Properties

Label 273.2.bd.a.127.4
Level $273$
Weight $2$
Character 273.127
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(43,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bd (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 22x^{14} + 187x^{12} + 774x^{10} + 1619x^{8} + 1618x^{6} + 690x^{4} + 96x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.4
Root \(0.485989i\) of defining polynomial
Character \(\chi\) \(=\) 273.127
Dual form 273.2.bd.a.43.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.420879 + 0.242995i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.881907 + 1.52751i) q^{4} -1.06536i q^{5} +(0.420879 + 0.242995i) q^{6} +(-0.866025 - 0.500000i) q^{7} -1.82917i q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.258876 + 0.448387i) q^{10} +(4.98494 - 2.87806i) q^{11} +1.76381 q^{12} +(1.77592 - 3.13785i) q^{13} +0.485989 q^{14} +(-0.922628 + 0.532679i) q^{15} +(-1.31934 - 2.28516i) q^{16} +(1.17266 - 2.03111i) q^{17} -0.485989i q^{18} +(-5.36979 - 3.10025i) q^{19} +(1.62734 + 0.939548i) q^{20} +1.00000i q^{21} +(-1.39870 + 2.42263i) q^{22} +(2.75674 + 4.77481i) q^{23} +(-1.58411 + 0.914587i) q^{24} +3.86501 q^{25} +(0.0150320 + 1.75219i) q^{26} +1.00000 q^{27} +(1.52751 - 0.881907i) q^{28} +(-2.80215 - 4.85347i) q^{29} +(0.258876 - 0.448387i) q^{30} -5.46420i q^{31} +(4.27878 + 2.47036i) q^{32} +(-4.98494 - 2.87806i) q^{33} +1.13980i q^{34} +(-0.532679 + 0.922628i) q^{35} +(-0.881907 - 1.52751i) q^{36} +(-4.08375 + 2.35775i) q^{37} +3.01337 q^{38} +(-3.60542 + 0.0309306i) q^{39} -1.94873 q^{40} +(7.69141 - 4.44064i) q^{41} +(-0.242995 - 0.420879i) q^{42} +(-4.77851 + 8.27662i) q^{43} +10.1527i q^{44} +(0.922628 + 0.532679i) q^{45} +(-2.32051 - 1.33975i) q^{46} +5.21864i q^{47} +(-1.31934 + 2.28516i) q^{48} +(0.500000 + 0.866025i) q^{49} +(-1.62670 + 0.939177i) q^{50} -2.34533 q^{51} +(3.22689 + 5.48003i) q^{52} +1.52870 q^{53} +(-0.420879 + 0.242995i) q^{54} +(-3.06616 - 5.31075i) q^{55} +(-0.914587 + 1.58411i) q^{56} +6.20049i q^{57} +(2.35873 + 1.36181i) q^{58} +(-9.06406 - 5.23314i) q^{59} -1.87910i q^{60} +(-3.82305 + 6.62171i) q^{61} +(1.32777 + 2.29977i) q^{62} +(0.866025 - 0.500000i) q^{63} +2.87621 q^{64} +(-3.34294 - 1.89199i) q^{65} +2.79741 q^{66} +(2.83779 - 1.63840i) q^{67} +(2.06836 + 3.58251i) q^{68} +(2.75674 - 4.77481i) q^{69} -0.517753i q^{70} +(7.50761 + 4.33452i) q^{71} +(1.58411 + 0.914587i) q^{72} +7.63941i q^{73} +(1.14584 - 1.98466i) q^{74} +(-1.93251 - 3.34720i) q^{75} +(9.47131 - 5.46826i) q^{76} -5.75611 q^{77} +(1.50993 - 0.889115i) q^{78} -15.6147 q^{79} +(-2.43451 + 1.40557i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-2.15810 + 3.73794i) q^{82} +2.63313i q^{83} +(-1.52751 - 0.881907i) q^{84} +(-2.16387 - 1.24931i) q^{85} -4.64461i q^{86} +(-2.80215 + 4.85347i) q^{87} +(-5.26447 - 9.11832i) q^{88} +(10.4502 - 6.03343i) q^{89} -0.517753 