Properties

Label 272.4.o.f.81.7
Level $272$
Weight $4$
Character 272.81
Analytic conductor $16.049$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [272,4,Mod(81,272)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(272, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("272.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 272.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0485195216\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 119x^{12} + 5319x^{10} + 112122x^{8} + 1120191x^{6} + 4382607x^{4} + 1699337x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.7
Root \(-5.11455i\) of defining polynomial
Character \(\chi\) \(=\) 272.81
Dual form 272.4.o.f.225.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.11455 + 5.11455i) q^{3} +(7.20340 + 7.20340i) q^{5} +(-19.2581 + 19.2581i) q^{7} +25.3172i q^{9} +(-5.30564 + 5.30564i) q^{11} -59.4853 q^{13} +73.6843i q^{15} +(-7.18671 - 69.7234i) q^{17} +114.346i q^{19} -196.993 q^{21} +(63.2207 - 63.2207i) q^{23} -21.2220i q^{25} +(8.60667 - 8.60667i) q^{27} +(-10.6982 - 10.6982i) q^{29} +(143.404 + 143.404i) q^{31} -54.2720 q^{33} -277.448 q^{35} +(170.788 + 170.788i) q^{37} +(-304.240 - 304.240i) q^{39} +(243.688 - 243.688i) q^{41} +201.773i q^{43} +(-182.370 + 182.370i) q^{45} -422.485 q^{47} -398.750i q^{49} +(319.847 - 393.360i) q^{51} +538.359i q^{53} -76.4374 q^{55} +(-584.826 + 584.826i) q^{57} +330.559i q^{59} +(-404.260 + 404.260i) q^{61} +(-487.562 - 487.562i) q^{63} +(-428.496 - 428.496i) q^{65} -40.2994 q^{67} +646.691 q^{69} +(694.644 + 694.644i) q^{71} +(541.386 + 541.386i) q^{73} +(108.541 - 108.541i) q^{75} -204.353i q^{77} +(-585.853 + 585.853i) q^{79} +771.603 q^{81} -670.929i q^{83} +(450.477 - 554.014i) q^{85} -109.433i q^{87} -130.858 q^{89} +(1145.57 - 1145.57i) q^{91} +1466.89i q^{93} +(-823.677 + 823.677i) q^{95} +(-262.597 - 262.597i) q^{97} +(-134.324 - 134.324i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 6 q^{3} + 6 q^{5} - 10 q^{7} + 66 q^{11} - 124 q^{13} + 130 q^{17} - 148 q^{21} + 162 q^{23} + 204 q^{27} + 158 q^{29} + 350 q^{31} + 116 q^{33} - 236 q^{35} + 582 q^{37} + 320 q^{39} + 878 q^{41}+ \cdots - 3870 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.11455 + 5.11455i 0.984295 + 0.984295i 0.999879 0.0155832i \(-0.00496049\pi\)
−0.0155832 + 0.999879i \(0.504960\pi\)
\(4\) 0 0
\(5\) 7.20340 + 7.20340i 0.644292 + 0.644292i 0.951608 0.307316i \(-0.0994308\pi\)
−0.307316 + 0.951608i \(0.599431\pi\)
\(6\) 0 0
\(7\) −19.2581 + 19.2581i −1.03984 + 1.03984i −0.0406680 + 0.999173i \(0.512949\pi\)
−0.999173 + 0.0406680i \(0.987051\pi\)
\(8\) 0 0
\(9\) 25.3172i 0.937675i
\(10\) 0 0
\(11\) −5.30564 + 5.30564i −0.145428 + 0.145428i −0.776072 0.630644i \(-0.782791\pi\)
0.630644 + 0.776072i \(0.282791\pi\)
\(12\) 0 0
\(13\) −59.4853 −1.26910 −0.634548 0.772883i \(-0.718814\pi\)
−0.634548 + 0.772883i \(0.718814\pi\)
\(14\) 0 0
\(15\) 73.6843i 1.26835i
\(16\) 0 0
\(17\) −7.18671 69.7234i −0.102531 0.994730i
\(18\) 0 0
\(19\) 114.346i 1.38067i 0.723492 + 0.690333i \(0.242536\pi\)
−0.723492 + 0.690333i \(0.757464\pi\)
\(20\) 0 0
\(21\) −196.993 −2.04702
\(22\) 0 0
\(23\) 63.2207 63.2207i 0.573149 0.573149i −0.359858 0.933007i \(-0.617175\pi\)
0.933007 + 0.359858i \(0.117175\pi\)
\(24\) 0 0
\(25\) 21.2220i 0.169776i
\(26\) 0 0
\(27\) 8.60667 8.60667i 0.0613464 0.0613464i
\(28\) 0 0
\(29\) −10.6982 10.6982i −0.0685039 0.0685039i 0.672025 0.740529i \(-0.265425\pi\)
−0.740529 + 0.672025i \(0.765425\pi\)
\(30\) 0 0
\(31\) 143.404 + 143.404i 0.830841 + 0.830841i 0.987632 0.156791i \(-0.0501149\pi\)
−0.156791 + 0.987632i \(0.550115\pi\)
\(32\) 0 0
\(33\) −54.2720 −0.286289
\(34\) 0 0
\(35\) −277.448 −1.33992
\(36\) 0 0
\(37\) 170.788 + 170.788i 0.758849 + 0.758849i 0.976113 0.217264i \(-0.0697132\pi\)
−0.217264 + 0.976113i \(0.569713\pi\)
\(38\) 0 0
\(39\) −304.240 304.240i −1.24917 1.24917i
\(40\) 0 0
\(41\) 243.688 243.688i 0.928236 0.928236i −0.0693559 0.997592i \(-0.522094\pi\)
0.997592 + 0.0693559i \(0.0220944\pi\)
\(42\) 0 0
\(43\) 201.773i 0.715583i 0.933802 + 0.357791i \(0.116470\pi\)
−0.933802 + 0.357791i \(0.883530\pi\)
\(44\) 0 0
\(45\) −182.370 + 182.370i −0.604136 + 0.604136i
\(46\) 0 0
\(47\) −422.485 −1.31119 −0.655594 0.755114i \(-0.727582\pi\)
−0.655594 + 0.755114i \(0.727582\pi\)
\(48\) 0 0
\(49\) 398.750i 1.16254i
\(50\) 0 0
\(51\) 319.847 393.360i 0.878187 1.08003i
\(52\) 0 0
\(53\) 538.359i 1.39527i 0.716453 + 0.697635i \(0.245764\pi\)
−0.716453 + 0.697635i \(0.754236\pi\)
\(54\) 0 0
\(55\) −76.4374 −0.187397
\(56\) 0 0
\(57\) −584.826 + 584.826i −1.35898 + 1.35898i
\(58\) 0 0
\(59\) 330.559i 0.729409i 0.931123 + 0.364705i \(0.118830\pi\)
−0.931123 + 0.364705i \(0.881170\pi\)
\(60\) 0 0
\(61\) −404.260 + 404.260i −0.848527 + 0.848527i −0.989949 0.141422i \(-0.954832\pi\)
0.141422 + 0.989949i \(0.454832\pi\)
\(62\) 0 0
\(63\) −487.562 487.562i −0.975032 0.975032i
\(64\) 0 0
\(65\) −428.496 428.496i −0.817668 0.817668i
