Properties

Label 272.4.o.f.81.3
Level $272$
Weight $4$
Character 272.81
Analytic conductor $16.049$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [272,4,Mod(81,272)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(272, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("272.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 272.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0485195216\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 119x^{12} + 5319x^{10} + 112122x^{8} + 1120191x^{6} + 4382607x^{4} + 1699337x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.3
Root \(3.13314i\) of defining polynomial
Character \(\chi\) \(=\) 272.81
Dual form 272.4.o.f.225.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.13314 - 3.13314i) q^{3} +(-13.6954 - 13.6954i) q^{5} +(0.366316 - 0.366316i) q^{7} -7.36691i q^{9} +(48.7591 - 48.7591i) q^{11} -78.1851 q^{13} +85.8194i q^{15} +(24.2962 - 65.7472i) q^{17} +20.0829i q^{19} -2.29544 q^{21} +(-76.8250 + 76.8250i) q^{23} +250.130i q^{25} +(-107.676 + 107.676i) q^{27} +(-69.3788 - 69.3788i) q^{29} +(181.264 + 181.264i) q^{31} -305.538 q^{33} -10.0337 q^{35} +(209.679 + 209.679i) q^{37} +(244.964 + 244.964i) q^{39} +(-43.1738 + 43.1738i) q^{41} -494.561i q^{43} +(-100.893 + 100.893i) q^{45} -8.61388 q^{47} +342.732i q^{49} +(-282.118 + 129.872i) q^{51} -484.077i q^{53} -1335.55 q^{55} +(62.9225 - 62.9225i) q^{57} +229.865i q^{59} +(-69.4383 + 69.4383i) q^{61} +(-2.69862 - 2.69862i) q^{63} +(1070.78 + 1070.78i) q^{65} -42.5197 q^{67} +481.407 q^{69} +(135.009 + 135.009i) q^{71} +(-579.139 - 579.139i) q^{73} +(783.692 - 783.692i) q^{75} -35.7224i q^{77} +(99.3286 - 99.3286i) q^{79} +475.822 q^{81} -108.862i q^{83} +(-1233.18 + 567.690i) q^{85} +434.747i q^{87} +150.487 q^{89} +(-28.6404 + 28.6404i) q^{91} -1135.85i q^{93} +(275.044 - 275.044i) q^{95} +(-705.497 - 705.497i) q^{97} +(-359.204 - 359.204i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 6 q^{3} + 6 q^{5} - 10 q^{7} + 66 q^{11} - 124 q^{13} + 130 q^{17} - 148 q^{21} + 162 q^{23} + 204 q^{27} + 158 q^{29} + 350 q^{31} + 116 q^{33} - 236 q^{35} + 582 q^{37} + 320 q^{39} + 878 q^{41}+ \cdots - 3870 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.13314 3.13314i −0.602972 0.602972i 0.338128 0.941100i \(-0.390206\pi\)
−0.941100 + 0.338128i \(0.890206\pi\)
\(4\) 0 0
\(5\) −13.6954 13.6954i −1.22496 1.22496i −0.965848 0.259109i \(-0.916571\pi\)
−0.259109 0.965848i \(-0.583429\pi\)
\(6\) 0 0
\(7\) 0.366316 0.366316i 0.0197792 0.0197792i −0.697148 0.716927i \(-0.745548\pi\)
0.716927 + 0.697148i \(0.245548\pi\)
\(8\) 0 0
\(9\) 7.36691i 0.272849i
\(10\) 0 0
\(11\) 48.7591 48.7591i 1.33649 1.33649i 0.437058 0.899433i \(-0.356020\pi\)
0.899433 0.437058i \(-0.143980\pi\)
\(12\) 0 0
\(13\) −78.1851 −1.66805 −0.834025 0.551727i \(-0.813969\pi\)
−0.834025 + 0.551727i \(0.813969\pi\)
\(14\) 0 0
\(15\) 85.8194i 1.47723i
\(16\) 0 0
\(17\) 24.2962 65.7472i 0.346629 0.938002i
\(18\) 0 0
\(19\) 20.0829i 0.242491i 0.992623 + 0.121246i \(0.0386889\pi\)
−0.992623 + 0.121246i \(0.961311\pi\)
\(20\) 0 0
\(21\) −2.29544 −0.0238526
\(22\) 0 0
\(23\) −76.8250 + 76.8250i −0.696484 + 0.696484i −0.963650 0.267167i \(-0.913913\pi\)
0.267167 + 0.963650i \(0.413913\pi\)
\(24\) 0 0
\(25\) 250.130i 2.00104i
\(26\) 0 0
\(27\) −107.676 + 107.676i −0.767493 + 0.767493i
\(28\) 0 0
\(29\) −69.3788 69.3788i −0.444253 0.444253i 0.449186 0.893438i \(-0.351714\pi\)
−0.893438 + 0.449186i \(0.851714\pi\)
\(30\) 0 0
\(31\) 181.264 + 181.264i 1.05020 + 1.05020i 0.998672 + 0.0515239i \(0.0164078\pi\)
0.0515239 + 0.998672i \(0.483592\pi\)
\(32\) 0 0
\(33\) −305.538 −1.61174
\(34\) 0 0
\(35\) −10.0337 −0.0484573
\(36\) 0 0
\(37\) 209.679 + 209.679i 0.931651 + 0.931651i 0.997809 0.0661585i \(-0.0210743\pi\)
−0.0661585 + 0.997809i \(0.521074\pi\)
\(38\) 0 0
\(39\) 244.964 + 244.964i 1.00579 + 1.00579i
\(40\) 0 0
\(41\) −43.1738 + 43.1738i −0.164454 + 0.164454i −0.784537 0.620082i \(-0.787099\pi\)
0.620082 + 0.784537i \(0.287099\pi\)
\(42\) 0 0
\(43\) 494.561i 1.75395i −0.480535 0.876975i \(-0.659558\pi\)
0.480535 0.876975i \(-0.340442\pi\)
\(44\) 0 0
\(45\) −100.893 + 100.893i −0.334228 + 0.334228i
\(46\) 0 0
\(47\) −8.61388 −0.0267333 −0.0133666 0.999911i \(-0.504255\pi\)
−0.0133666 + 0.999911i \(0.504255\pi\)
\(48\) 0 0
\(49\) 342.732i 0.999218i
\(50\) 0 0
\(51\) −282.118 + 129.872i −0.774597 + 0.356582i
\(52\) 0 0
\(53\) 484.077i 1.25459i −0.778783 0.627293i \(-0.784163\pi\)
0.778783 0.627293i \(-0.215837\pi\)
\(54\) 0 0
\(55\) −1335.55 −3.27429
\(56\) 0 0
\(57\) 62.9225 62.9225i 0.146216 0.146216i
\(58\) 0 0
\(59\) 229.865i 0.507219i 0.967307 + 0.253609i \(0.0816178\pi\)
−0.967307 + 0.253609i \(0.918382\pi\)
\(60\) 0 0
\(61\) −69.4383 + 69.4383i −0.145749 + 0.145749i −0.776216 0.630467i \(-0.782863\pi\)
0.630467 + 0.776216i \(0.282863\pi\)
\(62\) 0 0
\(63\) −2.69862 2.69862i −0.00539673 0.00539673i
\(64\) 0 0
\(65\) 1070.78 + 1070.78i 2.04329 + 2.04329i
\(66\) 0 0