q^{90} +(-3.10692 + 1.82950i) q^{91} -9.72476 q^{92} +(-4.73214 + 2.73210i) q^{93} +(-1.26810 - 2.19642i) q^{94} +(-3.30288 + 5.72075i) q^{95} -4.94071i q^{96} +(14.5156 + 8.38057i) q^{97} +(-0.420879 - 0.242995i) q^{98} +5.75611i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{3} + 6 q^{4} - 8 q^{9} - 4 q^{10} - 12 q^{11} - 12 q^{12} + 4 q^{13} + 4 q^{14} - 10 q^{16} + 10 q^{17} + 6 q^{20} - 2 q^{22} - 2 q^{23} + 12 q^{25} + 20 q^{26} + 16 q^{27} + 12 q^{29} - 4 q^{30}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.420879 + 0.242995i −0.297606 + 0.171823i −0.641367 0.767234i \(-0.721632\pi\)
0.343761 + 0.939057i \(0.388299\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.881907 + 1.52751i −0.440954 + 0.763754i
\(5\) 1.06536i 0.476443i −0.971211 0.238221i \(-0.923436\pi\)
0.971211 0.238221i \(-0.0765644\pi\)
\(6\) 0.420879 + 0.242995i 0.171823 + 0.0992021i
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 1.82917i 0.646710i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.258876 + 0.448387i 0.0818639 + 0.141792i
\(11\) 4.98494 2.87806i 1.50302 0.867767i 0.503022 0.864273i \(-0.332221\pi\)
0.999994 0.00349358i \(-0.00111204\pi\)
\(12\) 1.76381 0.509169
\(13\) 1.77592 3.13785i 0.492552 0.870283i
\(14\) 0.485989 0.129886
\(15\) −0.922628 + 0.532679i −0.238221 + 0.137537i
\(16\) −1.31934 2.28516i −0.329834 0.571289i
\(17\) 1.17266 2.03111i 0.284413 0.492618i −0.688054 0.725660i \(-0.741535\pi\)
0.972467 + 0.233042i \(0.0748680\pi\)
\(18\) 0.485989i 0.114549i
\(19\) −5.36979 3.10025i −1.23191 0.711246i −0.264485 0.964390i \(-0.585202\pi\)
−0.967429 + 0.253144i \(0.918535\pi\)
\(20\) 1.62734 + 0.939548i 0.363885 + 0.210089i
\(21\) 1.00000i 0.218218i
\(22\) −1.39870 + 2.42263i −0.298205 + 0.516506i
\(23\) 2.75674 + 4.77481i 0.574820 + 0.995618i 0.996061 + 0.0886690i \(0.0282613\pi\)
−0.421241 + 0.906949i \(0.638405\pi\)
\(24\) −1.58411 + 0.914587i −0.323355 + 0.186689i
\(25\) 3.86501 0.773002
\(26\) 0.0150320 + 1.75219i 0.00294801 + 0.343634i
\(27\) 1.00000 0.192450
\(28\) 1.52751 0.881907i 0.288672 0.166665i
\(29\) −2.80215 4.85347i −0.520346 0.901266i −0.999720 0.0236554i \(-0.992470\pi\)
0.479374 0.877611i \(-0.340864\pi\)
\(30\) 0.258876 0.448387i 0.0472642 0.0818639i
\(31\) 5.46420i 0.981400i −0.871329 0.490700i \(-0.836741\pi\)
0.871329 0.490700i \(-0.163259\pi\)
\(32\) 4.27878 + 2.47036i 0.756389 + 0.436701i
\(33\) −4.98494 2.87806i −0.867767 0.501005i
\(34\) 1.13980i 0.195475i
\(35\) −0.532679 + 0.922628i −0.0900393 + 0.155953i
\(36\) −0.881907 1.52751i −0.146985 0.254585i
\(37\) −4.08375 + 2.35775i −0.671364 + 0.387612i −0.796593 0.604515i \(-0.793367\pi\)
0.125229 + 0.992128i \(0.460033\pi\)
\(38\) 3.01337 0.488834
\(39\) −3.60542 + 0.0309306i −0.577329 + 0.00495286i
\(40\) −1.94873 −0.308121
\(41\) 7.69141 4.44064i 1.20120 0.693511i 0.240375 0.970680i \(-0.422730\pi\)
0.960821 + 0.277169i \(0.0893963\pi\)