\(66\) 0 0
\(67\) −40.2994 −0.0734829 −0.0367414 0.999325i \(-0.511698\pi\)
−0.0367414 + 0.999325i \(0.511698\pi\)
\(68\) 0 0
\(69\) 646.691 1.12830
\(70\) 0 0
\(71\) 694.644 + 694.644i 1.16111 + 1.16111i 0.984232 + 0.176883i \(0.0566013\pi\)
0.176883 + 0.984232i \(0.443399\pi\)
\(72\) 0 0
\(73\) 541.386 + 541.386i 0.868006 + 0.868006i 0.992251 0.124246i \(-0.0396511\pi\)
−0.124246 + 0.992251i \(0.539651\pi\)
\(74\) 0 0
\(75\) 108.541 108.541i 0.167110 0.167110i
\(76\) 0 0
\(77\) 204.353i 0.302445i
\(78\) 0 0
\(79\) −585.853 + 585.853i −0.834350 + 0.834350i −0.988108 0.153758i \(-0.950862\pi\)
0.153758 + 0.988108i \(0.450862\pi\)
\(80\) 0 0
\(81\) 771.603 1.05844
\(82\) 0 0
\(83\) 670.929i 0.887278i −0.896206 0.443639i \(-0.853687\pi\)
0.896206 0.443639i \(-0.146313\pi\)
\(84\) 0 0
\(85\) 450.477 554.014i 0.574836 0.706956i
\(86\) 0 0
\(87\) 109.433i 0.134856i
\(88\) 0 0
\(89\) −130.858 −0.155853 −0.0779266 0.996959i \(-0.524830\pi\)
−0.0779266 + 0.996959i \(0.524830\pi\)
\(90\) 0 0
\(91\) 1145.57 1145.57i 1.31966 1.31966i
\(92\) 0 0
\(93\) 1466.89i 1.63559i
\(94\) 0 0
\(95\) −823.677 + 823.677i −0.889552 + 0.889552i
\(96\) 0 0
\(97\) −262.597 262.597i −0.274873 0.274873i 0.556185 0.831058i \(-0.312265\pi\)
−0.831058 + 0.556185i \(0.812265\pi\)
\(98\) 0 0
\(99\) −134.324 134.324i −0.136365 0.136365i
\(100\) 0 0
\(101\) 169.994 0.167475 0.0837377 0.996488i \(-0.473314\pi\)
0.0837377 + 0.996488i \(0.473314\pi\)
\(102\) 0 0
\(103\) −146.978 −0.140603 −0.0703017 0.997526i \(-0.522396\pi\)
−0.0703017 + 0.997526i \(0.522396\pi\)
\(104\) 0 0
\(105\) −1419.02 1419.02i −1.31888 1.31888i
\(106\) 0 0
\(107\) −39.5383 39.5383i −0.0357226 0.0357226i 0.689020 0.724742i \(-0.258041\pi\)
−0.724742 + 0.689020i \(0.758041\pi\)
\(108\) 0 0
\(109\) 42.5013 42.5013i 0.0373476 0.0373476i −0.688186 0.725534i \(-0.741593\pi\)
0.725534 + 0.688186i \(0.241593\pi\)
\(110\) 0 0
\(111\) 1747.01i 1.49386i
\(112\) 0 0
\(113\) 1504.22 1504.22i 1.25225 1.25225i 0.297547 0.954707i \(-0.403831\pi\)
0.954707 0.297547i \(-0.0961685\pi\)
\(114\) 0 0
\(115\) 910.808 0.738550
\(116\) 0 0
\(117\) 1506.00i 1.19000i
\(118\) 0 0
\(119\) 1481.14 + 1204.34i 1.14098 + 0.927744i
\(120\) 0 0
\(121\) 1274.70i 0.957701i
\(122\) 0 0
\(123\) 2492.71 1.82732
\(124\) 0 0
\(125\) 1053.30 1053.30i 0.753677 0.753677i
\(126\) 0 0
\(127\) 2207.42i 1.54233i −0.636633 0.771167i \(-0.719673\pi\)
0.636633 0.771167i \(-0.280327\pi\)
\(128\) 0 0
\(129\) −1031.98 + 1031.98i −0.704345 + 0.704345i
\(130\) 0 0
\(131\) −1613.78 1613.78i −1.07631 1.07631i −0.996837 0.0794701i \(-0.974677\pi\)
−0.0794701 0.996837i \(-0.525323\pi\)
\(132\) 0 0
\(133\) −2202.08 2202.08i −1.43567 1.43567i
\(134\) 0 0
\(135\) 123.995 0.0790500
\(136\) 0 0
\(137\) 2477.74 1.54517 0.772583 0.634914i \(-0.218964\pi\)
0.772583 + 0.634914i \(0.218964\pi\)
\(138\) 0 0
\(139\) 1414.84 + 1414.84i 0.863346 + 0.863346i 0.991725 0.128379i \(-0.0409775\pi\)
−0.128379 + 0.991725i \(0.540977\pi\)
\(140\) 0 0
\(141\) −2160.82 2160.82i −1.29060 1.29060i
\(142\) 0 0
\(143\) 315.608 315.608i 0.184563 0.184563i
\(144\) 0 0
\(145\) 154.128i 0.0882731i
\(146\) 0 0
\(147\) 2039.43 2039.43i 1.14428 1.14428i
\(148\) 0 0
\(149\) 1665.84 0.915914 0.457957 0.888974i \(-0.348581\pi\)
0.457957 + 0.888974i \(0.348581\pi\)
\(150\) 0 0
\(151\) 2714.26i 1.46280i −0.681947 0.731402i \(-0.738866\pi\)
0.681947 0.731402i \(-0.261134\pi\)
\(152\) 0 0
\(153\) 1765.20 181.948i 0.932733 0.0961411i
\(154\) 0 0
\(155\) 2065.99i 1.07061i
\(156\) 0 0
\(157\) 984.223 0.500316 0.250158 0.968205i \(-0.419517\pi\)
0.250158 + 0.968205i \(0.419517\pi\)
\(158\) 0 0
\(159\) −2753.46 + 2753.46i −1.37336 + 1.37336i
\(160\) 0 0
\(161\) 2435.02i 1.19197i
\(162\) 0 0
\(163\) 2416.67 2416.67i 1.16128 1.16128i 0.177083 0.984196i \(-0.443334\pi\)
0.984196 0.177083i \(-0.0566660\pi\)
\(164\) 0 0
\(165\) −390.943 390.943i −0.184454 0.184454i
\(166\) 0 0
\(167\) −136.817 136.817i −0.0633967 0.0633967i 0.674698 0.738094i \(-0.264274\pi\)
−0.738094 + 0.674698i \(0.764274\pi\)
\(168\) 0 0
\(169\) 1341.50 0.610605
\(170\) 0 0
\(171\) −2894.91 −1.29462
\(172\) 0 0
\(173\) 1173.47 + 1173.47i 0.515705 + 0.515705i 0.916269 0.400564i \(-0.131186\pi\)
−0.400564 + 0.916269i \(0.631186\pi\)
\(174\) 0 0
\(175\) 408.696 + 408.696i 0.176540 + 0.176540i
\(176\) 0 0
\(177\) −1690.66 + 1690.66i −0.717954 + 0.717954i
\(178\) 0 0
\(179\) 2785.07i 1.16294i 0.813569 + 0.581469i \(0.197522\pi\)
−0.813569 + 0.581469i \(0.802478\pi\)
\(180\) 0 0
\(181\) 591.721 591.721i 0.242996 0.242996i −0.575092 0.818088i \(-0.695034\pi\)
0.818088 + 0.575092i \(0.195034\pi\)
\(182\) 0 0
\(183\) −4135.21 −1.67040
\(184\) 0 0
\(185\) 2460.51i 0.977841i
\(186\) 0 0
\(187\) 408.058 + 331.797i 0.159573 + 0.129751i
\(188\) 0 0
\(189\) 331.496i 0.127581i
\(190\) 0 0
\(191\) −3291.32 −1.24687 −0.623433 0.781877i \(-0.714262\pi\)
−0.623433 + 0.781877i \(0.714262\pi\)
\(192\) 0 0
\(193\) −3145.11 + 3145.11i −1.17301 + 1.17301i −0.191518 + 0.981489i \(0.561341\pi\)