\(67\) −42.5197 −0.0775314 −0.0387657 0.999248i \(-0.512343\pi\)
−0.0387657 + 0.999248i \(0.512343\pi\)
\(68\) 0 0
\(69\) 481.407 0.839921
\(70\) 0 0
\(71\) 135.009 + 135.009i 0.225670 + 0.225670i 0.810881 0.585211i \(-0.198988\pi\)
−0.585211 + 0.810881i \(0.698988\pi\)
\(72\) 0 0
\(73\) −579.139 579.139i −0.928535 0.928535i 0.0690762 0.997611i \(-0.477995\pi\)
−0.997611 + 0.0690762i \(0.977995\pi\)
\(74\) 0 0
\(75\) 783.692 783.692i 1.20657 1.20657i
\(76\) 0 0
\(77\) 35.7224i 0.0528695i
\(78\) 0 0
\(79\) 99.3286 99.3286i 0.141460 0.141460i −0.632830 0.774290i \(-0.718107\pi\)
0.774290 + 0.632830i \(0.218107\pi\)
\(80\) 0 0
\(81\) 475.822 0.652705
\(82\) 0 0
\(83\) 108.862i 0.143965i −0.997406 0.0719826i \(-0.977067\pi\)
0.997406 0.0719826i \(-0.0229326\pi\)
\(84\) 0 0
\(85\) −1233.18 + 567.690i −1.57362 + 0.724407i
\(86\) 0 0
\(87\) 434.747i 0.535744i
\(88\) 0 0
\(89\) 150.487 0.179232 0.0896158 0.995976i \(-0.471436\pi\)
0.0896158 + 0.995976i \(0.471436\pi\)
\(90\) 0 0
\(91\) −28.6404 + 28.6404i −0.0329927 + 0.0329927i
\(92\) 0 0
\(93\) 1135.85i 1.26648i
\(94\) 0 0
\(95\) 275.044 275.044i 0.297041 0.297041i
\(96\) 0 0
\(97\) −705.497 705.497i −0.738478 0.738478i 0.233805 0.972283i \(-0.424882\pi\)
−0.972283 + 0.233805i \(0.924882\pi\)
\(98\) 0 0
\(99\) −359.204 359.204i −0.364660 0.364660i
\(100\) 0 0
\(101\) 228.629 0.225242 0.112621 0.993638i \(-0.464075\pi\)
0.112621 + 0.993638i \(0.464075\pi\)
\(102\) 0 0
\(103\) −479.936 −0.459121 −0.229561 0.973294i \(-0.573729\pi\)
−0.229561 + 0.973294i \(0.573729\pi\)
\(104\) 0 0
\(105\) 31.4370 + 31.4370i 0.0292184 + 0.0292184i
\(106\) 0 0
\(107\) 767.152 + 767.152i 0.693116 + 0.693116i 0.962916 0.269801i \(-0.0869578\pi\)
−0.269801 + 0.962916i \(0.586958\pi\)
\(108\) 0 0
\(109\) −165.398 + 165.398i −0.145342 + 0.145342i −0.776033 0.630692i \(-0.782771\pi\)
0.630692 + 0.776033i \(0.282771\pi\)
\(110\) 0 0
\(111\) 1313.91i 1.12352i
\(112\) 0 0
\(113\) 638.981 638.981i 0.531950 0.531950i −0.389202 0.921152i \(-0.627249\pi\)
0.921152 + 0.389202i \(0.127249\pi\)
\(114\) 0 0
\(115\) 2104.30 1.70633
\(116\) 0 0
\(117\) 575.983i 0.455125i
\(118\) 0 0
\(119\) −15.1842 32.9843i −0.0116969 0.0254090i
\(120\) 0 0
\(121\) 3423.89i 2.57242i
\(122\) 0 0
\(123\) 270.539 0.198323
\(124\) 0 0
\(125\) 1713.71 1713.71i 1.22623 1.22623i
\(126\) 0 0
\(127\) 1701.56i 1.18889i −0.804137 0.594444i \(-0.797372\pi\)
0.804137 0.594444i \(-0.202628\pi\)
\(128\) 0 0
\(129\) −1549.53 + 1549.53i −1.05758 + 1.05758i
\(130\) 0 0
\(131\) 763.277 + 763.277i 0.509068 + 0.509068i 0.914240 0.405173i \(-0.132789\pi\)
−0.405173 + 0.914240i \(0.632789\pi\)
\(132\) 0 0
\(133\) 7.35669 + 7.35669i 0.00479628 + 0.00479628i
\(134\) 0 0
\(135\) 2949.35 1.88029
\(136\) 0 0
\(137\) −935.131 −0.583165 −0.291583 0.956546i \(-0.594182\pi\)
−0.291583 + 0.956546i \(0.594182\pi\)
\(138\) 0 0
\(139\) −377.681 377.681i −0.230464 0.230464i 0.582422 0.812886i \(-0.302105\pi\)
−0.812886 + 0.582422i \(0.802105\pi\)
\(140\) 0 0
\(141\) 26.9885 + 26.9885i 0.0161194 + 0.0161194i
\(142\) 0 0
\(143\) −3812.23 + 3812.23i −2.22933 + 2.22933i
\(144\) 0 0
\(145\) 1900.35i 1.08838i
\(146\) 0 0
\(147\) 1073.82 1073.82i 0.602501 0.602501i
\(148\) 0 0
\(149\) 174.251 0.0958066 0.0479033 0.998852i \(-0.484746\pi\)
0.0479033 + 0.998852i \(0.484746\pi\)
\(150\) 0 0
\(151\) 2206.26i 1.18902i 0.804087 + 0.594512i \(0.202655\pi\)
−0.804087 + 0.594512i \(0.797345\pi\)
\(152\) 0 0
\(153\) −484.354 178.988i −0.255933 0.0945772i
\(154\) 0 0
\(155\) 4964.99i 2.57289i
\(156\) 0 0
\(157\) −835.318 −0.424622 −0.212311 0.977202i \(-0.568099\pi\)
−0.212311 + 0.977202i \(0.568099\pi\)
\(158\) 0 0
\(159\) −1516.68 + 1516.68i −0.756481 + 0.756481i
\(160\) 0 0
\(161\) 56.2845i 0.0275518i
\(162\) 0 0
\(163\) −428.709 + 428.709i −0.206007 + 0.206007i −0.802568 0.596561i \(-0.796533\pi\)
0.596561 + 0.802568i \(0.296533\pi\)
\(164\) 0 0
\(165\) 4184.47 + 4184.47i 1.97431 + 1.97431i
\(166\) 0 0
\(167\) 1829.98 + 1829.98i 0.847953 + 0.847953i 0.989878 0.141924i \(-0.0453290\pi\)
−0.141924 + 0.989878i \(0.545329\pi\)
\(168\) 0 0
\(169\) 3915.91 1.78239
\(170\) 0 0
\(171\) 147.949 0.0661634
\(172\) 0 0
\(173\) −2288.28 2288.28i −1.00563 1.00563i −0.999984 0.00564957i \(-0.998202\pi\)
−0.00564957 0.999984i \(-0.501798\pi\)
\(174\) 0 0
\(175\) 91.6266 + 91.6266i 0.0395790 + 0.0395790i
\(176\) 0 0
\(177\) 720.199 720.199i 0.305839 0.305839i
\(178\) 0 0
\(179\) 187.225i 0.0781781i −0.999236 0.0390890i \(-0.987554\pi\)
0.999236 0.0390890i \(-0.0124456\pi\)
\(180\) 0 0
\(181\) −1463.63 + 1463.63i −0.601054 + 0.601054i −0.940592 0.339538i \(-0.889729\pi\)
0.339538 + 0.940592i \(0.389729\pi\)
\(182\) 0 0
\(183\) 435.120 0.175765
\(184\) 0 0
\(185\) 5743.30i 2.28246i
\(186\) 0 0
\(187\) −2021.11 4390.43i −0.790365 1.71690i
\(188\) 0 0
\(189\) 78.8870i 0.0303608i
\(190\) 0 0
\(191\) −1610.64 −0.610166 −0.305083 0.952326i \(-0.598684\pi\)
−0.305083 + 0.952326i \(0.598684\pi\)
\(192\) 0 0
\(193\) −2937.22 + 2937.22i −1.09547 + 1.09547i −0.100537 + 0.994933i \(0.532056\pi\)