\(42\) −0.242995 0.420879i −0.0374949 0.0649430i
\(43\) −4.77851 + 8.27662i −0.728716 + 1.26217i 0.228710 + 0.973495i \(0.426549\pi\)
−0.957426 + 0.288679i \(0.906784\pi\)
\(44\) 10.1527i 1.53058i
\(45\) 0.922628 + 0.532679i 0.137537 + 0.0794072i
\(46\) −2.32051 1.33975i −0.342140 0.197535i
\(47\) 5.21864i 0.761217i 0.924736 + 0.380608i \(0.124285\pi\)
−0.924736 + 0.380608i \(0.875715\pi\)
\(48\) −1.31934 + 2.28516i −0.190430 + 0.329834i
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −1.62670 + 0.939177i −0.230050 + 0.132820i
\(51\) −2.34533 −0.328412
\(52\) 3.22689 + 5.48003i 0.447489 + 0.759943i
\(53\) 1.52870 0.209982 0.104991 0.994473i \(-0.466519\pi\)
0.104991 + 0.994473i \(0.466519\pi\)
\(54\) −0.420879 + 0.242995i −0.0572744 + 0.0330674i
\(55\) −3.06616 5.31075i −0.413441 0.716102i
\(56\) −0.914587 + 1.58411i −0.122217 + 0.211686i
\(57\) 6.20049i 0.821276i
\(58\) 2.35873 + 1.36181i 0.309717 + 0.178815i
\(59\) −9.06406 5.23314i −1.18004 0.681297i −0.224016 0.974585i \(-0.571917\pi\)
−0.956024 + 0.293289i \(0.905250\pi\)
\(60\) 1.87910i 0.242590i
\(61\) −3.82305 + 6.62171i −0.489491 + 0.847823i −0.999927 0.0120926i \(-0.996151\pi\)
0.510436 + 0.859916i \(0.329484\pi\)
\(62\) 1.32777 + 2.29977i 0.168627 + 0.292071i
\(63\) 0.866025 0.500000i 0.109109 0.0629941i
\(64\) 2.87621 0.359526
\(65\) −3.34294 1.89199i −0.414640 0.234673i
\(66\) 2.79741 0.344337
\(67\) 2.83779 1.63840i 0.346691 0.200162i −0.316536 0.948581i \(-0.602520\pi\)
0.663227 + 0.748418i \(0.269186\pi\)
\(68\) 2.06836 + 3.58251i 0.250826 + 0.434443i
\(69\) 2.75674 4.77481i 0.331873 0.574820i
\(70\) 0.517753i 0.0618833i
\(71\) 7.50761 + 4.33452i 0.890990 + 0.514413i 0.874266 0.485447i \(-0.161343\pi\)
0.0167238 + 0.999860i \(0.494676\pi\)
\(72\) 1.58411 + 0.914587i 0.186689 + 0.107785i
\(73\) 7.63941i 0.894126i 0.894503 + 0.447063i \(0.147530\pi\)
−0.894503 + 0.447063i \(0.852470\pi\)
\(74\) 1.14584 1.98466i 0.133202 0.230712i
\(75\) −1.93251 3.34720i −0.223146 0.386501i
\(76\) 9.47131 5.46826i 1.08643 0.627253i
\(77\) −5.75611 −0.655970
\(78\) 1.50993 0.889115i 0.170966 0.100672i
\(79\) −15.6147 −1.75679 −0.878397 0.477932i \(-0.841387\pi\)
−0.878397 + 0.477932i \(0.841387\pi\)
\(80\) −2.43451 + 1.40557i −0.272187 + 0.157147i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −2.15810 + 3.73794i −0.238322 + 0.412786i
\(83\) 2.63313i 0.289024i 0.989503 + 0.144512i \(0.0461612\pi\)
−0.989503 + 0.144512i \(0.953839\pi\)
\(84\) −1.52751 0.881907i −0.166665 0.0962240i
\(85\) −2.16387 1.24931i −0.234704 0.135507i
\(86\) 4.64461i 0.500841i
\(87\) −2.80215 + 4.85347i −0.300422 + 0.520346i
\(88\) −5.26447 9.11832i −0.561194 0.972016i
\(89\) 10.4502 6.03343i 1.10772 0.639542i 0.169481 0.985533i \(-0.445791\pi\)
0.938238 + 0.345991i \(0.112457\pi\)
\(90\) −0.517753 −0.0545759
\(91\) −3.10692 + 1.82950i −0.325694 + 0.191783i
\(92\) −9.72476 −1.01388