−0.981489 + 0.191518i \(0.938659\pi\)
\(194\) 0 0
\(195\) 4383.13i 1.60965i
\(196\) 0 0
\(197\) −536.933 + 536.933i −0.194187 + 0.194187i −0.797503 0.603315i \(-0.793846\pi\)
0.603315 + 0.797503i \(0.293846\pi\)
\(198\) 0 0
\(199\) −2389.92 2389.92i −0.851341 0.851341i 0.138958 0.990298i \(-0.455625\pi\)
−0.990298 + 0.138958i \(0.955625\pi\)
\(200\) 0 0
\(201\) −206.113 206.113i −0.0723289 0.0723289i
\(202\) 0 0
\(203\) 412.056 0.142466
\(204\) 0 0
\(205\) 3510.77 1.19611
\(206\) 0 0
\(207\) 1600.57 + 1600.57i 0.537427 + 0.537427i
\(208\) 0 0
\(209\) −606.677 606.677i −0.200788 0.200788i
\(210\) 0 0
\(211\) −369.577 + 369.577i −0.120582 + 0.120582i −0.764823 0.644241i \(-0.777173\pi\)
0.644241 + 0.764823i \(0.277173\pi\)
\(212\) 0 0
\(213\) 7105.59i 2.28576i
\(214\) 0 0
\(215\) −1453.45 + 1453.45i −0.461044 + 0.461044i
\(216\) 0 0
\(217\) −5523.37 −1.72788
\(218\) 0 0
\(219\) 5537.89i 1.70875i
\(220\) 0 0
\(221\) 427.504 + 4147.52i 0.130122 + 1.26241i
\(222\) 0 0
\(223\) 6412.65i 1.92566i 0.270103 + 0.962832i \(0.412942\pi\)
−0.270103 + 0.962832i \(0.587058\pi\)
\(224\) 0 0
\(225\) 537.282 0.159195
\(226\) 0 0
\(227\) 2472.24 2472.24i 0.722856 0.722856i −0.246330 0.969186i \(-0.579225\pi\)
0.969186 + 0.246330i \(0.0792248\pi\)
\(228\) 0 0
\(229\) 5308.10i 1.53174i −0.642994 0.765872i \(-0.722308\pi\)
0.642994 0.765872i \(-0.277692\pi\)
\(230\) 0 0
\(231\) 1045.18 1045.18i 0.297695 0.297695i
\(232\) 0 0
\(233\) −1278.11 1278.11i −0.359363 0.359363i 0.504215 0.863578i \(-0.331782\pi\)
−0.863578 + 0.504215i \(0.831782\pi\)
\(234\) 0 0
\(235\) −3043.33 3043.33i −0.844787 0.844787i
\(236\) 0 0
\(237\) −5992.75 −1.64249
\(238\) 0 0
\(239\) 2239.84 0.606206 0.303103 0.952958i \(-0.401977\pi\)
0.303103 + 0.952958i \(0.401977\pi\)
\(240\) 0 0
\(241\) −2134.24 2134.24i −0.570451 0.570451i 0.361803 0.932254i \(-0.382161\pi\)
−0.932254 + 0.361803i \(0.882161\pi\)
\(242\) 0 0
\(243\) 3714.02 + 3714.02i 0.980472 + 0.980472i
\(244\) 0 0
\(245\) 2872.36 2872.36i 0.749013 0.749013i
\(246\) 0 0
\(247\) 6801.88i 1.75220i
\(248\) 0 0
\(249\) 3431.50 3431.50i 0.873343 0.873343i
\(250\) 0 0
\(251\) −1569.93 −0.394793 −0.197396 0.980324i \(-0.563249\pi\)
−0.197396 + 0.980324i \(0.563249\pi\)
\(252\) 0 0
\(253\) 670.853i 0.166704i
\(254\) 0 0
\(255\) 5137.52 529.548i 1.26166 0.130045i
\(256\) 0 0
\(257\) 3437.71i 0.834390i −0.908817 0.417195i \(-0.863013\pi\)
0.908817 0.417195i \(-0.136987\pi\)
\(258\) 0 0
\(259\) −6578.12 −1.57816
\(260\) 0 0
\(261\) 270.850 270.850i 0.0642344 0.0642344i
\(262\) 0 0
\(263\) 2371.74i 0.556075i −0.960570 0.278037i \(-0.910316\pi\)
0.960570 0.278037i \(-0.0896839\pi\)
\(264\) 0 0
\(265\) −3878.02 + 3878.02i −0.898961 + 0.898961i
\(266\) 0 0
\(267\) −669.281 669.281i −0.153406 0.153406i
\(268\) 0 0
\(269\) 925.976 + 925.976i 0.209880 + 0.209880i 0.804217 0.594336i \(-0.202585\pi\)
−0.594336 + 0.804217i \(0.702585\pi\)
\(270\) 0 0
\(271\) −5679.83 −1.27316 −0.636578 0.771213i \(-0.719650\pi\)
−0.636578 + 0.771213i \(0.719650\pi\)
\(272\) 0 0
\(273\) 11718.2 2.59787
\(274\) 0 0
\(275\) 112.596 + 112.596i 0.0246902 + 0.0246902i
\(276\) 0 0
\(277\) −2199.21 2199.21i −0.477032 0.477032i 0.427149 0.904181i \(-0.359518\pi\)
−0.904181 + 0.427149i \(0.859518\pi\)
\(278\) 0 0
\(279\) −3630.58 + 3630.58i −0.779059 + 0.779059i
\(280\) 0 0
\(281\) 2984.98i 0.633697i −0.948476 0.316849i \(-0.897375\pi\)
0.948476 0.316849i \(-0.102625\pi\)
\(282\) 0 0
\(283\) 4168.69 4168.69i 0.875629 0.875629i −0.117450 0.993079i \(-0.537472\pi\)
0.993079 + 0.117450i \(0.0374718\pi\)
\(284\) 0 0
\(285\) −8425.47 −1.75116
\(286\) 0 0
\(287\) 9385.95i 1.93044i
\(288\) 0 0
\(289\) −4809.70 + 1002.16i −0.978975 + 0.203982i
\(290\) 0 0
\(291\) 2686.13i 0.541113i
\(292\) 0 0
\(293\) 6054.92 1.20728 0.603639 0.797258i \(-0.293717\pi\)
0.603639 + 0.797258i \(0.293717\pi\)
\(294\) 0 0
\(295\) −2381.15 + 2381.15i −0.469953 + 0.469953i
\(296\) 0 0
\(297\) 91.3278i 0.0178430i
\(298\) 0 0
\(299\) −3760.70 + 3760.70i −0.727381 + 0.727381i
\(300\) 0 0
\(301\) −3885.76 3885.76i −0.744092 0.744092i
\(302\) 0 0
\(303\) 869.442 + 869.442i 0.164845 + 0.164845i
\(304\) 0 0
\(305\) −5824.09 −1.09340
\(306\) 0 0
\(307\) 2610.85 0.485372 0.242686 0.970105i \(-0.421972\pi\)
0.242686 + 0.970105i \(0.421972\pi\)
\(308\) 0 0
\(309\) −751.725 751.725i −0.138395 0.138395i
\(310\) 0 0
\(311\) 3641.57 + 3641.57i 0.663969 + 0.663969i 0.956313 0.292344i \(-0.0944353\pi\)
−0.292344 + 0.956313i \(0.594435\pi\)
\(312\) 0 0
\(313\) 4354.93 4354.93i 0.786438 0.786438i −0.194470 0.980908i \(-0.562299\pi\)
0.980908 + 0.194470i \(0.0622987\pi\)
\(314\) 0 0
\(315\) 7024.21i 1.25641i
\(316\) 0 0
\(317\) −3987.39 + 3987.39i −0.706480 + 0.706480i −0.965793 0.259313i \(-0.916504\pi\)
0.259313 + 0.965793i \(0.416504\pi\)
\(318\) 0 0
\(319\) 113.522 0.0199248
\(320\) 0 0
\(321\) 404.442i 0.0703231i
\(322\) 0 0
\(323\) 7972.56 821.768i 1.37339 0.141562i
\(324\) 0 0
\(325\) 1262.40i 0.215462i