−0.994933 + 0.100537i \(0.967944\pi\)
\(194\) 0 0
\(195\) 6709.79i 2.46409i
\(196\) 0 0
\(197\) −919.581 + 919.581i −0.332576 + 0.332576i −0.853564 0.520988i \(-0.825564\pi\)
0.520988 + 0.853564i \(0.325564\pi\)
\(198\) 0 0
\(199\) −592.702 592.702i −0.211133 0.211133i 0.593615 0.804749i \(-0.297700\pi\)
−0.804749 + 0.593615i \(0.797700\pi\)
\(200\) 0 0
\(201\) 133.220 + 133.220i 0.0467493 + 0.0467493i
\(202\) 0 0
\(203\) −50.8291 −0.0175739
\(204\) 0 0
\(205\) 1182.57 0.402899
\(206\) 0 0
\(207\) 565.963 + 565.963i 0.190035 + 0.190035i
\(208\) 0 0
\(209\) 979.223 + 979.223i 0.324088 + 0.324088i
\(210\) 0 0
\(211\) −244.691 + 244.691i −0.0798353 + 0.0798353i −0.745897 0.666062i \(-0.767979\pi\)
0.666062 + 0.745897i \(0.267979\pi\)
\(212\) 0 0
\(213\) 846.001i 0.272146i
\(214\) 0 0
\(215\) −6773.23 + 6773.23i −2.14851 + 2.14851i
\(216\) 0 0
\(217\) 132.800 0.0415441
\(218\) 0 0
\(219\) 3629.04i 1.11976i
\(220\) 0 0
\(221\) −1899.60 + 5140.45i −0.578194 + 1.56463i
\(222\) 0 0
\(223\) 2120.33i 0.636716i −0.947970 0.318358i \(-0.896869\pi\)
0.947970 0.318358i \(-0.103131\pi\)
\(224\) 0 0
\(225\) 1842.69 0.545981
\(226\) 0 0
\(227\) −1434.23 + 1434.23i −0.419352 + 0.419352i −0.884980 0.465628i \(-0.845828\pi\)
0.465628 + 0.884980i \(0.345828\pi\)
\(228\) 0 0
\(229\) 1720.34i 0.496432i −0.968705 0.248216i \(-0.920156\pi\)
0.968705 0.248216i \(-0.0798443\pi\)
\(230\) 0 0
\(231\) −111.923 + 111.923i −0.0318788 + 0.0318788i
\(232\) 0 0
\(233\) 1693.58 + 1693.58i 0.476180 + 0.476180i 0.903908 0.427728i \(-0.140686\pi\)
−0.427728 + 0.903908i \(0.640686\pi\)
\(234\) 0 0
\(235\) 117.971 + 117.971i 0.0327471 + 0.0327471i
\(236\) 0 0
\(237\) −622.420 −0.170593
\(238\) 0 0
\(239\) −2646.56 −0.716284 −0.358142 0.933667i \(-0.616590\pi\)
−0.358142 + 0.933667i \(0.616590\pi\)
\(240\) 0 0
\(241\) −2584.91 2584.91i −0.690908 0.690908i 0.271524 0.962432i \(-0.412472\pi\)
−0.962432 + 0.271524i \(0.912472\pi\)
\(242\) 0 0
\(243\) 1416.44 + 1416.44i 0.373929 + 0.373929i
\(244\) 0 0
\(245\) 4693.86 4693.86i 1.22400 1.22400i
\(246\) 0 0
\(247\) 1570.18i 0.404487i
\(248\) 0 0
\(249\) −341.078 + 341.078i −0.0868071 + 0.0868071i
\(250\) 0 0
\(251\) −2232.04 −0.561295 −0.280648 0.959811i \(-0.590549\pi\)
−0.280648 + 0.959811i \(0.590549\pi\)
\(252\) 0 0
\(253\) 7491.83i 1.86169i
\(254\) 0 0
\(255\) 5642.38 + 2085.08i 1.38565 + 0.512051i
\(256\) 0 0
\(257\) 4945.83i 1.20044i 0.799836 + 0.600219i \(0.204920\pi\)
−0.799836 + 0.600219i \(0.795080\pi\)
\(258\) 0 0
\(259\) 153.618 0.0368546
\(260\) 0 0
\(261\) −511.108 + 511.108i −0.121214 + 0.121214i
\(262\) 0 0
\(263\) 5765.09i 1.35168i 0.737051 + 0.675838i \(0.236218\pi\)
−0.737051 + 0.675838i \(0.763782\pi\)
\(264\) 0 0
\(265\) −6629.65 + 6629.65i −1.53681 + 1.53681i
\(266\) 0 0
\(267\) −471.497 471.497i −0.108072 0.108072i
\(268\) 0 0
\(269\) −1769.02 1769.02i −0.400962 0.400962i 0.477610 0.878572i \(-0.341503\pi\)
−0.878572 + 0.477610i \(0.841503\pi\)
\(270\) 0 0
\(271\) 3004.87 0.673552 0.336776 0.941585i \(-0.390663\pi\)
0.336776 + 0.941585i \(0.390663\pi\)
\(272\) 0 0
\(273\) 179.469 0.0397873
\(274\) 0 0
\(275\) 12196.1 + 12196.1i 2.67437 + 2.67437i
\(276\) 0 0
\(277\) −3350.03 3350.03i −0.726656 0.726656i 0.243296 0.969952i \(-0.421771\pi\)
−0.969952 + 0.243296i \(0.921771\pi\)
\(278\) 0 0
\(279\) 1335.36 1335.36i 0.286544 0.286544i
\(280\) 0 0
\(281\) 1635.27i 0.347161i −0.984820 0.173580i \(-0.944466\pi\)
0.984820 0.173580i \(-0.0555336\pi\)
\(282\) 0 0
\(283\) −2719.64 + 2719.64i −0.571257 + 0.571257i −0.932480 0.361222i \(-0.882359\pi\)
0.361222 + 0.932480i \(0.382359\pi\)
\(284\) 0 0
\(285\) −1723.50 −0.358216
\(286\) 0 0
\(287\) 31.6305i 0.00650554i
\(288\) 0 0
\(289\) −3732.39 3194.81i −0.759697 0.650278i
\(290\) 0 0
\(291\) 4420.84i 0.890564i
\(292\) 0 0
\(293\) −7075.63 −1.41080 −0.705398 0.708812i \(-0.749231\pi\)
−0.705398 + 0.708812i \(0.749231\pi\)
\(294\) 0 0
\(295\) 3148.10 3148.10i 0.621321 0.621321i
\(296\) 0 0
\(297\) 10500.4i 2.05149i
\(298\) 0 0
\(299\) 6006.57 6006.57i 1.16177 1.16177i
\(300\) 0 0
\(301\) −181.166 181.166i −0.0346917 0.0346917i
\(302\) 0 0
\(303\) −716.325 716.325i −0.135815 0.135815i
\(304\) 0 0
\(305\) 1901.98 0.357072
\(306\) 0 0
\(307\) −8876.20 −1.65014 −0.825068 0.565034i \(-0.808863\pi\)
−0.825068 + 0.565034i \(0.808863\pi\)
\(308\) 0 0
\(309\) 1503.70 + 1503.70i 0.276837 + 0.276837i
\(310\) 0 0
\(311\) −6123.95 6123.95i −1.11658 1.11658i −0.992239 0.124344i \(-0.960317\pi\)
−0.124344 0.992239i \(-0.539683\pi\)
\(312\) 0 0
\(313\) 5223.18 5223.18i 0.943233 0.943233i −0.0552406 0.998473i \(-0.517593\pi\)
0.998473 + 0.0552406i \(0.0175926\pi\)
\(314\) 0 0
\(315\) 73.9175i 0.0132215i
\(316\) 0 0
\(317\) 683.304 683.304i 0.121067 0.121067i −0.643978 0.765044i \(-0.722717\pi\)
0.765044 + 0.643978i \(0.222717\pi\)
\(318\) 0 0
\(319\) −6765.69 −1.18748
\(320\) 0 0
\(321\) 4807.18i 0.835859i
\(322\) 0 0
\(323\) 1320.39 + 487.938i 0.227457 + 0.0840545i
\(324\) 0 0
