\) 0 0
\(889\) 57.3793 1.92444
\(890\) 10.8418 0.363417
\(891\) 0 0
\(892\) 0.792249 0.0265265
\(893\) 15.3056 0.512182
\(894\) 0 0
\(895\) −14.7004 −0.491380
\(896\) 4.49396 0.150133
\(897\) 0 0
\(898\) −13.2760 −0.443027
\(899\) −7.15942 −0.238780
\(900\) 0 0
\(901\) 21.8431 0.727699
\(902\) −9.83340 −0.327416
\(903\) 0 0
\(904\) −20.6504 −0.686822
\(905\) 5.67158 0.188530
\(906\) 0 0
\(907\) 3.94139 0.130872 0.0654359 0.997857i \(-0.479156\pi\)
0.0654359 + 0.997857i \(0.479156\pi\)
\(908\) −21.7603 −0.722141
\(909\) 0 0
\(910\) 0 0
\(911\) 37.1943 1.23230 0.616152 0.787627i \(-0.288691\pi\)
0.616152 + 0.787627i \(0.288691\pi\)
\(912\) 0 0
\(913\) 7.91185 0.261844
\(914\) 13.6474 0.451416
\(915\) 0 0
\(916\) 1.97584 0.0652835
\(917\) 23.1836 0.765590
\(918\) 0 0
\(919\) 0.681005 0.0224643 0.0112321 0.999937i \(-0.496425\pi\)
0.0112321 + 0.999937i \(0.496425\pi\)
\(920\) 5.42758 0.178942
\(921\) 0 0
\(922\) 12.1655 0.400651
\(923\) 0 0
\(924\) 0 0
\(925\) −6.33704 −0.208361
\(926\) 4.24996 0.139662
\(927\) 0 0
\(928\) −2.98792 −0.0980832
\(929\) −32.4355 −1.06417 −0.532087 0.846690i \(-0.678592\pi\)
−0.532087 + 0.846690i \(0.678592\pi\)
\(930\) 0 0
\(931\) 38.7821 1.27103
\(932\) −18.2349 −0.597304
\(933\) 0 0
\(934\) −8.21552 −0.268820
\(935\) −8.58317 −0.280700
\(936\) 0 0
\(937\) −14.6165 −0.477502 −0.238751 0.971081i \(-0.576738\pi\)
−0.238751 + 0.971081i \(0.576738\pi\)
\(938\) −49.7512 −1.62443
\(939\) 0 0
\(940\) 4.63533 0.151188
\(941\) 30.1763 0.983719 0.491860 0.870675i \(-0.336317\pi\)
0.491860 + 0.870675i \(0.336317\pi\)
\(942\) 0 0
\(943\) −22.2741 −0.725345
\(944\) 3.07069 0.0999424
\(945\) 0 0
\(946\) 0.460107 0.0149594
\(947\) 20.6708 0.671712 0.335856 0.941913i \(-0.390974\pi\)
0.335856 + 0.941913i \(0.390974\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −12.3666 −0.401225
\(951\) 0 0
\(952\) −16.0978 −0.521734
\(953\) 47.2411 1.53029 0.765145 0.643858i \(-0.222667\pi\)
0.765145 + 0.643858i \(0.222667\pi\)
\(954\) 0 0
\(955\) 2.21983 0.0718321
\(956\) −22.0737 −0.713914
\(957\) 0 0
\(958\) 31.0267 1.00243
\(959\) −14.8358 −0.479073
\(960\) 0 0
\(961\) −25.2586 −0.814793
\(962\) 0 0
\(963\) 0 0
\(964\) −6.98792 −0.225066
\(965\) 3.56512 0.114765
\(966\) 0 0
\(967\) −53.9517 −1.73497 −0.867484 0.497464i \(-0.834265\pi\)
−0.867484 + 0.497464i \(0.834265\pi\)
\(968\) −3.75302 −0.120627
\(969\) 0 0
\(970\) −11.5410 −0.370558