\(326\) 0 0
\(327\) 434.750 0.0735221
\(328\) 0 0
\(329\) 8136.27 8136.27i 1.36343 1.36343i
\(330\) 0 0
\(331\) 3803.97i 0.631678i 0.948813 + 0.315839i \(0.102286\pi\)
−0.948813 + 0.315839i \(0.897714\pi\)
\(332\) 0 0
\(333\) −4323.88 + 4323.88i −0.711554 + 0.711554i
\(334\) 0 0
\(335\) −290.293 290.293i −0.0473444 0.0473444i
\(336\) 0 0
\(337\) −3036.29 3036.29i −0.490792 0.490792i 0.417763 0.908556i \(-0.362814\pi\)
−0.908556 + 0.417763i \(0.862814\pi\)
\(338\) 0 0
\(339\) 15386.8 2.46518
\(340\) 0 0
\(341\) −1521.70 −0.241656
\(342\) 0 0
\(343\) 1073.65 + 1073.65i 0.169013 + 0.169013i
\(344\) 0 0
\(345\) 4658.37 + 4658.37i 0.726952 + 0.726952i
\(346\) 0 0
\(347\) −3517.38 + 3517.38i −0.544158 + 0.544158i −0.924745 0.380587i \(-0.875722\pi\)
0.380587 + 0.924745i \(0.375722\pi\)
\(348\) 0 0
\(349\) 9252.17i 1.41908i 0.704667 + 0.709538i \(0.251096\pi\)
−0.704667 + 0.709538i \(0.748904\pi\)
\(350\) 0 0
\(351\) −511.970 + 511.970i −0.0778545 + 0.0778545i
\(352\) 0 0
\(353\) 4673.17 0.704611 0.352305 0.935885i \(-0.385398\pi\)
0.352305 + 0.935885i \(0.385398\pi\)
\(354\) 0 0
\(355\) 10007.6i 1.49619i
\(356\) 0 0
\(357\) 1415.73 + 13735.0i 0.209884 + 2.03623i
\(358\) 0 0
\(359\) 5873.88i 0.863542i −0.901983 0.431771i \(-0.857889\pi\)
0.901983 0.431771i \(-0.142111\pi\)
\(360\) 0 0
\(361\) −6215.90 −0.906240
\(362\) 0 0
\(363\) −6519.52 + 6519.52i −0.942661 + 0.942661i
\(364\) 0 0
\(365\) 7799.64i 1.11850i
\(366\) 0 0
\(367\) 4900.71 4900.71i 0.697044 0.697044i −0.266728 0.963772i \(-0.585943\pi\)
0.963772 + 0.266728i \(0.0859425\pi\)
\(368\) 0 0
\(369\) 6169.50 + 6169.50i 0.870384 + 0.870384i
\(370\) 0 0
\(371\) −10367.8 10367.8i −1.45086 1.45086i
\(372\) 0 0
\(373\) 8242.69 1.14421 0.572105 0.820180i \(-0.306127\pi\)
0.572105 + 0.820180i \(0.306127\pi\)
\(374\) 0 0
\(375\) 10774.3 1.48368
\(376\) 0 0
\(377\) 636.388 + 636.388i 0.0869381 + 0.0869381i
\(378\) 0 0
\(379\) −2130.13 2130.13i −0.288700 0.288700i 0.547866 0.836566i \(-0.315440\pi\)
−0.836566 + 0.547866i \(0.815440\pi\)
\(380\) 0 0
\(381\) 11289.9 11289.9i 1.51811 1.51811i
\(382\) 0 0
\(383\) 1575.67i 0.210216i −0.994461 0.105108i \(-0.966481\pi\)
0.994461 0.105108i \(-0.0335188\pi\)
\(384\) 0 0
\(385\) 1472.04 1472.04i 0.194863 0.194863i
\(386\) 0 0
\(387\) −5108.32 −0.670984
\(388\) 0 0
\(389\) 9234.92i 1.20367i −0.798619 0.601837i \(-0.794436\pi\)
0.798619 0.601837i \(-0.205564\pi\)
\(390\) 0 0
\(391\) −4862.31 3953.61i −0.628894 0.511362i
\(392\) 0 0
\(393\) 16507.5i 2.11881i
\(394\) 0 0
\(395\) −8440.28 −1.07513
\(396\) 0 0
\(397\) 9348.75 9348.75i 1.18186 1.18186i 0.202603 0.979261i \(-0.435060\pi\)
0.979261 0.202603i \(-0.0649402\pi\)
\(398\) 0 0
\(399\) 22525.3i 2.82625i
\(400\) 0 0
\(401\) −8357.23 + 8357.23i −1.04075 + 1.04075i −0.0416145 + 0.999134i \(0.513250\pi\)
−0.999134 + 0.0416145i \(0.986750\pi\)
\(402\) 0 0
\(403\) −8530.41 8530.41i −1.05442 1.05442i
\(404\) 0 0
\(405\) 5558.17 + 5558.17i 0.681945 + 0.681945i
\(406\) 0 0
\(407\) −1812.28 −0.220716
\(408\) 0 0
\(409\) 11726.5 1.41770 0.708848 0.705361i \(-0.249215\pi\)
0.708848 + 0.705361i \(0.249215\pi\)
\(410\) 0 0
\(411\) 12672.5 + 12672.5i 1.52090 + 1.52090i
\(412\) 0 0
\(413\) −6365.95 6365.95i −0.758470 0.758470i
\(414\) 0 0
\(415\) 4832.97 4832.97i 0.571666 0.571666i
\(416\) 0 0
\(417\) 14472.5i 1.69957i
\(418\) 0 0
\(419\) −4956.11 + 4956.11i −0.577856 + 0.577856i −0.934312 0.356456i \(-0.883985\pi\)
0.356456 + 0.934312i \(0.383985\pi\)
\(420\) 0 0
\(421\) −14909.1 −1.72595 −0.862973 0.505250i \(-0.831400\pi\)
−0.862973 + 0.505250i \(0.831400\pi\)
\(422\) 0 0
\(423\) 10696.2i 1.22947i
\(424\) 0 0
\(425\) −1479.67 + 152.516i −0.168881 + 0.0174074i
\(426\) 0 0
\(427\) 15570.6i 1.76467i
\(428\) 0 0
\(429\) 3228.38 0.363328
\(430\) 0 0
\(431\) 1635.67 1635.67i 0.182802 0.182802i −0.609774 0.792576i \(-0.708740\pi\)
0.792576 + 0.609774i \(0.208740\pi\)
\(432\) 0 0
\(433\) 15470.6i 1.71702i −0.512797 0.858510i \(-0.671391\pi\)
0.512797 0.858510i \(-0.328609\pi\)
\(434\) 0 0
\(435\) 788.293 788.293i 0.0868868 0.0868868i
\(436\) 0 0
\(437\) 7229.00 + 7229.00i 0.791327 + 0.791327i
\(438\) 0 0
\(439\) 2855.33 + 2855.33i 0.310427 + 0.310427i 0.845075 0.534648i \(-0.179556\pi\)
−0.534648 + 0.845075i \(0.679556\pi\)
\(440\) 0 0
\(441\) 10095.2 1.09008
\(442\) 0 0
\(443\) 5047.61 0.541353 0.270676 0.962670i \(-0.412753\pi\)
0.270676 + 0.962670i \(0.412753\pi\)
\(444\) 0 0
\(445\) −942.624 942.624i −0.100415 0.100415i
\(446\) 0 0
\(447\) 8520.04 + 8520.04i 0.901530 + 0.901530i
\(448\) 0 0
\(449\) −11642.0 + 11642.0i −1.22365 + 1.22365i −0.257324 + 0.966325i \(0.582841\pi\)
−0.966325 + 0.257324i \(0.917159\pi\)
\(450\) 0 0
\(451\) 2585.84i 0.269984i
\(452\) 0 0
\(453\) 13882.2 13882.2i 1.43983 1.43983i
\(454\) 0 0
\(455\) 16504.1 1.70049
\(456\) 0 0
\(457\) 803.388i 0.0822339i −0.999154 0.0411170i \(-0.986908\pi\)
0.999154 0.0411170i \(-0.0130916\pi\)
\(458\) 0 0
\(459\) −661.940 538.232i −0.0673131 0.0547332i