\(325\) 19556.4i 3.33783i
\(326\) 0 0
\(327\) 1036.43 0.175274
\(328\) 0 0
\(329\) −3.15540 + 3.15540i −0.000528762 + 0.000528762i
\(330\) 0 0
\(331\) 4832.27i 0.802434i −0.915983 0.401217i \(-0.868587\pi\)
0.915983 0.401217i \(-0.131413\pi\)
\(332\) 0 0
\(333\) 1544.69 1544.69i 0.254200 0.254200i
\(334\) 0 0
\(335\) 582.325 + 582.325i 0.0949726 + 0.0949726i
\(336\) 0 0
\(337\) 525.653 + 525.653i 0.0849678 + 0.0849678i 0.748313 0.663345i \(-0.230864\pi\)
−0.663345 + 0.748313i \(0.730864\pi\)
\(338\) 0 0
\(339\) −4004.03 −0.641502
\(340\) 0 0
\(341\) 17676.6 2.80716
\(342\) 0 0
\(343\) 251.194 + 251.194i 0.0395429 + 0.0395429i
\(344\) 0 0
\(345\) −6593.07 6593.07i −1.02887 1.02887i
\(346\) 0 0
\(347\) 8737.59 8737.59i 1.35175 1.35175i 0.468053 0.883700i \(-0.344956\pi\)
0.883700 0.468053i \(-0.155044\pi\)
\(348\) 0 0
\(349\) 4021.47i 0.616803i −0.951256 0.308402i \(-0.900206\pi\)
0.951256 0.308402i \(-0.0997941\pi\)
\(350\) 0 0
\(351\) 8418.67 8418.67i 1.28022 1.28022i
\(352\) 0 0
\(353\) −1609.77 −0.242718 −0.121359 0.992609i \(-0.538725\pi\)
−0.121359 + 0.992609i \(0.538725\pi\)
\(354\) 0 0
\(355\) 3698.01i 0.552873i
\(356\) 0 0
\(357\) −55.7703 + 150.918i −0.00826801 + 0.0223738i
\(358\) 0 0
\(359\) 5346.19i 0.785964i −0.919546 0.392982i \(-0.871443\pi\)
0.919546 0.392982i \(-0.128557\pi\)
\(360\) 0 0
\(361\) 6455.68 0.941198
\(362\) 0 0
\(363\) −10727.5 + 10727.5i −1.55110 + 1.55110i
\(364\) 0 0
\(365\) 15863.1i 2.27483i
\(366\) 0 0
\(367\) 3919.39 3919.39i 0.557468 0.557468i −0.371118 0.928586i \(-0.621026\pi\)
0.928586 + 0.371118i \(0.121026\pi\)
\(368\) 0 0
\(369\) 318.058 + 318.058i 0.0448711 + 0.0448711i
\(370\) 0 0
\(371\) −177.325 177.325i −0.0248147 0.0248147i
\(372\) 0 0
\(373\) −3949.42 −0.548240 −0.274120 0.961696i \(-0.588387\pi\)
−0.274120 + 0.961696i \(0.588387\pi\)
\(374\) 0 0
\(375\) −10738.6 −1.47877
\(376\) 0 0
\(377\) 5424.39 + 5424.39i 0.741035 + 0.741035i
\(378\) 0 0
\(379\) 10277.5 + 10277.5i 1.39293 + 1.39293i 0.818676 + 0.574255i \(0.194708\pi\)
0.574255 + 0.818676i \(0.305292\pi\)
\(380\) 0 0
\(381\) −5331.21 + 5331.21i −0.716867 + 0.716867i
\(382\) 0 0
\(383\) 12879.2i 1.71827i −0.511752 0.859133i \(-0.671003\pi\)
0.511752 0.859133i \(-0.328997\pi\)
\(384\) 0 0
\(385\) −489.234 + 489.234i −0.0647628 + 0.0647628i
\(386\) 0 0
\(387\) −3643.39 −0.478563
\(388\) 0 0
\(389\) 7488.75i 0.976078i −0.872822 0.488039i \(-0.837712\pi\)
0.872822 0.488039i \(-0.162288\pi\)
\(390\) 0 0
\(391\) 3184.47 + 6917.59i 0.411882 + 0.894725i
\(392\) 0 0
\(393\) 4782.90i 0.613907i
\(394\) 0 0
\(395\) −2720.70 −0.346565
\(396\) 0 0
\(397\) −8076.83 + 8076.83i −1.02107 + 1.02107i −0.0212958 + 0.999773i \(0.506779\pi\)
−0.999773 + 0.0212958i \(0.993221\pi\)
\(398\) 0 0
\(399\) 46.0990i 0.00578405i
\(400\) 0 0
\(401\) 2650.51 2650.51i 0.330076 0.330076i −0.522539 0.852615i \(-0.675015\pi\)
0.852615 + 0.522539i \(0.175015\pi\)
\(402\) 0 0
\(403\) −14172.2 14172.2i −1.75178 1.75178i
\(404\) 0 0
\(405\) −6516.59 6516.59i −0.799536 0.799536i
\(406\) 0 0
\(407\) 20447.5 2.49029
\(408\) 0 0
\(409\) 9473.41 1.14531 0.572653 0.819798i \(-0.305914\pi\)
0.572653 + 0.819798i \(0.305914\pi\)
\(410\) 0 0
\(411\) 2929.89 + 2929.89i 0.351633 + 0.351633i
\(412\) 0 0
\(413\) 84.2033 + 84.2033i 0.0100324 + 0.0100324i
\(414\) 0 0
\(415\) −1490.91 + 1490.91i −0.176351 + 0.176351i
\(416\) 0 0
\(417\) 2366.65i 0.277927i
\(418\) 0 0
\(419\) −7161.34 + 7161.34i −0.834974 + 0.834974i −0.988192 0.153218i \(-0.951036\pi\)
0.153218 + 0.988192i \(0.451036\pi\)
\(420\) 0 0
\(421\) 609.770 0.0705900 0.0352950 0.999377i \(-0.488763\pi\)
0.0352950 + 0.999377i \(0.488763\pi\)
\(422\) 0 0
\(423\) 63.4577i 0.00729413i
\(424\) 0 0
\(425\) 16445.3 + 6077.21i 1.87698 + 0.693619i
\(426\) 0 0
\(427\) 50.8727i 0.00576558i
\(428\) 0 0
\(429\) 23888.5 2.68845
\(430\) 0 0
\(431\) 969.821 969.821i 0.108387 0.108387i −0.650834 0.759220i \(-0.725580\pi\)
0.759220 + 0.650834i \(0.225580\pi\)
\(432\) 0 0
\(433\) 9567.13i 1.06182i 0.847429 + 0.530909i \(0.178149\pi\)
−0.847429 + 0.530909i \(0.821851\pi\)
\(434\) 0 0
\(435\) 5954.05 5954.05i 0.656264 0.656264i
\(436\) 0 0
\(437\) −1542.87 1542.87i −0.168891 0.168891i
\(438\) 0 0
\(439\) −3853.48 3853.48i −0.418945 0.418945i 0.465895 0.884840i \(-0.345732\pi\)
−0.884840 + 0.465895i \(0.845732\pi\)
\(440\) 0 0
\(441\) 2524.87 0.272635
\(442\) 0 0
\(443\) −1212.61 −0.130052 −0.0650260 0.997884i \(-0.520713\pi\)
−0.0650260 + 0.997884i \(0.520713\pi\)
\(444\) 0 0
\(445\) −2060.99 2060.99i −0.219551 0.219551i
\(446\) 0 0
\(447\) −545.952 545.952i −0.0577687 0.0577687i
\(448\) 0 0
\(449\) 5558.66 5558.66i 0.584252 0.584252i −0.351817 0.936069i \(-0.614436\pi\)
0.936069 + 0.351817i \(0.114436\pi\)
\(450\) 0 0
\(451\) 4210.23i 0.439583i
\(452\) 0 0
\(453\) 6912.50 6912.50i 0.716949 0.716949i
\(454\) 0 0
\(455\) 784.487 0.0808292
\(456\) 0 0
\(457\) 1470.94i 0.150563i −0.997162 0.0752817i \(-0.976014\pi\)
0.997162 0.0752817i \(-0.0239856\pi\)
\(458\) 0 0