\(93\) −4.73214 + 2.73210i −0.490700 + 0.283306i
\(94\) −1.26810 2.19642i −0.130795 0.226543i
\(95\) −3.30288 + 5.72075i −0.338868 + 0.586936i
\(96\) 4.94071i 0.504259i
\(97\) 14.5156 + 8.38057i 1.47383 + 0.850918i 0.999566 0.0294624i \(-0.00937954\pi\)
0.474268 + 0.880381i \(0.342713\pi\)
\(98\) −0.420879 0.242995i −0.0425152 0.0245462i
\(99\) 5.75611i 0.578511i
\(100\) −3.40858 + 5.90384i −0.340858 + 0.590384i
\(101\) −1.28815 2.23115i −0.128176 0.222008i 0.794794 0.606880i \(-0.207579\pi\)
−0.922970 + 0.384872i \(0.874246\pi\)
\(102\) 0.987100 0.569902i 0.0977375 0.0564287i
\(103\) 10.3824 1.02301 0.511506 0.859280i \(-0.329088\pi\)
0.511506 + 0.859280i \(0.329088\pi\)
\(104\) −5.73967 3.24847i −0.562821 0.318539i
\(105\) 1.06536 0.103968
\(106\) −0.643396 + 0.371465i −0.0624921 + 0.0360798i
\(107\) −8.51774 14.7532i −0.823441 1.42624i −0.903105 0.429420i \(-0.858718\pi\)
0.0796637 0.996822i \(-0.474615\pi\)
\(108\) −0.881907 + 1.52751i −0.0848616 + 0.146985i
\(109\) 1.86126i 0.178276i −0.996019 0.0891380i \(-0.971589\pi\)
0.996019 0.0891380i \(-0.0284112\pi\)
\(110\) 2.58097 + 1.49012i 0.246086 + 0.142078i
\(111\) 4.08375 + 2.35775i 0.387612 + 0.223788i
\(112\) 2.63867i 0.249331i
\(113\) 2.38371 4.12870i 0.224240 0.388396i −0.731851 0.681465i \(-0.761343\pi\)
0.956091 + 0.293069i \(0.0946766\pi\)
\(114\) −1.50669 2.60966i −0.141114 0.244417i
\(115\) 5.08689 2.93692i 0.474355 0.273869i
\(116\) 9.88495 0.917794
\(117\) 1.82950 + 3.10692i 0.169137 + 0.287235i
\(118\) 5.08650 0.468250
\(119\) −2.03111 + 1.17266i −0.186192 + 0.107498i
\(120\) 0.974363 + 1.68765i 0.0889468 + 0.154060i
\(121\) 11.0664 19.1676i 1.00604 1.74251i
\(122\) 3.71592i 0.336423i
\(123\) −7.69141 4.44064i −0.693511 0.400399i
\(124\) 8.34662 + 4.81892i 0.749548 + 0.432752i
\(125\) 9.44442i 0.844734i
\(126\) −0.242995 + 0.420879i −0.0216477 + 0.0374949i
\(127\) −0.593804 1.02850i −0.0526916 0.0912645i 0.838477 0.544938i \(-0.183447\pi\)
−0.891168 + 0.453673i \(0.850113\pi\)
\(128\) −9.76810 + 5.63962i −0.863386 + 0.498476i
\(129\) 9.55702 0.841449
\(130\) 1.86672 0.0160144i 0.163722 0.00140456i
\(131\) −14.8261 −1.29537 −0.647683 0.761910i \(-0.724262\pi\)
−0.647683 + 0.761910i \(0.724262\pi\)
\(132\) 8.79251 5.07636i 0.765290 0.441840i
\(133\) 3.10025 + 5.36979i 0.268826 + 0.465619i
\(134\) −0.796244 + 1.37914i −0.0687850 + 0.119139i
\(135\) 1.06536i 0.0916915i
\(136\) −3.71526 2.14501i −0.318581 0.183933i
\(137\) 5.69247 + 3.28655i 0.486341 + 0.280789i 0.723055 0.690790i \(-0.242737\pi\)
−0.236714 + 0.971579i \(0.576071\pi\)
\(138\) 2.67949i 0.228094i
\(139\) 0.367315 0.636208i 0.0311553 0.0539625i −0.850027 0.526739i \(-0.823415\pi\)
0.881183 + 0.472776i \(0.156748\pi\)
\(140\) −0.939548 1.62734i −0.0794063 0.137536i
\(141\) 4.51947 2.60932i 0.380608 0.219744i
\(142\) −4.21306 −0.353552
\(143\) −0.178040 20.7532i −0.0148885 1.73547i
\(144\) 2.63867 0.219889