\(460\) 0 0
\(461\) 6000.31i 0.606208i −0.952957 0.303104i \(-0.901977\pi\)
0.952957 0.303104i \(-0.0980230\pi\)
\(462\) 0 0
\(463\) −5485.58 −0.550619 −0.275310 0.961356i \(-0.588780\pi\)
−0.275310 + 0.961356i \(0.588780\pi\)
\(464\) 0 0
\(465\) −10566.6 + 10566.6i −1.05379 + 1.05379i
\(466\) 0 0
\(467\) 2061.41i 0.204262i −0.994771 0.102131i \(-0.967434\pi\)
0.994771 0.102131i \(-0.0325661\pi\)
\(468\) 0 0
\(469\) 776.090 776.090i 0.0764105 0.0764105i
\(470\) 0 0
\(471\) 5033.86 + 5033.86i 0.492458 + 0.492458i
\(472\) 0 0
\(473\) −1070.53 1070.53i −0.104066 0.104066i
\(474\) 0 0
\(475\) 2426.64 0.234404
\(476\) 0 0
\(477\) −13629.8 −1.30831
\(478\) 0 0
\(479\) 8800.27 + 8800.27i 0.839446 + 0.839446i 0.988786 0.149340i \(-0.0477148\pi\)
−0.149340 + 0.988786i \(0.547715\pi\)
\(480\) 0 0
\(481\) −10159.4 10159.4i −0.963053 0.963053i
\(482\) 0 0
\(483\) −12454.0 + 12454.0i −1.17325 + 1.17325i
\(484\) 0 0
\(485\) 3783.19i 0.354197i
\(486\) 0 0
\(487\) 1379.51 1379.51i 0.128361 0.128361i −0.640008 0.768368i \(-0.721069\pi\)
0.768368 + 0.640008i \(0.221069\pi\)
\(488\) 0 0
\(489\) 24720.4 2.28608
\(490\) 0 0
\(491\) 3745.53i 0.344263i 0.985074 + 0.172132i \(0.0550655\pi\)
−0.985074 + 0.172132i \(0.944935\pi\)
\(492\) 0 0
\(493\) −669.033 + 822.803i −0.0611191 + 0.0751667i
\(494\) 0 0
\(495\) 1935.18i 0.175717i
\(496\) 0 0
\(497\) −26755.1 −2.41475
\(498\) 0 0
\(499\) −11452.3 + 11452.3i −1.02741 + 1.02741i −0.0277939 + 0.999614i \(0.508848\pi\)
−0.999614 + 0.0277939i \(0.991152\pi\)
\(500\) 0 0
\(501\) 1399.52i 0.124802i
\(502\) 0 0
\(503\) 448.545 448.545i 0.0397607 0.0397607i −0.686947 0.726708i \(-0.741050\pi\)
0.726708 + 0.686947i \(0.241050\pi\)
\(504\) 0 0
\(505\) 1224.53 + 1224.53i 0.107903 + 0.107903i
\(506\) 0 0
\(507\) 6861.16 + 6861.16i 0.601016 + 0.601016i
\(508\) 0 0
\(509\) 16119.6 1.40371 0.701854 0.712321i \(-0.252356\pi\)
0.701854 + 0.712321i \(0.252356\pi\)
\(510\) 0 0
\(511\) −20852.1 −1.80518
\(512\) 0 0
\(513\) 984.134 + 984.134i 0.0846990 + 0.0846990i
\(514\) 0 0
\(515\) −1058.74 1058.74i −0.0905896 0.0905896i
\(516\) 0 0
\(517\) 2241.56 2241.56i 0.190684 0.190684i
\(518\) 0 0
\(519\) 12003.5i 1.01521i
\(520\) 0 0
\(521\) −6436.15 + 6436.15i −0.541215 + 0.541215i −0.923885 0.382670i \(-0.875005\pi\)
0.382670 + 0.923885i \(0.375005\pi\)
\(522\) 0 0
\(523\) 683.977 0.0571859 0.0285929 0.999591i \(-0.490897\pi\)
0.0285929 + 0.999591i \(0.490897\pi\)
\(524\) 0 0
\(525\) 4180.59i 0.347535i
\(526\) 0 0
\(527\) 8967.99 11029.2i 0.741275 0.911650i
\(528\) 0 0
\(529\) 4173.29i 0.343001i
\(530\) 0 0
\(531\) −8368.84 −0.683949
\(532\) 0 0
\(533\) −14495.9 + 14495.9i −1.17802 + 1.17802i
\(534\) 0 0
\(535\) 569.621i 0.0460315i
\(536\) 0 0
\(537\) −14244.4 + 14244.4i −1.14467 + 1.14467i
\(538\) 0 0
\(539\) 2115.63 + 2115.63i 0.169066 + 0.169066i
\(540\) 0 0
\(541\) −10878.1 10878.1i −0.864483 0.864483i 0.127372 0.991855i \(-0.459346\pi\)
−0.991855 + 0.127372i \(0.959346\pi\)
\(542\) 0 0
\(543\) 6052.77 0.478360
\(544\) 0 0
\(545\) 612.308 0.0481255
\(546\) 0 0
\(547\) 1629.66 + 1629.66i 0.127384 + 0.127384i 0.767925 0.640540i \(-0.221290\pi\)
−0.640540 + 0.767925i \(0.721290\pi\)
\(548\) 0 0
\(549\) −10234.7 10234.7i −0.795642 0.795642i
\(550\) 0 0
\(551\) 1223.30 1223.30i 0.0945811 0.0945811i
\(552\) 0 0
\(553\) 22564.9i 1.73518i
\(554\) 0 0
\(555\) −12584.4 + 12584.4i −0.962484 + 0.962484i
\(556\) 0 0
\(557\) −11472.4 −0.872711 −0.436356 0.899774i \(-0.643731\pi\)
−0.436356 + 0.899774i \(0.643731\pi\)
\(558\) 0 0
\(559\) 12002.5i 0.908143i
\(560\) 0 0
\(561\) 390.037 + 3784.02i 0.0293536 + 0.284780i
\(562\) 0 0
\(563\) 9764.95i 0.730983i 0.930815 + 0.365492i \(0.119099\pi\)
−0.930815 + 0.365492i \(0.880901\pi\)
\(564\) 0 0
\(565\) 21670.9 1.61363
\(566\) 0 0
\(567\) −14859.6 + 14859.6i −1.10061 + 1.10061i
\(568\) 0 0
\(569\) 20941.2i 1.54288i 0.636301 + 0.771441i \(0.280464\pi\)
−0.636301 + 0.771441i \(0.719536\pi\)
\(570\) 0 0
\(571\) −8141.76 + 8141.76i −0.596711 + 0.596711i −0.939436 0.342725i \(-0.888650\pi\)
0.342725 + 0.939436i \(0.388650\pi\)
\(572\) 0 0
\(573\) −16833.6 16833.6i −1.22728 1.22728i
\(574\) 0 0
\(575\) −1341.67 1341.67i −0.0973069 0.0973069i
\(576\) 0 0
\(577\) 12336.4 0.890069 0.445035 0.895513i \(-0.353191\pi\)
0.445035 + 0.895513i \(0.353191\pi\)
\(578\) 0 0
\(579\) −32171.7 −2.30917
\(580\) 0 0
\(581\) 12920.8 + 12920.8i 0.922628 + 0.922628i
\(582\) 0 0
\(583\) −2856.34 2856.34i −0.202912 0.202912i
\(584\) 0 0
\(585\) 10848.3 10848.3i 0.766707 0.766707i
\(586\) 0 0
\(587\) 7168.90i 0.504075i −0.967717 0.252038i \(-0.918899\pi\)
0.967717 0.252038i \(-0.0811007\pi\)
\(588\) 0 0
\(589\) −16397.6 + 16397.6i −1.14711 + 1.14711i
\(590\) 0 0
\(591\) −5492.34 −0.382275
\(592\) 0 0
\(593\) 14049.0i 0.972890i 0.873711 + 0.486445i \(0.161707\pi\)
−0.873711 + 0.486445i \(0.838293\pi\)
\(594\) 0 0
\(595\) 1993.94 + 19344.6i 0.137384 + 1.33286i
\(596\) 0 0
\(597\) 24446.7i 1.67594i
\(598\) 0 0