\(459\) 4463.29 + 9695.53i 0.453875 + 0.985945i
\(460\) 0 0
\(461\) 3690.37i 0.372837i 0.982470 + 0.186418i \(0.0596880\pi\)
−0.982470 + 0.186418i \(0.940312\pi\)
\(462\) 0 0
\(463\) −11715.3 −1.17593 −0.587967 0.808885i \(-0.700071\pi\)
−0.587967 + 0.808885i \(0.700071\pi\)
\(464\) 0 0
\(465\) −15556.0 + 15556.0i −1.55138 + 1.55138i
\(466\) 0 0
\(467\) 4167.27i 0.412930i −0.978454 0.206465i \(-0.933804\pi\)
0.978454 0.206465i \(-0.0661959\pi\)
\(468\) 0 0
\(469\) −15.5756 + 15.5756i −0.00153351 + 0.00153351i
\(470\) 0 0
\(471\) 2617.16 + 2617.16i 0.256035 + 0.256035i
\(472\) 0 0
\(473\) −24114.3 24114.3i −2.34414 2.34414i
\(474\) 0 0
\(475\) −5023.34 −0.485235
\(476\) 0 0
\(477\) −3566.15 −0.342312
\(478\) 0 0
\(479\) 8784.23 + 8784.23i 0.837916 + 0.837916i 0.988584 0.150668i \(-0.0481426\pi\)
−0.150668 + 0.988584i \(0.548143\pi\)
\(480\) 0 0
\(481\) −16393.8 16393.8i −1.55404 1.55404i
\(482\) 0 0
\(483\) 176.347 176.347i 0.0166130 0.0166130i
\(484\) 0 0
\(485\) 19324.2i 1.80921i
\(486\) 0 0
\(487\) 11055.7 11055.7i 1.02871 1.02871i 0.0291339 0.999576i \(-0.490725\pi\)
0.999576 0.0291339i \(-0.00927493\pi\)
\(488\) 0 0
\(489\) 2686.41 0.248433
\(490\) 0 0
\(491\) 15230.5i 1.39988i −0.714201 0.699941i \(-0.753210\pi\)
0.714201 0.699941i \(-0.246790\pi\)
\(492\) 0 0
\(493\) −6247.11 + 2875.82i −0.570701 + 0.262719i
\(494\) 0 0
\(495\) 9838.90i 0.893385i
\(496\) 0 0
\(497\) 98.9116 0.00892715
\(498\) 0 0
\(499\) −7806.36 + 7806.36i −0.700322 + 0.700322i −0.964480 0.264157i \(-0.914906\pi\)
0.264157 + 0.964480i \(0.414906\pi\)
\(500\) 0 0
\(501\) 11467.2i 1.02258i
\(502\) 0 0
\(503\) −3012.51 + 3012.51i −0.267040 + 0.267040i −0.827906 0.560866i \(-0.810468\pi\)
0.560866 + 0.827906i \(0.310468\pi\)
\(504\) 0 0
\(505\) −3131.17 3131.17i −0.275912 0.275912i
\(506\) 0 0
\(507\) −12269.1 12269.1i −1.07473 1.07473i
\(508\) 0 0
\(509\) 3001.86 0.261405 0.130703 0.991422i \(-0.458277\pi\)
0.130703 + 0.991422i \(0.458277\pi\)
\(510\) 0 0
\(511\) −424.295 −0.0367314
\(512\) 0 0
\(513\) −2162.45 2162.45i −0.186110 0.186110i
\(514\) 0 0
\(515\) 6572.93 + 6572.93i 0.562404 + 0.562404i
\(516\) 0 0
\(517\) −420.005 + 420.005i −0.0357288 + 0.0357288i
\(518\) 0 0
\(519\) 14339.0i 1.21274i
\(520\) 0 0
\(521\) −5296.86 + 5296.86i −0.445412 + 0.445412i −0.893826 0.448414i \(-0.851989\pi\)
0.448414 + 0.893826i \(0.351989\pi\)
\(522\) 0 0
\(523\) −3953.10 −0.330511 −0.165255 0.986251i \(-0.552845\pi\)
−0.165255 + 0.986251i \(0.552845\pi\)
\(524\) 0 0
\(525\) 574.157i 0.0477301i
\(526\) 0 0
\(527\) 16321.7 7513.60i 1.34911 0.621058i
\(528\) 0 0
\(529\) 362.831i 0.0298209i
\(530\) 0 0
\(531\) 1693.40 0.138394
\(532\) 0 0
\(533\) 3375.55 3375.55i 0.274318 0.274318i
\(534\) 0 0
\(535\) 21013.0i 1.69807i
\(536\) 0 0
\(537\) −586.602 + 586.602i −0.0471392 + 0.0471392i
\(538\) 0 0
\(539\) 16711.3 + 16711.3i 1.33545 + 1.33545i
\(540\) 0 0
\(541\) 13943.1 + 13943.1i 1.10806 + 1.10806i 0.993405 + 0.114657i \(0.0365769\pi\)
0.114657 + 0.993405i \(0.463423\pi\)
\(542\) 0 0
\(543\) 9171.51 0.724838
\(544\) 0 0
\(545\) 4530.39 0.356074
\(546\) 0 0
\(547\) 12070.1 + 12070.1i 0.943473 + 0.943473i 0.998486 0.0550128i \(-0.0175200\pi\)
−0.0550128 + 0.998486i \(0.517520\pi\)
\(548\) 0 0
\(549\) 511.546 + 511.546i 0.0397673 + 0.0397673i
\(550\) 0 0
\(551\) 1393.33 1393.33i 0.107727 0.107727i
\(552\) 0 0
\(553\) 72.7713i 0.00559593i
\(554\) 0 0
\(555\) −17994.5 + 17994.5i −1.37626 + 1.37626i
\(556\) 0 0
\(557\) −18723.9 −1.42434 −0.712171 0.702006i \(-0.752288\pi\)
−0.712171 + 0.702006i \(0.752288\pi\)
\(558\) 0 0
\(559\) 38667.3i 2.92568i
\(560\) 0 0
\(561\) −7423.40 + 20088.2i −0.558674 + 1.51181i
\(562\) 0 0
\(563\) 3287.36i 0.246085i −0.992401 0.123043i \(-0.960735\pi\)
0.992401 0.123043i \(-0.0392652\pi\)
\(564\) 0 0
\(565\) −17502.3 −1.30323
\(566\) 0 0
\(567\) 174.301 174.301i 0.0129100 0.0129100i
\(568\) 0 0
\(569\) 17433.1i 1.28442i −0.766528 0.642210i \(-0.778018\pi\)
0.766528 0.642210i \(-0.221982\pi\)
\(570\) 0 0
\(571\) −17336.7 + 17336.7i −1.27061 + 1.27061i −0.324844 + 0.945768i \(0.605312\pi\)
−0.945768 + 0.324844i \(0.894688\pi\)
\(572\) 0 0
\(573\) 5046.35 + 5046.35i 0.367913 + 0.367913i
\(574\) 0 0
\(575\) −19216.2 19216.2i −1.39369 1.39369i
\(576\) 0 0
\(577\) 2547.25 0.183784 0.0918922 0.995769i \(-0.470708\pi\)
0.0918922 + 0.995769i \(0.470708\pi\)
\(578\) 0 0
\(579\) 18405.4 1.32108
\(580\) 0 0
\(581\) −39.8778 39.8778i −0.00284752 0.00284752i
\(582\) 0 0
\(583\) −23603.1 23603.1i −1.67674 1.67674i
\(584\) 0 0
\(585\) 7888.33 7888.33i 0.557508 0.557508i
\(586\) 0 0
\(587\) 1606.96i 0.112992i 0.998403 + 0.0564962i \(0.0179929\pi\)
−0.998403 + 0.0564962i \(0.982007\pi\)
\(588\) 0 0
\(589\) −3640.32 + 3640.32i −0.254663 + 0.254663i
\(590\) 0 0
\(591\) 5762.35 0.401068
\(592\) 0 0
\(593\) 18908.8i 1.30943i 0.755877 + 0.654714i \(0.227211\pi\)
−0.755877 + 0.654714i \(0.772789\pi\)
\(594\) 0 0
\(595\) −243.781 + 659.689i −0.0167967 + 0.0454531i
\(596\) 0 0
\(597\) 3714.04i 0.254615i
\(598\) 0 0