\(145\) −5.17068 + 2.98530i −0.429402 + 0.247915i
\(146\) −1.85634 3.21527i −0.153631 0.266097i
\(147\) 0.500000 0.866025i 0.0412393 0.0714286i
\(148\) 8.31728i 0.683676i
\(149\) 19.6065 + 11.3198i 1.60622 + 0.927354i 0.990205 + 0.139622i \(0.0445887\pi\)
0.616019 + 0.787732i \(0.288745\pi\)
\(150\) 1.62670 + 0.939177i 0.132820 + 0.0766835i
\(151\) 7.94508i 0.646561i 0.946303 + 0.323281i \(0.104786\pi\)
−0.946303 + 0.323281i \(0.895214\pi\)
\(152\) −5.67089 + 9.82227i −0.459970 + 0.796691i
\(153\) 1.17266 + 2.03111i 0.0948043 + 0.164206i
\(154\) 2.42263 1.39870i 0.195221 0.112711i
\(155\) −5.82134 −0.467581
\(156\) 3.13240 5.53458i 0.250793 0.443121i
\(157\) 15.4868 1.23598 0.617991 0.786185i \(-0.287947\pi\)
0.617991 + 0.786185i \(0.287947\pi\)
\(158\) 6.57191 3.79429i 0.522833 0.301858i
\(159\) −0.764348 1.32389i −0.0606167 0.104991i
\(160\) 2.63182 4.55844i 0.208063 0.360376i
\(161\) 5.51348i 0.434523i
\(162\) 0.420879 + 0.242995i 0.0330674 + 0.0190915i
\(163\) 5.10619 + 2.94806i 0.399947 + 0.230910i 0.686461 0.727166i \(-0.259163\pi\)
−0.286514 + 0.958076i \(0.592496\pi\)
\(164\) 15.6649i 1.22322i
\(165\) −3.06616 + 5.31075i −0.238701 + 0.413441i
\(166\) −0.639837 1.10823i −0.0496609 0.0860153i
\(167\) 8.23496 4.75446i 0.637241 0.367911i −0.146310 0.989239i \(-0.546740\pi\)
0.783551 + 0.621328i \(0.213406\pi\)
\(168\) 1.82917 0.141124
\(169\) −6.69220 11.1452i −0.514784 0.857320i
\(170\) 1.21430 0.0931326
\(171\) 5.36979 3.10025i 0.410638 0.237082i
\(172\) −8.42841 14.5984i −0.642660 1.11312i
\(173\) −0.812324 + 1.40699i −0.0617599 + 0.106971i −0.895252 0.445560i \(-0.853005\pi\)
0.833492 + 0.552531i \(0.186338\pi\)
\(174\) 2.72363i 0.206478i
\(175\) −3.34720 1.93251i −0.253024 0.146084i
\(176\) −13.1536 7.59424i −0.991491 0.572438i
\(177\) 10.4663i 0.786694i
\(178\) −2.93218 + 5.07869i −0.219776 + 0.380664i
\(179\) 9.87735 + 17.1081i 0.738268 + 1.27872i 0.953275 + 0.302105i \(0.0976892\pi\)
−0.215007 + 0.976612i \(0.568977\pi\)
\(180\) −1.62734 + 0.939548i −0.121295 + 0.0700297i
\(181\) −0.589428 −0.0438118 −0.0219059 0.999760i \(-0.506973\pi\)
−0.0219059 + 0.999760i \(0.506973\pi\)
\(182\) 0.863079 1.52496i 0.0639757 0.113038i
\(183\) 7.64609 0.565215
\(184\) 8.73396 5.04256i 0.643876 0.371742i
\(185\) 2.51185 + 4.35066i 0.184675 + 0.319867i
\(186\) 1.32777 2.29977i 0.0973570 0.168627i
\(187\) 13.5000i 0.987217i
\(188\) −7.97152 4.60236i −0.581383 0.335661i
\(189\) −0.866025 0.500000i −0.0629941 0.0363696i
\(190\) 3.21032i 0.232901i
\(191\) −4.58812 + 7.94686i −0.331985 + 0.575015i −0.982901 0.184135i \(-0.941052\pi\)
0.650916 + 0.759150i \(0.274385\pi\)
\(192\) −1.43810 2.49087i −0.103786 0.179763i
\(193\) −2.84691 + 1.64367i −0.204925 + 0.118314i −0.598951 0.800786i \(-0.704416\pi\)
0.394025 + 0.919100i \(0.371082\pi\)
\(194\) −8.14574 −0.584830
\(195\) 0.0329522 + 3.84106i 0.00235976 + 0.275064i
\(196\) −1.76381 −0.125987