\(599\) 11818.7 0.806173 0.403086 0.915162i \(-0.367937\pi\)
0.403086 + 0.915162i \(0.367937\pi\)
\(600\) 0 0
\(601\) −13055.4 + 13055.4i −0.886094 + 0.886094i −0.994145 0.108052i \(-0.965539\pi\)
0.108052 + 0.994145i \(0.465539\pi\)
\(602\) 0 0
\(603\) 1020.27i 0.0689031i
\(604\) 0 0
\(605\) −9182.18 + 9182.18i −0.617039 + 0.617039i
\(606\) 0 0
\(607\) 146.835 + 146.835i 0.00981854 + 0.00981854i 0.711999 0.702180i \(-0.247790\pi\)
−0.702180 + 0.711999i \(0.747790\pi\)
\(608\) 0 0
\(609\) 2107.48 + 2107.48i 0.140229 + 0.140229i
\(610\) 0 0
\(611\) 25131.7 1.66402
\(612\) 0 0
\(613\) 8407.55 0.553961 0.276980 0.960876i \(-0.410666\pi\)
0.276980 + 0.960876i \(0.410666\pi\)
\(614\) 0 0
\(615\) 17956.0 + 17956.0i 1.17733 + 1.17733i
\(616\) 0 0
\(617\) 5504.14 + 5504.14i 0.359138 + 0.359138i 0.863495 0.504357i \(-0.168270\pi\)
−0.504357 + 0.863495i \(0.668270\pi\)
\(618\) 0 0
\(619\) 18230.8 18230.8i 1.18378 1.18378i 0.205017 0.978758i \(-0.434275\pi\)
0.978758 0.205017i \(-0.0657249\pi\)
\(620\) 0 0
\(621\) 1088.24i 0.0703213i
\(622\) 0 0
\(623\) 2520.08 2520.08i 0.162063 0.162063i
\(624\) 0 0
\(625\) 12521.9 0.801400
\(626\) 0 0
\(627\) 6205.75i 0.395270i
\(628\) 0 0
\(629\) 10680.5 13135.3i 0.677044 0.832656i
\(630\) 0 0
\(631\) 27196.4i 1.71580i −0.513817 0.857900i \(-0.671769\pi\)
0.513817 0.857900i \(-0.328231\pi\)
\(632\) 0 0
\(633\) −3780.44 −0.237376
\(634\) 0 0
\(635\) 15900.9 15900.9i 0.993714 0.993714i
\(636\) 0 0
\(637\) 23719.8i 1.47537i
\(638\) 0 0
\(639\) −17586.5 + 17586.5i −1.08875 + 1.08875i
\(640\) 0 0
\(641\) 14262.7 + 14262.7i 0.878847 + 0.878847i 0.993415 0.114568i \(-0.0365484\pi\)
−0.114568 + 0.993415i \(0.536548\pi\)
\(642\) 0 0
\(643\) 11897.9 + 11897.9i 0.729714 + 0.729714i 0.970563 0.240849i \(-0.0774258\pi\)
−0.240849 + 0.970563i \(0.577426\pi\)
\(644\) 0 0
\(645\) −14867.5 −0.907607
\(646\) 0 0
\(647\) −176.304 −0.0107128 −0.00535642 0.999986i \(-0.501705\pi\)
−0.00535642 + 0.999986i \(0.501705\pi\)
\(648\) 0 0
\(649\) −1753.83 1753.83i −0.106077 0.106077i
\(650\) 0 0
\(651\) −28249.6 28249.6i −1.70075 1.70075i
\(652\) 0 0
\(653\) 724.739 724.739i 0.0434322 0.0434322i −0.685057 0.728489i \(-0.740223\pi\)
0.728489 + 0.685057i \(0.240223\pi\)
\(654\) 0 0
\(655\) 23249.4i 1.38691i
\(656\) 0 0
\(657\) −13706.4 + 13706.4i −0.813907 + 0.813907i
\(658\) 0 0
\(659\) −19408.0 −1.14724 −0.573619 0.819123i \(-0.694461\pi\)
−0.573619 + 0.819123i \(0.694461\pi\)
\(660\) 0 0
\(661\) 30169.2i 1.77526i −0.460559 0.887629i \(-0.652351\pi\)
0.460559 0.887629i \(-0.347649\pi\)
\(662\) 0 0
\(663\) −19026.2 + 23399.2i −1.11450 + 1.37066i
\(664\) 0 0
\(665\) 31724.9i 1.84999i
\(666\) 0 0
\(667\) −1352.70 −0.0785259
\(668\) 0 0
\(669\) −32797.8 + 32797.8i −1.89542 + 1.89542i
\(670\) 0 0
\(671\) 4289.72i 0.246800i
\(672\) 0 0
\(673\) −8974.98 + 8974.98i −0.514056 + 0.514056i −0.915767 0.401710i \(-0.868416\pi\)
0.401710 + 0.915767i \(0.368416\pi\)
\(674\) 0 0
\(675\) −182.651 182.651i −0.0104151 0.0104151i
\(676\) 0 0
\(677\) −6185.68 6185.68i −0.351159 0.351159i 0.509381 0.860541i \(-0.329874\pi\)
−0.860541 + 0.509381i \(0.829874\pi\)
\(678\) 0 0
\(679\) 10114.3 0.571649
\(680\) 0 0
\(681\) 25288.8 1.42301
\(682\) 0 0
\(683\) −20624.3 20624.3i −1.15544 1.15544i −0.985445 0.169996i \(-0.945624\pi\)
−0.169996 0.985445i \(-0.554376\pi\)
\(684\) 0 0
\(685\) 17848.2 + 17848.2i 0.995538 + 0.995538i
\(686\) 0 0
\(687\) 27148.5 27148.5i 1.50769 1.50769i
\(688\) 0 0
\(689\) 32024.5i 1.77073i
\(690\) 0 0
\(691\) −9855.25 + 9855.25i −0.542564 + 0.542564i −0.924280 0.381716i \(-0.875333\pi\)
0.381716 + 0.924280i \(0.375333\pi\)
\(692\) 0 0
\(693\) 5173.66 0.283595
\(694\) 0 0
\(695\) 20383.3i 1.11249i
\(696\) 0 0
\(697\) −18742.1 15239.4i −1.01852 0.828171i
\(698\) 0 0
\(699\) 13073.9i 0.707439i
\(700\) 0 0
\(701\) 15777.8 0.850101 0.425051 0.905170i \(-0.360256\pi\)
0.425051 + 0.905170i \(0.360256\pi\)
\(702\) 0 0
\(703\) −19528.9 + 19528.9i −1.04772 + 1.04772i
\(704\) 0 0
\(705\) 31130.5i 1.66304i
\(706\) 0 0
\(707\) −3273.76 + 3273.76i −0.174148 + 0.174148i
\(708\) 0 0
\(709\) 20418.0 + 20418.0i 1.08154 + 1.08154i 0.996366 + 0.0851786i \(0.0271461\pi\)
0.0851786 + 0.996366i \(0.472854\pi\)
\(710\) 0 0
\(711\) −14832.2 14832.2i −0.782349 0.782349i
\(712\) 0 0
\(713\) 18132.2 0.952391
\(714\) 0 0
\(715\) 4546.90 0.237824
\(716\) 0 0
\(717\) 11455.8 + 11455.8i 0.596686 + 0.596686i
\(718\) 0 0
\(719\) −12089.9 12089.9i −0.627092 0.627092i 0.320243 0.947335i \(-0.396235\pi\)
−0.947335 + 0.320243i \(0.896235\pi\)
\(720\) 0 0
\(721\) 2830.52 2830.52i 0.146205 0.146205i
\(722\) 0 0
\(723\) 21831.4i 1.12298i
\(724\) 0 0
\(725\) −227.038 + 227.038i −0.0116303 + 0.0116303i
\(726\) 0 0
\(727\) 600.010 0.0306095 0.0153048 0.999883i \(-0.495128\pi\)
0.0153048 + 0.999883i \(0.495128\pi\)
\(728\) 0 0
\(729\) 17157.8i 0.871707i
\(730\) 0 0
\(731\) 14068.3 1450.08i 0.711811 0.0733697i
\(732\) 0 0
\(733\) 17345.9i 0.874059i 0.899447 + 0.437029i \(0.143969\pi\)