\(599\) 20444.8 1.39458 0.697290 0.716789i \(-0.254389\pi\)
0.697290 + 0.716789i \(0.254389\pi\)
\(600\) 0 0
\(601\) 16779.3 16779.3i 1.13884 1.13884i 0.150181 0.988659i \(-0.452014\pi\)
0.988659 0.150181i \(-0.0479856\pi\)
\(602\) 0 0
\(603\) 313.239i 0.0211543i
\(604\) 0 0
\(605\) −46891.7 + 46891.7i −3.15110 + 3.15110i
\(606\) 0 0
\(607\) −10839.5 10839.5i −0.724815 0.724815i 0.244767 0.969582i \(-0.421289\pi\)
−0.969582 + 0.244767i \(0.921289\pi\)
\(608\) 0 0
\(609\) 159.255 + 159.255i 0.0105966 + 0.0105966i
\(610\) 0 0
\(611\) 673.477 0.0445924
\(612\) 0 0
\(613\) −2760.08 −0.181858 −0.0909288 0.995857i \(-0.528984\pi\)
−0.0909288 + 0.995857i \(0.528984\pi\)
\(614\) 0 0
\(615\) −3705.15 3705.15i −0.242937 0.242937i
\(616\) 0 0
\(617\) 11698.3 + 11698.3i 0.763302 + 0.763302i 0.976918 0.213616i \(-0.0685240\pi\)
−0.213616 + 0.976918i \(0.568524\pi\)
\(618\) 0 0
\(619\) −14914.8 + 14914.8i −0.968459 + 0.968459i −0.999518 0.0310588i \(-0.990112\pi\)
0.0310588 + 0.999518i \(0.490112\pi\)
\(620\) 0 0
\(621\) 16544.5i 1.06909i
\(622\) 0 0
\(623\) 55.1258 55.1258i 0.00354506 0.00354506i
\(624\) 0 0
\(625\) −15673.8 −1.00312
\(626\) 0 0
\(627\) 6136.08i 0.390832i
\(628\) 0 0
\(629\) 18880.2 8691.42i 1.19683 0.550953i
\(630\) 0 0
\(631\) 17334.8i 1.09364i −0.837250 0.546821i \(-0.815838\pi\)
0.837250 0.546821i \(-0.184162\pi\)
\(632\) 0 0
\(633\) 1533.30 0.0962769
\(634\) 0 0
\(635\) −23303.6 + 23303.6i −1.45634 + 1.45634i
\(636\) 0 0
\(637\) 26796.5i 1.66674i
\(638\) 0 0
\(639\) 994.597 994.597i 0.0615738 0.0615738i
\(640\) 0 0
\(641\) 1598.14 + 1598.14i 0.0984752 + 0.0984752i 0.754628 0.656153i \(-0.227817\pi\)
−0.656153 + 0.754628i \(0.727817\pi\)
\(642\) 0 0
\(643\) 19597.2 + 19597.2i 1.20193 + 1.20193i 0.973579 + 0.228349i \(0.0733328\pi\)
0.228349 + 0.973579i \(0.426667\pi\)
\(644\) 0 0
\(645\) 42442.9 2.59099
\(646\) 0 0
\(647\) −14051.6 −0.853828 −0.426914 0.904292i \(-0.640399\pi\)
−0.426914 + 0.904292i \(0.640399\pi\)
\(648\) 0 0
\(649\) 11208.0 + 11208.0i 0.677893 + 0.677893i
\(650\) 0 0
\(651\) −416.081 416.081i −0.0250499 0.0250499i
\(652\) 0 0
\(653\) 11507.8 11507.8i 0.689642 0.689642i −0.272510 0.962153i \(-0.587854\pi\)
0.962153 + 0.272510i \(0.0878539\pi\)
\(654\) 0 0
\(655\) 20906.8i 1.24717i
\(656\) 0 0
\(657\) −4266.46 + 4266.46i −0.253350 + 0.253350i
\(658\) 0 0
\(659\) −27644.5 −1.63411 −0.817054 0.576561i \(-0.804394\pi\)
−0.817054 + 0.576561i \(0.804394\pi\)
\(660\) 0 0
\(661\) 2837.54i 0.166971i −0.996509 0.0834853i \(-0.973395\pi\)
0.996509 0.0834853i \(-0.0266052\pi\)
\(662\) 0 0
\(663\) 22057.4 10154.0i 1.29207 0.594796i
\(664\) 0 0
\(665\) 201.506i 0.0117505i
\(666\) 0 0
\(667\) 10660.1 0.618829
\(668\) 0 0
\(669\) −6643.28 + 6643.28i −0.383922 + 0.383922i
\(670\) 0 0
\(671\) 6771.50i 0.389584i
\(672\) 0 0
\(673\) 12475.1 12475.1i 0.714534 0.714534i −0.252947 0.967480i \(-0.581400\pi\)
0.967480 + 0.252947i \(0.0813997\pi\)
\(674\) 0 0
\(675\) −26933.1 26933.1i −1.53578 1.53578i
\(676\) 0 0
\(677\) 8632.34 + 8632.34i 0.490056 + 0.490056i 0.908324 0.418268i \(-0.137363\pi\)
−0.418268 + 0.908324i \(0.637363\pi\)
\(678\) 0 0
\(679\) −516.870 −0.0292130
\(680\) 0 0
\(681\) 8987.25 0.505716
\(682\) 0 0
\(683\) −13591.8 13591.8i −0.761457 0.761457i 0.215129 0.976586i \(-0.430983\pi\)
−0.976586 + 0.215129i \(0.930983\pi\)
\(684\) 0 0
\(685\) 12807.0 + 12807.0i 0.714352 + 0.714352i
\(686\) 0 0
\(687\) −5390.05 + 5390.05i −0.299335 + 0.299335i
\(688\) 0 0
\(689\) 37847.6i 2.09271i
\(690\) 0 0
\(691\) −5194.46 + 5194.46i −0.285972 + 0.285972i −0.835485 0.549513i \(-0.814813\pi\)
0.549513 + 0.835485i \(0.314813\pi\)
\(692\) 0 0
\(693\) −263.164 −0.0144254
\(694\) 0 0
\(695\) 10345.0i 0.564617i
\(696\) 0 0
\(697\) 1789.60 + 3887.52i 0.0972538 + 0.211263i
\(698\) 0 0
\(699\) 10612.4i 0.574247i
\(700\) 0 0
\(701\) −30765.7 −1.65764 −0.828819 0.559517i \(-0.810987\pi\)
−0.828819 + 0.559517i \(0.810987\pi\)
\(702\) 0 0
\(703\) −4210.97 + 4210.97i −0.225917 + 0.225917i
\(704\) 0 0
\(705\) 739.237i 0.0394912i
\(706\) 0 0
\(707\) 83.7504 83.7504i 0.00445510 0.00445510i
\(708\) 0 0
\(709\) −7349.12 7349.12i −0.389283 0.389283i 0.485148 0.874432i \(-0.338766\pi\)
−0.874432 + 0.485148i \(0.838766\pi\)
\(710\) 0 0
\(711\) −731.745 731.745i −0.0385972 0.0385972i
\(712\) 0 0
\(713\) −27851.3 −1.46289
\(714\) 0 0
\(715\) 104420. 5.46168
\(716\) 0 0
\(717\) 8292.04 + 8292.04i 0.431899 + 0.431899i
\(718\) 0 0
\(719\) 11756.7 + 11756.7i 0.609807 + 0.609807i 0.942895 0.333089i \(-0.108091\pi\)
−0.333089 + 0.942895i \(0.608091\pi\)
\(720\) 0 0
\(721\) −175.808 + 175.808i −0.00908105 + 0.00908105i
\(722\) 0 0
\(723\) 16197.8i 0.833197i
\(724\) 0 0
\(725\) 17353.7 17353.7i 0.888967 0.888967i
\(726\) 0 0
\(727\) −19028.0 −0.970716 −0.485358 0.874315i \(-0.661311\pi\)
−0.485358 + 0.874315i \(0.661311\pi\)
\(728\) 0 0
\(729\) 21723.0i 1.10364i
\(730\) 0 0
\(731\) −32516.0 12016.0i −1.64521 0.607970i
\(732\) 0 0
\(733\) 27862.7i 1.40400i −0.712178 0.701999i \(-0.752291\pi\)