\(197\) −13.2678 + 7.66017i −0.945292 + 0.545765i −0.891615 0.452793i \(-0.850427\pi\)
−0.0536771 + 0.998558i \(0.517094\pi\)
\(198\) −1.39870 2.42263i −0.0994016 0.172169i
\(199\) −7.26150 + 12.5773i −0.514754 + 0.891581i 0.485099 + 0.874459i \(0.338784\pi\)
−0.999853 + 0.0171214i \(0.994550\pi\)
\(200\) 7.06977i 0.499909i
\(201\) −2.83779 1.63840i −0.200162 0.115564i
\(202\) 1.08431 + 0.626029i 0.0762921 + 0.0440473i
\(203\) 5.60430i 0.393345i
\(204\) 2.06836 3.58251i 0.144814 0.250826i
\(205\) −4.73087 8.19411i −0.330418 0.572301i
\(206\) −4.36975 + 2.52288i −0.304455 + 0.175777i
\(207\) −5.51348 −0.383213
\(208\) −9.51351 + 0.0816157i −0.659643 + 0.00565903i
\(209\) −35.6908 −2.46878
\(210\) −0.448387 + 0.258876i −0.0309417 + 0.0178642i
\(211\) 8.26364 + 14.3130i 0.568892 + 0.985350i 0.996676 + 0.0814692i \(0.0259612\pi\)
−0.427783 + 0.903881i \(0.640705\pi\)
\(212\) −1.34817 + 2.33509i −0.0925925 + 0.160375i
\(213\) 8.66905i 0.593993i
\(214\) 7.16988 + 4.13953i 0.490123 + 0.282972i
\(215\) 8.81757 + 5.09083i 0.601354 + 0.347192i
\(216\) 1.82917i 0.124459i
\(217\) −2.73210 + 4.73214i −0.185467 + 0.321239i
\(218\) 0.452275 + 0.783363i 0.0306319 + 0.0530561i
\(219\) 6.61593 3.81971i 0.447063 0.258112i
\(220\) 10.8163 0.729234
\(221\) −4.29077 7.28675i −0.288628 0.490160i
\(222\) −2.29169 −0.153808
\(223\) −18.7844 + 10.8452i −1.25789 + 0.726246i −0.972665 0.232213i \(-0.925403\pi\)
−0.285230 + 0.958459i \(0.592070\pi\)
\(224\) −2.47036 4.27878i −0.165058 0.285888i
\(225\) −1.93251 + 3.34720i −0.128834 + 0.223146i
\(226\) 2.31691i 0.154119i
\(227\) −4.70729 2.71776i −0.312434 0.180384i 0.335581 0.942011i \(-0.391067\pi\)
−0.648015 + 0.761627i \(0.724401\pi\)
\(228\) −9.47131 5.46826i −0.627253 0.362144i
\(229\) 9.99668i 0.660599i −0.943876 0.330300i \(-0.892850\pi\)
0.943876 0.330300i \(-0.107150\pi\)
\(230\) −1.42731 + 2.47217i −0.0941141 + 0.163010i
\(231\) 2.87806 + 4.98494i 0.189362 + 0.327985i
\(232\) −8.87783 + 5.12562i −0.582858 + 0.336513i
\(233\) 1.72553 0.113043 0.0565217 0.998401i \(-0.481999\pi\)
0.0565217 + 0.998401i \(0.481999\pi\)
\(234\) −1.52496 0.863079i −0.0996898 0.0564213i
\(235\) 5.55972 0.362676
\(236\) 15.9873 9.23029i 1.04069 0.600840i
\(237\) 7.80736 + 13.5228i 0.507143 + 0.878397i
\(238\) 0.569902 0.987100i 0.0369413 0.0639842i
\(239\) 5.80837i 0.375712i 0.982197 + 0.187856i \(0.0601539\pi\)
−0.982197 + 0.187856i \(0.939846\pi\)
\(240\) 2.43451 + 1.40557i 0.157147 + 0.0907289i
\(241\) 9.63038 + 5.56010i 0.620348 + 0.358158i 0.777004 0.629495i \(-0.216738\pi\)
−0.156657 + 0.987653i \(0.550072\pi\)
\(242\) 10.7563i 0.691443i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −6.74315 11.6795i −0.431686 0.747701i
\(245\) 0.922628 0.532679i 0.0589445 0.0340316i
\(246\) 4.31620 0.275191
\(247\) −19.2644 + 11.3438i −1.22577 + 0.721787i
\(248\) −9.99498 −0.634682
\(249\) 2.28036 1.31657i 0.144512 0.0834339i