−0.899447 + 0.437029i \(0.856031\pi\)
\(734\) 0 0
\(735\) 29381.6 1.47450
\(736\) 0 0
\(737\) 213.814 213.814i 0.0106865 0.0106865i
\(738\) 0 0
\(739\) 20901.6i 1.04043i 0.854035 + 0.520215i \(0.174148\pi\)
−0.854035 + 0.520215i \(0.825852\pi\)
\(740\) 0 0
\(741\) 34788.5 34788.5i 1.72468 1.72468i
\(742\) 0 0
\(743\) −9689.52 9689.52i −0.478431 0.478431i 0.426199 0.904630i \(-0.359852\pi\)
−0.904630 + 0.426199i \(0.859852\pi\)
\(744\) 0 0
\(745\) 11999.7 + 11999.7i 0.590116 + 0.590116i
\(746\) 0 0
\(747\) 16986.1 0.831978
\(748\) 0 0
\(749\) 1522.87 0.0742916
\(750\) 0 0
\(751\) 5932.79 + 5932.79i 0.288270 + 0.288270i 0.836396 0.548126i \(-0.184659\pi\)
−0.548126 + 0.836396i \(0.684659\pi\)
\(752\) 0 0
\(753\) −8029.48 8029.48i −0.388593 0.388593i
\(754\) 0 0
\(755\) 19551.9 19551.9i 0.942472 0.942472i
\(756\) 0 0
\(757\) 9816.43i 0.471313i 0.971836 + 0.235657i \(0.0757241\pi\)
−0.971836 + 0.235657i \(0.924276\pi\)
\(758\) 0 0
\(759\) −3431.11 + 3431.11i −0.164086 + 0.164086i
\(760\) 0 0
\(761\) −2354.92 −0.112176 −0.0560879 0.998426i \(-0.517863\pi\)
−0.0560879 + 0.998426i \(0.517863\pi\)
\(762\) 0 0
\(763\) 1636.99i 0.0776710i
\(764\) 0 0
\(765\) 14026.1 + 11404.8i 0.662895 + 0.539009i
\(766\) 0 0
\(767\) 19663.4i 0.925691i
\(768\) 0 0
\(769\) −12476.8 −0.585078 −0.292539 0.956254i \(-0.594500\pi\)
−0.292539 + 0.956254i \(0.594500\pi\)
\(770\) 0 0
\(771\) 17582.3 17582.3i 0.821286 0.821286i
\(772\) 0 0
\(773\) 18646.5i 0.867617i 0.901005 + 0.433809i \(0.142831\pi\)
−0.901005 + 0.433809i \(0.857169\pi\)
\(774\) 0 0
\(775\) 3043.31 3043.31i 0.141057 0.141057i
\(776\) 0 0
\(777\) −33644.1 33644.1i −1.55338 1.55338i
\(778\) 0 0
\(779\) 27864.6 + 27864.6i 1.28158 + 1.28158i
\(780\) 0 0
\(781\) −7371.07 −0.337718
\(782\) 0 0
\(783\) −184.152 −0.00840495
\(784\) 0 0
\(785\) 7089.76 + 7089.76i 0.322349 + 0.322349i
\(786\) 0 0
\(787\) 24803.2 + 24803.2i 1.12343 + 1.12343i 0.991222 + 0.132209i \(0.0422071\pi\)
0.132209 + 0.991222i \(0.457793\pi\)
\(788\) 0 0
\(789\) 12130.4 12130.4i 0.547342 0.547342i
\(790\) 0 0
\(791\) 57936.7i 2.60429i
\(792\) 0 0
\(793\) 24047.5 24047.5i 1.07686 1.07686i
\(794\) 0 0
\(795\) −39668.6 −1.76969
\(796\) 0 0
\(797\) 6690.88i 0.297369i 0.988885 + 0.148684i \(0.0475039\pi\)
−0.988885 + 0.148684i \(0.952496\pi\)
\(798\) 0 0
\(799\) 3036.28 + 29457.1i 0.134438 + 1.30428i
\(800\) 0 0
\(801\) 3312.97i 0.146140i
\(802\) 0 0
\(803\) −5744.80 −0.252465
\(804\) 0 0
\(805\) −17540.5 + 17540.5i −0.767975 + 0.767975i
\(806\) 0 0
\(807\) 9471.90i 0.413168i
\(808\) 0 0
\(809\) 11538.0 11538.0i 0.501428 0.501428i −0.410454 0.911881i \(-0.634630\pi\)
0.911881 + 0.410454i \(0.134630\pi\)
\(810\) 0 0
\(811\) 9955.38 + 9955.38i 0.431049 + 0.431049i 0.888985 0.457936i \(-0.151411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(812\) 0 0
\(813\) −29049.8 29049.8i −1.25316 1.25316i
\(814\) 0 0
\(815\) 34816.5 1.49640
\(816\) 0 0
\(817\) −23071.8 −0.987981
\(818\) 0 0
\(819\) 29002.8 + 29002.8i 1.23741 + 1.23741i
\(820\) 0 0
\(821\) −26591.4 26591.4i −1.13038 1.13038i −0.990113 0.140272i \(-0.955202\pi\)
−0.140272 0.990113i \(-0.544798\pi\)
\(822\) 0 0
\(823\) 9739.31 9739.31i 0.412504 0.412504i −0.470106 0.882610i \(-0.655784\pi\)
0.882610 + 0.470106i \(0.155784\pi\)
\(824\) 0 0
\(825\) 1151.76i 0.0486050i
\(826\) 0 0
\(827\) 15347.3 15347.3i 0.645319 0.645319i −0.306539 0.951858i \(-0.599171\pi\)
0.951858 + 0.306539i \(0.0991709\pi\)
\(828\) 0 0
\(829\) −4760.05 −0.199425 −0.0997125 0.995016i \(-0.531792\pi\)
−0.0997125 + 0.995016i \(0.531792\pi\)
\(830\) 0 0
\(831\) 22495.9i 0.939080i
\(832\) 0 0
\(833\) −27802.2 + 2865.70i −1.15641 + 0.119197i
\(834\) 0 0
\(835\) 1971.10i 0.0816920i
\(836\) 0 0
\(837\) 2468.46 0.101938
\(838\) 0 0
\(839\) −17977.2 + 17977.2i −0.739738 + 0.739738i −0.972527 0.232789i \(-0.925215\pi\)
0.232789 + 0.972527i \(0.425215\pi\)
\(840\) 0 0
\(841\) 24160.1i 0.990614i
\(842\) 0 0
\(843\) 15266.8 15266.8i 0.623745 0.623745i
\(844\) 0 0
\(845\) 9663.36 + 9663.36i 0.393408 + 0.393408i
\(846\) 0 0
\(847\) −24548.3 24548.3i −0.995857 0.995857i
\(848\) 0 0
\(849\) 42642.0 1.72376
\(850\) 0 0
\(851\) 21594.7 0.869867
\(852\) 0 0
\(853\) 5917.40 + 5917.40i 0.237524 + 0.237524i 0.815824 0.578300i \(-0.196284\pi\)
−0.578300 + 0.815824i \(0.696284\pi\)
\(854\) 0 0
\(855\) −20853.2 20853.2i −0.834111 0.834111i
\(856\) 0 0
\(857\) −2391.48 + 2391.48i −0.0953225 + 0.0953225i −0.753160 0.657837i \(-0.771471\pi\)
0.657837 + 0.753160i \(0.271471\pi\)
\(858\) 0 0
\(859\) 12621.6i 0.501331i 0.968074 + 0.250666i \(0.0806495\pi\)
−0.968074 + 0.250666i \(0.919351\pi\)
\(860\) 0 0
\(861\) −48004.9 + 48004.9i −1.90012 + 1.90012i
\(862\) 0 0
\(863\) −21528.6 −0.849180 −0.424590 0.905386i \(-0.639582\pi\)
−0.424590 + 0.905386i \(0.639582\pi\)
\(864\) 0 0
\(865\) 16905.9i 0.664529i
\(866\) 0 0
\(867\) −29725.1 19473.8i −1.16438 0.762822i
\(868\) 0 0
\(869\) 6216.66i 0.242676i
\(870\) 0 0
\(871\) 2397.22 0.0932569
\(872\) 0 0