0.712178 0.701999i \(-0.247709\pi\)
\(734\) 0 0
\(735\) −29413.0 −1.47607
\(736\) 0 0
\(737\) −2073.22 + 2073.22i −0.103620 + 0.103620i
\(738\) 0 0
\(739\) 16393.5i 0.816030i −0.912975 0.408015i \(-0.866221\pi\)
0.912975 0.408015i \(-0.133779\pi\)
\(740\) 0 0
\(741\) −4919.60 + 4919.60i −0.243895 + 0.243895i
\(742\) 0 0
\(743\) 10078.0 + 10078.0i 0.497610 + 0.497610i 0.910693 0.413083i \(-0.135548\pi\)
−0.413083 + 0.910693i \(0.635548\pi\)
\(744\) 0 0
\(745\) −2386.44 2386.44i −0.117359 0.117359i
\(746\) 0 0
\(747\) −801.974 −0.0392807
\(748\) 0 0
\(749\) 562.040 0.0274185
\(750\) 0 0
\(751\) 17832.0 + 17832.0i 0.866442 + 0.866442i 0.992077 0.125634i \(-0.0400966\pi\)
−0.125634 + 0.992077i \(0.540097\pi\)
\(752\) 0 0
\(753\) 6993.29 + 6993.29i 0.338446 + 0.338446i
\(754\) 0 0
\(755\) 30215.7 30215.7i 1.45650 1.45650i
\(756\) 0 0
\(757\) 15778.0i 0.757544i 0.925490 + 0.378772i \(0.123653\pi\)
−0.925490 + 0.378772i \(0.876347\pi\)
\(758\) 0 0
\(759\) 23472.9 23472.9i 1.12255 1.12255i
\(760\) 0 0
\(761\) −23368.6 −1.11316 −0.556578 0.830795i \(-0.687886\pi\)
−0.556578 + 0.830795i \(0.687886\pi\)
\(762\) 0 0
\(763\) 121.176i 0.00574948i
\(764\) 0 0
\(765\) 4182.12 + 9084.76i 0.197653 + 0.429360i
\(766\) 0 0
\(767\) 17972.0i 0.846065i
\(768\) 0 0
\(769\) −14054.3 −0.659051 −0.329526 0.944147i \(-0.606889\pi\)
−0.329526 + 0.944147i \(0.606889\pi\)
\(770\) 0 0
\(771\) 15496.0 15496.0i 0.723831 0.723831i
\(772\) 0 0
\(773\) 23430.1i 1.09020i −0.838371 0.545099i \(-0.816492\pi\)
0.838371 0.545099i \(-0.183508\pi\)
\(774\) 0 0
\(775\) −45339.7 + 45339.7i −2.10148 + 2.10148i
\(776\) 0 0
\(777\) −481.305 481.305i −0.0222223 0.0222223i
\(778\) 0 0
\(779\) −867.056 867.056i −0.0398787 0.0398787i
\(780\) 0 0
\(781\) 13165.8 0.603213
\(782\) 0 0
\(783\) 14940.9 0.681921
\(784\) 0 0
\(785\) 11440.0 + 11440.0i 0.520144 + 0.520144i
\(786\) 0 0
\(787\) 10487.9 + 10487.9i 0.475037 + 0.475037i 0.903540 0.428503i \(-0.140959\pi\)
−0.428503 + 0.903540i \(0.640959\pi\)
\(788\) 0 0
\(789\) 18062.8 18062.8i 0.815023 0.815023i
\(790\) 0 0
\(791\) 468.138i 0.0210431i
\(792\) 0 0
\(793\) 5429.04 5429.04i 0.243116 0.243116i
\(794\) 0 0
\(795\) 41543.2 1.85331
\(796\) 0 0
\(797\) 6135.55i 0.272688i −0.990662 0.136344i \(-0.956465\pi\)
0.990662 0.136344i \(-0.0435352\pi\)
\(798\) 0 0
\(799\) −209.284 + 566.338i −0.00926652 + 0.0250759i
\(800\) 0 0
\(801\) 1108.63i 0.0489031i
\(802\) 0 0
\(803\) −56476.5 −2.48196
\(804\) 0 0
\(805\) 770.840 770.840i 0.0337497 0.0337497i
\(806\) 0 0
\(807\) 11085.1i 0.483539i
\(808\) 0 0
\(809\) 10345.1 10345.1i 0.449587 0.449587i −0.445630 0.895217i \(-0.647020\pi\)
0.895217 + 0.445630i \(0.147020\pi\)
\(810\) 0 0
\(811\) −15395.4 15395.4i −0.666591 0.666591i 0.290334 0.956925i \(-0.406233\pi\)
−0.956925 + 0.290334i \(0.906233\pi\)
\(812\) 0 0
\(813\) −9414.65 9414.65i −0.406133 0.406133i
\(814\) 0 0
\(815\) 11742.7 0.504698
\(816\) 0 0
\(817\) 9932.23 0.425318
\(818\) 0 0
\(819\) 210.992 + 210.992i 0.00900200 + 0.00900200i
\(820\) 0 0
\(821\) −14235.7 14235.7i −0.605151 0.605151i 0.336524 0.941675i \(-0.390749\pi\)
−0.941675 + 0.336524i \(0.890749\pi\)
\(822\) 0 0
\(823\) −15061.7 + 15061.7i −0.637933 + 0.637933i −0.950045 0.312112i \(-0.898963\pi\)
0.312112 + 0.950045i \(0.398963\pi\)
\(824\) 0 0
\(825\) 76424.1i 3.22515i
\(826\) 0 0
\(827\) 26087.9 26087.9i 1.09694 1.09694i 0.102169 0.994767i \(-0.467422\pi\)
0.994767 0.102169i \(-0.0325783\pi\)
\(828\) 0 0
\(829\) 39084.3 1.63746 0.818730 0.574179i \(-0.194679\pi\)
0.818730 + 0.574179i \(0.194679\pi\)
\(830\) 0 0
\(831\) 20992.2i 0.876307i
\(832\) 0 0
\(833\) 22533.6 + 8327.07i 0.937268 + 0.346358i
\(834\) 0 0
\(835\) 50124.8i 2.07741i
\(836\) 0 0
\(837\) −39035.8 −1.61203
\(838\) 0 0
\(839\) 24472.2 24472.2i 1.00700 1.00700i 0.00702661 0.999975i \(-0.497763\pi\)
0.999975 0.00702661i \(-0.00223666\pi\)
\(840\) 0 0
\(841\) 14762.2i 0.605279i
\(842\) 0 0
\(843\) −5123.53 + 5123.53i −0.209328 + 0.209328i
\(844\) 0 0
\(845\) −53630.0 53630.0i −2.18335 2.18335i
\(846\) 0 0
\(847\) −1254.23 1254.23i −0.0508804 0.0508804i
\(848\) 0 0
\(849\) 17042.0 0.688905
\(850\) 0 0
\(851\) −32217.2 −1.29776
\(852\) 0 0
\(853\) 12611.3 + 12611.3i 0.506216 + 0.506216i 0.913363 0.407147i \(-0.133476\pi\)
−0.407147 + 0.913363i \(0.633476\pi\)
\(854\) 0 0
\(855\) −2026.23 2026.23i −0.0810473 0.0810473i
\(856\) 0 0
\(857\) −11326.2 + 11326.2i −0.451452 + 0.451452i −0.895836 0.444384i \(-0.853422\pi\)
0.444384 + 0.895836i \(0.353422\pi\)
\(858\) 0 0
\(859\) 2024.23i 0.0804025i −0.999192 0.0402012i \(-0.987200\pi\)
0.999192 0.0402012i \(-0.0127999\pi\)
\(860\) 0 0
\(861\) 99.1028 99.1028i 0.00392266 0.00392266i
\(862\) 0 0
\(863\) 42859.5 1.69056 0.845280 0.534324i \(-0.179434\pi\)
0.845280 + 0.534324i \(0.179434\pi\)
\(864\) 0 0
\(865\) 62678.0i 2.46372i
\(866\) 0 0
\(867\) 1684.30 + 21703.9i 0.0659767 + 0.850176i
\(868\) 0 0
\(869\) 9686.34i 0.378120i
\(870\) 0 0
\(871\) 3324.40 0.129326
\(872\) 0 0
\(873\) −5197.34 + 5197.34i −0.201493 + 0.201493i