\(250\) 2.29494 + 3.97496i 0.145145 + 0.251398i
\(251\) 4.87634 8.44607i 0.307792 0.533111i −0.670087 0.742283i \(-0.733743\pi\)
0.977879 + 0.209171i \(0.0670766\pi\)
\(252\) 1.76381i 0.111110i
\(253\) 27.4844 + 15.8681i 1.72793 + 0.997620i
\(254\) 0.499839 + 0.288582i 0.0313627 + 0.0181073i
\(255\) 2.49862i 0.156469i
\(256\) −0.135416 + 0.234547i −0.00846350 + 0.0146592i
\(257\) 5.19710 + 9.00164i 0.324186 + 0.561507i 0.981347 0.192243i \(-0.0615762\pi\)
−0.657161 + 0.753750i \(0.728243\pi\)
\(258\) −4.02235 + 2.32230i −0.250421 + 0.144580i
\(259\) 4.71551 0.293007
\(260\) 5.83820 3.43780i 0.362070 0.213203i
\(261\) 5.60430 0.346898
\(262\) 6.24001 3.60267i 0.385509 0.222574i
\(263\) 12.2395 + 21.1994i 0.754717 + 1.30721i 0.945515 + 0.325579i \(0.105559\pi\)
−0.190798 + 0.981629i \(0.561107\pi\)
\(264\) −5.26447 + 9.11832i −0.324005 + 0.561194i
\(265\) 1.62861i 0.100045i
\(266\) −2.60966 1.50669i −0.160008 0.0923809i
\(267\) −10.4502 6.03343i −0.639542 0.369240i
\(268\) 5.77966i 0.353049i
\(269\) −2.52910 + 4.38052i −0.154202 + 0.267085i −0.932768 0.360477i \(-0.882614\pi\)
0.778566 + 0.627562i \(0.215947\pi\)
\(270\) 0.258876 + 0.448387i 0.0157547 + 0.0272880i
\(271\) 11.7523 6.78518i 0.713900 0.412170i −0.0986037 0.995127i \(-0.531438\pi\)
0.812503 + 0.582957i \(0.198104\pi\)
\(272\) −6.18855 −0.375236
\(273\) 3.13785 + 1.77592i 0.189911 + 0.107484i
\(274\) −3.19446 −0.192984
\(275\) 19.2669 11.1237i 1.16183 0.670786i
\(276\) 4.86238 + 8.42189i 0.292681 + 0.506938i
\(277\) −11.7870 + 20.4156i −0.708210 + 1.22666i 0.257311 + 0.966329i \(0.417164\pi\)
−0.965521 + 0.260327i \(0.916170\pi\)
\(278\) 0.357022i 0.0214128i
\(279\) 4.73214 + 2.73210i 0.283306 + 0.163567i
\(280\) 1.68765 + 0.974363i 0.100856 + 0.0582293i
\(281\) 14.8688i 0.886996i −0.896275 0.443498i \(-0.853737\pi\)
0.896275 0.443498i \(-0.146263\pi\)
\(282\) −1.26810 + 2.19642i −0.0755143 + 0.130795i
\(283\) −10.4948 18.1776i −0.623852 1.08054i −0.988762 0.149500i \(-0.952233\pi\)
0.364910 0.931043i \(-0.381100\pi\)
\(284\) −13.2420 + 7.64530i −0.785770 + 0.453665i
\(285\) 6.60575 0.391291
\(286\) 5.11785 + 8.69132i 0.302625 + 0.513929i
\(287\) −8.88127 −0.524245
\(288\) −4.27878 + 2.47036i −0.252130 + 0.145567i
\(289\) 5.74972 + 9.95880i 0.338219 + 0.585812i
\(290\) 1.45082 2.51290i 0.0851952 0.147562i
\(291\) 16.7611i 0.982556i
\(292\) −11.6693 6.73725i −0.682892 0.394268i
\(293\) 6.39182 + 3.69032i 0.373414 + 0.215591i 0.674949 0.737864i \(-0.264166\pi\)
−0.301535 + 0.953455i \(0.597499\pi\)
\(294\) 0.485989i 0.0283435i
\(295\) −5.57517 + 9.65648i −0.324599 + 0.562222i
\(296\) 4.31274 + 7.46989i 0.250673 + 0.434178i
\(297\) 4.98494 2.87806i 0.289256 0.167002i
\(298\) −11.0026 −0.637363
\(299\) 19.8784 0.170535i 1.14960 0.00986232i
\(300\) 6.81716 0.393589
\(301\) 8.27662 4.77851i 0.477057 0.275429i
\(302\) −1.93061 3.34392i −0.111094 0.192421i