\(873\) 6648.23 6648.23i 0.257742 0.257742i
\(874\) 0 0
\(875\) 40569.0i 1.56741i
\(876\) 0 0
\(877\) 30721.8 30721.8i 1.18290 1.18290i 0.203907 0.978990i \(-0.434636\pi\)
0.978990 0.203907i \(-0.0653641\pi\)
\(878\) 0 0
\(879\) 30968.2 + 30968.2i 1.18832 + 1.18832i
\(880\) 0 0
\(881\) 2080.26 + 2080.26i 0.0795524 + 0.0795524i 0.745763 0.666211i \(-0.232085\pi\)
−0.666211 + 0.745763i \(0.732085\pi\)
\(882\) 0 0
\(883\) −6159.39 −0.234745 −0.117373 0.993088i \(-0.537447\pi\)
−0.117373 + 0.993088i \(0.537447\pi\)
\(884\) 0 0
\(885\) −24357.0 −0.925144
\(886\) 0 0
\(887\) −8560.72 8560.72i −0.324060 0.324060i 0.526263 0.850322i \(-0.323593\pi\)
−0.850322 + 0.526263i \(0.823593\pi\)
\(888\) 0 0
\(889\) 42510.7 + 42510.7i 1.60378 + 1.60378i
\(890\) 0 0
\(891\) −4093.85 + 4093.85i −0.153927 + 0.153927i
\(892\) 0 0
\(893\) 48309.3i 1.81031i
\(894\) 0 0
\(895\) −20062.0 + 20062.0i −0.749271 + 0.749271i
\(896\) 0 0
\(897\) −38468.6 −1.43192
\(898\) 0 0
\(899\) 3068.34i 0.113832i
\(900\) 0 0
\(901\) 37536.2 3869.03i 1.38792 0.143059i
\(902\) 0 0
\(903\) 39747.8i 1.46481i
\(904\) 0 0
\(905\) 8524.81 0.313121
\(906\) 0 0
\(907\) −14510.4 + 14510.4i −0.531214 + 0.531214i −0.920934 0.389719i \(-0.872572\pi\)
0.389719 + 0.920934i \(0.372572\pi\)
\(908\) 0 0
\(909\) 4303.77i 0.157038i
\(910\) 0 0
\(911\) 11912.7 11912.7i 0.433244 0.433244i −0.456487 0.889730i \(-0.650892\pi\)
0.889730 + 0.456487i \(0.150892\pi\)
\(912\) 0 0
\(913\) 3559.71 + 3559.71i 0.129035 + 0.129035i
\(914\) 0 0
\(915\) −29787.6 29787.6i −1.07623 1.07623i
\(916\) 0 0
\(917\) 62156.6 2.23838
\(918\) 0 0
\(919\) 18874.6 0.677492 0.338746 0.940878i \(-0.389997\pi\)
0.338746 + 0.940878i \(0.389997\pi\)
\(920\) 0 0
\(921\) 13353.3 + 13353.3i 0.477749 + 0.477749i
\(922\) 0 0
\(923\) −41321.1 41321.1i −1.47357 1.47357i
\(924\) 0 0
\(925\) 3624.47 3624.47i 0.128834 0.128834i
\(926\) 0 0
\(927\) 3721.07i 0.131840i
\(928\) 0 0
\(929\) 20513.6 20513.6i 0.724467 0.724467i −0.245044 0.969512i \(-0.578803\pi\)
0.969512 + 0.245044i \(0.0788026\pi\)
\(930\) 0 0
\(931\) 45595.3 1.60508
\(932\) 0 0
\(933\) 37249.9i 1.30708i
\(934\) 0 0
\(935\) 549.334 + 5329.47i 0.0192140 + 0.186409i
\(936\) 0 0
\(937\) 32638.3i 1.13794i −0.822360 0.568968i \(-0.807343\pi\)
0.822360 0.568968i \(-0.192657\pi\)
\(938\) 0 0
\(939\) 44547.0 1.54818
\(940\) 0 0
\(941\) 4905.12 4905.12i 0.169928 0.169928i −0.617020 0.786948i \(-0.711660\pi\)
0.786948 + 0.617020i \(0.211660\pi\)
\(942\) 0 0
\(943\) 30812.3i 1.06403i
\(944\) 0 0
\(945\) −2387.90 + 2387.90i −0.0821994 + 0.0821994i
\(946\) 0 0
\(947\) 18028.4 + 18028.4i 0.618631 + 0.618631i 0.945180 0.326549i \(-0.105886\pi\)
−0.326549 + 0.945180i \(0.605886\pi\)
\(948\) 0 0
\(949\) −32204.5 32204.5i −1.10158 1.10158i
\(950\) 0 0
\(951\) −40787.4 −1.39077
\(952\) 0 0
\(953\) −45137.1 −1.53424 −0.767121 0.641502i \(-0.778312\pi\)
−0.767121 + 0.641502i \(0.778312\pi\)
\(954\) 0 0
\(955\) −23708.7 23708.7i −0.803345 0.803345i
\(956\) 0 0
\(957\) 580.615 + 580.615i 0.0196119 + 0.0196119i
\(958\) 0 0
\(959\) −47716.6 + 47716.6i −1.60673 + 1.60673i
\(960\) 0 0
\(961\) 11338.3i 0.380593i
\(962\) 0 0
\(963\) 1001.00 1001.00i 0.0334962 0.0334962i
\(964\) 0 0
\(965\) −45311.1 −1.51152
\(966\) 0 0
\(967\) 4077.37i 0.135594i −0.997699 0.0677970i \(-0.978403\pi\)
0.997699 0.0677970i \(-0.0215970\pi\)
\(968\) 0 0
\(969\) 44979.0 + 36573.1i 1.49116 + 1.21248i
\(970\) 0 0
\(971\) 30916.5i 1.02179i −0.859644 0.510894i \(-0.829314\pi\)
0.859644 0.510894i \(-0.170686\pi\)
\(972\) 0 0
\(973\) −54494.3 −1.79548
\(974\) 0 0
\(975\) −6456.59 + 6456.59i −0.212078 + 0.212078i
\(976\) 0 0
\(977\) 32526.6i 1.06512i −0.846394 0.532558i \(-0.821231\pi\)
0.846394 0.532558i \(-0.178769\pi\)
\(978\) 0 0
\(979\) 694.287 694.287i 0.0226655 0.0226655i
\(980\) 0 0
\(981\) 1076.01 + 1076.01i 0.0350199 + 0.0350199i
\(982\) 0 0
\(983\) −27056.0 27056.0i −0.877875 0.877875i 0.115439 0.993315i \(-0.463172\pi\)
−0.993315 + 0.115439i \(0.963172\pi\)
\(984\) 0 0
\(985\) −7735.49 −0.250227
\(986\) 0 0
\(987\) 83226.7 2.68403
\(988\) 0 0
\(989\) 12756.2 + 12756.2i 0.410135 + 0.410135i
\(990\) 0 0
\(991\) 39556.5 + 39556.5i 1.26797 + 1.26797i 0.947137 + 0.320829i \(0.103962\pi\)
0.320829 + 0.947137i \(0.396038\pi\)
\(992\) 0 0
\(993\) −19455.6 + 19455.6i −0.621758 + 0.621758i
\(994\) 0 0
\(995\) 34431.1i 1.09702i
\(996\) 0 0
\(997\) 24809.0 24809.0i 0.788074 0.788074i −0.193104 0.981178i \(-0.561856\pi\)
0.981178 + 0.193104i \(0.0618556\pi\)
\(998\) 0 0
\(999\) 2939.84 0.0931054
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.4.o.f.81.7 14
4.3 odd 2 136.4.k.b.81.1 14
17.4 even 4 inner 272.4.o.f.225.7 14
68.15 odd 8 2312.4.a.l.1.13 14
68.19 odd 8 2312.4.a.l.1.2 14
68.55 odd 4 136.4.k.b.89.1 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.4.k.b.81.1 14 4.3 odd 2
136.4.k.b.89.1 yes 14 68.55 odd 4
272.4.o.f.81.7 14 1.1 even 1 trivial
272.4.o.f.225.7 14 17.4 even 4 inner
2312.4.a.l.1.2 14 68.19 odd 8
2312.4.a.l.1.13 14 68.15 odd 8