\(971\) −49.8920 −1.60111 −0.800555 0.599259i \(-0.795462\pi\)
−0.800555 + 0.599259i \(0.795462\pi\)
\(972\) 0 0
\(973\) −29.1728 −0.935238
\(974\) 10.9987 0.352420
\(975\) 0 0
\(976\) −13.9758 −0.447356
\(977\) 29.1299 0.931948 0.465974 0.884799i \(-0.345704\pi\)
0.465974 + 0.884799i \(0.345704\pi\)
\(978\) 0 0
\(979\) 32.7904 1.04799
\(980\) 11.7453 0.375188
\(981\) 0 0
\(982\) −21.2336 −0.677590
\(983\) −41.3309 −1.31825 −0.659126 0.752033i \(-0.729074\pi\)
−0.659126 + 0.752033i \(0.729074\pi\)
\(984\) 0 0
\(985\) 21.0362 0.670270
\(986\) 10.7030 0.340854
\(987\) 0 0
\(988\) 0 0
\(989\) 1.04221 0.0331404
\(990\) 0 0
\(991\) 19.2185 0.610496 0.305248 0.952273i \(-0.401261\pi\)
0.305248 + 0.952273i \(0.401261\pi\)
\(992\) 2.39612 0.0760770
\(993\) 0 0
\(994\) −45.3793 −1.43934
\(995\) 14.7198 0.466648
\(996\) 0 0
\(997\) 22.4940 0.712391 0.356195 0.934411i \(-0.384074\pi\)
0.356195 + 0.934411i \(0.384074\pi\)
\(998\) 16.8635 0.533806
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.bi.1.2 3
3.2 odd 2 338.2.a.g.1.2 3
12.11 even 2 2704.2.a.v.1.2 3
13.5 odd 4 3042.2.b.n.1351.2 6
13.8 odd 4 3042.2.b.n.1351.5 6
13.12 even 2 3042.2.a.z.1.2 3
15.14 odd 2 8450.2.a.bx.1.2 3
39.2 even 12 338.2.e.e.147.2 12
39.5 even 4 338.2.b.d.337.5 6
39.8 even 4 338.2.b.d.337.2 6
39.11 even 12 338.2.e.e.147.5 12
39.17 odd 6 338.2.c.h.315.2 6
39.20 even 12 338.2.e.e.23.2 12
39.23 odd 6 338.2.c.h.191.2 6
39.29 odd 6 338.2.c.i.191.2 6
39.32 even 12 338.2.e.e.23.5 12
39.35 odd 6 338.2.c.i.315.2 6
39.38 odd 2 338.2.a.h.1.2 yes 3
156.47 odd 4 2704.2.f.m.337.3 6
156.83 odd 4 2704.2.f.m.337.4 6
156.155 even 2 2704.2.a.w.1.2 3
195.194 odd 2 8450.2.a.bn.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.2 3 3.2 odd 2
338.2.a.h.1.2 yes 3 39.38 odd 2
338.2.b.d.337.2 6 39.8 even 4
338.2.b.d.337.5 6 39.5 even 4
338.2.c.h.191.2 6 39.23 odd 6
338.2.c.h.315.2 6 39.17 odd 6
338.2.c.i.191.2 6 39.29 odd 6
338.2.c.i.315.2 6 39.35 odd 6
338.2.e.e.23.2 12 39.20 even 12
338.2.e.e.23.5 12 39.32 even 12
338.2.e.e.147.2 12 39.2 even 12
338.2.e.e.147.5 12 39.11 even 12
2704.2.a.v.1.2 3 12.11 even 2
2704.2.a.w.1.2 3 156.155 even 2
2704.2.f.m.337.3 6 156.47 odd 4
2704.2.f.m.337.4 6 156.83 odd 4
3042.2.a.z.1.2 3 13.12 even 2
3042.2.a.bi.1.2 3 1.1 even 1 trivial
3042.2.b.n.1351.2 6 13.5 odd 4
3042.2.b.n.1351.5 6 13.8 odd 4
8450.2.a.bn.1.2 3 195.194 odd 2
8450.2.a.bx.1.2 3 15.14 odd 2