\(874\) 0 0
\(875\) 1255.52i 0.0485077i
\(876\) 0 0
\(877\) −4958.50 + 4958.50i −0.190920 + 0.190920i −0.796093 0.605174i \(-0.793104\pi\)
0.605174 + 0.796093i \(0.293104\pi\)
\(878\) 0 0
\(879\) 22168.9 + 22168.9i 0.850670 + 0.850670i
\(880\) 0 0
\(881\) −13945.5 13945.5i −0.533299 0.533299i 0.388254 0.921552i \(-0.373078\pi\)
−0.921552 + 0.388254i \(0.873078\pi\)
\(882\) 0 0
\(883\) 23295.5 0.887831 0.443915 0.896069i \(-0.353589\pi\)
0.443915 + 0.896069i \(0.353589\pi\)
\(884\) 0 0
\(885\) −19726.9 −0.749279
\(886\) 0 0
\(887\) −7233.33 7233.33i −0.273812 0.273812i 0.556821 0.830633i \(-0.312021\pi\)
−0.830633 + 0.556821i \(0.812021\pi\)
\(888\) 0 0
\(889\) −623.307 623.307i −0.0235153 0.0235153i
\(890\) 0 0
\(891\) 23200.6 23200.6i 0.872335 0.872335i
\(892\) 0 0
\(893\) 172.992i 0.00648258i
\(894\) 0 0
\(895\) −2564.13 + 2564.13i −0.0957648 + 0.0957648i
\(896\) 0 0
\(897\) −37638.8 −1.40103
\(898\) 0 0
\(899\) 25151.8i 0.933104i
\(900\) 0 0
\(901\) −31826.7 11761.2i −1.17681 0.434876i
\(902\) 0 0
\(903\) 1135.23i 0.0418363i
\(904\) 0 0
\(905\) 40090.1 1.47253
\(906\) 0 0
\(907\) 10879.2 10879.2i 0.398277 0.398277i −0.479348 0.877625i \(-0.659127\pi\)
0.877625 + 0.479348i \(0.159127\pi\)
\(908\) 0 0
\(909\) 1684.29i 0.0614569i
\(910\) 0 0
\(911\) −21788.4 + 21788.4i −0.792407 + 0.792407i −0.981885 0.189478i \(-0.939321\pi\)
0.189478 + 0.981885i \(0.439321\pi\)
\(912\) 0 0
\(913\) −5307.99 5307.99i −0.192408 0.192408i
\(914\) 0 0
\(915\) −5959.15 5959.15i −0.215304 0.215304i
\(916\) 0 0
\(917\) 559.201 0.0201379
\(918\) 0 0
\(919\) 8011.29 0.287561 0.143780 0.989610i \(-0.454074\pi\)
0.143780 + 0.989610i \(0.454074\pi\)
\(920\) 0 0
\(921\) 27810.3 + 27810.3i 0.994986 + 0.994986i
\(922\) 0 0
\(923\) −10555.7 10555.7i −0.376429 0.376429i
\(924\) 0 0
\(925\) −52447.1 + 52447.1i −1.86427 + 1.86427i
\(926\) 0 0
\(927\) 3535.65i 0.125271i
\(928\) 0 0
\(929\) 9778.94 9778.94i 0.345357 0.345357i −0.513020 0.858377i \(-0.671473\pi\)
0.858377 + 0.513020i \(0.171473\pi\)
\(930\) 0 0
\(931\) −6883.05 −0.242302
\(932\) 0 0
\(933\) 38374.4i 1.34654i
\(934\) 0 0
\(935\) −32448.9 + 87808.9i −1.13496 + 3.07129i
\(936\) 0 0
\(937\) 32193.2i 1.12242i −0.827674 0.561209i \(-0.810336\pi\)
0.827674 0.561209i \(-0.189664\pi\)
\(938\) 0 0
\(939\) −32729.9 −1.13749
\(940\) 0 0
\(941\) 8068.16 8068.16i 0.279505 0.279505i −0.553406 0.832912i \(-0.686672\pi\)
0.832912 + 0.553406i \(0.186672\pi\)
\(942\) 0 0
\(943\) 6633.66i 0.229079i
\(944\) 0 0
\(945\) 1080.39 1080.39i 0.0371906 0.0371906i
\(946\) 0 0
\(947\) 14134.1 + 14134.1i 0.485003 + 0.485003i 0.906725 0.421722i \(-0.138574\pi\)
−0.421722 + 0.906725i \(0.638574\pi\)
\(948\) 0 0
\(949\) 45280.0 + 45280.0i 1.54884 + 1.54884i
\(950\) 0 0
\(951\) −4281.77 −0.146000
\(952\) 0 0
\(953\) −4521.78 −0.153699 −0.0768493 0.997043i \(-0.524486\pi\)
−0.0768493 + 0.997043i \(0.524486\pi\)
\(954\) 0 0
\(955\) 22058.4 + 22058.4i 0.747427 + 0.747427i
\(956\) 0 0
\(957\) 21197.8 + 21197.8i 0.716018 + 0.716018i
\(958\) 0 0
\(959\) −342.553 + 342.553i −0.0115345 + 0.0115345i
\(960\) 0 0
\(961\) 35922.6i 1.20582i
\(962\) 0 0
\(963\) 5651.54 5651.54i 0.189116 0.189116i
\(964\) 0 0
\(965\) 80453.1 2.68381
\(966\) 0 0
\(967\) 34958.6i 1.16256i −0.813704 0.581279i \(-0.802552\pi\)
0.813704 0.581279i \(-0.197448\pi\)
\(968\) 0 0
\(969\) −2608.20 5665.75i −0.0864680 0.187833i
\(970\) 0 0
\(971\) 37210.9i 1.22982i 0.788598 + 0.614909i \(0.210807\pi\)
−0.788598 + 0.614909i \(0.789193\pi\)
\(972\) 0 0
\(973\) −276.701 −0.00911679
\(974\) 0 0
\(975\) −61273.0 + 61273.0i −2.01262 + 2.01262i
\(976\) 0 0
\(977\) 12272.8i 0.401886i −0.979603 0.200943i \(-0.935599\pi\)
0.979603 0.200943i \(-0.0644007\pi\)
\(978\) 0 0
\(979\) 7337.61 7337.61i 0.239541 0.239541i
\(980\) 0 0
\(981\) 1218.47 + 1218.47i 0.0396563 + 0.0396563i
\(982\) 0 0
\(983\) 10806.3 + 10806.3i 0.350627 + 0.350627i 0.860343 0.509716i \(-0.170249\pi\)
−0.509716 + 0.860343i \(0.670249\pi\)
\(984\) 0 0
\(985\) 25188.1 0.814782
\(986\) 0 0
\(987\) 19.7726 0.000637658
\(988\) 0 0
\(989\) 37994.7 + 37994.7i 1.22160 + 1.22160i
\(990\) 0 0
\(991\) −38811.4 38811.4i −1.24408 1.24408i −0.958292 0.285790i \(-0.907744\pi\)
−0.285790 0.958292i \(-0.592256\pi\)
\(992\) 0 0
\(993\) −15140.2 + 15140.2i −0.483846 + 0.483846i
\(994\) 0 0
\(995\) 16234.6i 0.517259i
\(996\) 0 0
\(997\) −17112.5 + 17112.5i −0.543589 + 0.543589i −0.924579 0.380990i \(-0.875583\pi\)
0.380990 + 0.924579i \(0.375583\pi\)
\(998\) 0 0
\(999\) −45155.0 −1.43007
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.4.o.f.81.3 14
4.3 odd 2 136.4.k.b.81.5 14
17.4 even 4 inner 272.4.o.f.225.3 14
68.15 odd 8 2312.4.a.l.1.5 14
68.19 odd 8 2312.4.a.l.1.10 14
68.55 odd 4 136.4.k.b.89.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.4.k.b.81.5 14 4.3 odd 2
136.4.k.b.89.5 yes 14 68.55 odd 4
272.4.o.f.81.3 14 1.1 even 1 trivial
272.4.o.f.225.3 14 17.4 even 4 inner
2312.4.a.l.1.5 14 68.15 odd 8
2312.4.a.l.1.10 14 68.19 odd 8