\(303\) −1.28815 + 2.23115i −0.0740026 + 0.128176i
\(304\) 16.3611i 0.938371i
\(305\) 7.05450 + 4.07292i 0.403939 + 0.233215i
\(306\) −0.987100 0.569902i −0.0564287 0.0325792i
\(307\) 26.2172i 1.49629i 0.663534 + 0.748146i \(0.269056\pi\)
−0.663534 + 0.748146i \(0.730944\pi\)
\(308\) 5.07636 8.79251i 0.289252 0.501000i
\(309\) −5.19122 8.99146i −0.295318 0.511506i
\(310\) 2.45008 1.41455i 0.139155 0.0803413i
\(311\) −23.3730 −1.32536 −0.662681 0.748902i \(-0.730581\pi\)
−0.662681 + 0.748902i \(0.730581\pi\)
\(312\) 0.0565775 + 6.59494i 0.00320307 + 0.373365i
\(313\) −20.5337 −1.16064 −0.580318 0.814390i \(-0.697072\pi\)
−0.580318 + 0.814390i \(0.697072\pi\)
\(314\) −6.51807 + 3.76321i −0.367836 + 0.212370i
\(315\) −0.532679 0.922628i −0.0300131 0.0519842i
\(316\) 13.7707 23.8516i 0.774665 1.34176i
\(317\) 2.73722i 0.153738i 0.997041 + 0.0768689i \(0.0244923\pi\)
−0.997041 + 0.0768689i \(0.975508\pi\)
\(318\) 0.643396 + 0.371465i 0.0360798 + 0.0208307i
\(319\) −27.9371 16.1295i −1.56418 0.903079i
\(320\) 3.06419i 0.171294i
\(321\) −8.51774 + 14.7532i −0.475414 + 0.823441i
\(322\) 1.33975 + 2.32051i 0.0746611 + 0.129317i
\(323\) −12.5939 + 7.27110i −0.700744 + 0.404575i
\(324\) 1.76381 0.0979897
\(325\) 6.86396 12.1278i 0.380744 0.672730i
\(326\) −2.86545 −0.158703
\(327\) −1.61189 + 0.930628i −0.0891380 + 0.0514638i
\(328\) −8.12269 14.0689i −0.448501 0.776826i
\(329\) 2.60932 4.51947i 0.143856 0.249167i
\(330\) 2.98024i 0.164057i
\(331\) −8.35843 4.82574i −0.459421 0.265247i 0.252380 0.967628i \(-0.418787\pi\)
−0.711801 + 0.702382i \(0.752120\pi\)
\(332\) −4.02213 2.32218i −0.220743 0.127446i
\(333\) 4.71551i 0.258408i
\(334\) −2.31062 + 4.00210i −0.126431 + 0.218985i
\(335\) −1.74548 3.02327i −0.0953659 0.165179i
\(336\) 2.28516 1.31934i 0.124665 0.0719756i
\(337\) 11.3368 0.617555 0.308778 0.951134i \(-0.400080\pi\)
0.308778 + 0.951134i \(0.400080\pi\)
\(338\) 5.52482 + 3.06459i 0.300511 + 0.166692i
\(339\) −4.76742 −0.258930
\(340\) 3.81666 2.20355i 0.206987 0.119504i
\(341\) −15.7263 27.2387i −0.851627 1.47506i
\(342\) −1.50669 + 2.60966i −0.0814723 + 0.141114i
\(343\) 1.00000i 0.0539949i
\(344\) 15.1394 + 8.74072i 0.816261 + 0.471268i
\(345\) −5.08689 2.93692i −0.273869 0.158118i
\(346\) 0.789562i 0.0424471i
\(347\) 9.83667 17.0376i 0.528060 0.914627i −0.471405 0.881917i \(-0.656253\pi\)
0.999465 0.0327100i \(-0.0104138\pi\)
\(348\) −4.94247 8.56062i −0.264944 0.458897i
\(349\) 6.82990 3.94324i 0.365596 0.211077i −0.305937 0.952052i \(-0.598970\pi\)
0.671533 + 0.740975i \(0.265636\pi\)
\(350\) 1.87835 0.100402
\(351\) 1.77592 3.13785i 0.0947917 0.167486i
\(352\) 28.4393 1.51582
\(353\) 12.7151 7.34104i 0.676754 0.390724i −0.121877 0.992545i \(-0.538891\pi\)
0.798631 + 0.601821i \(0.205558\pi\)
\(354\) −2.54325 4.40504i −0.135172 0.234125i
\(355\) 4.61782 7.99830i 0.245089 0.424506i
\(356\) 21.2837i 1.12803i
\(357\) 2.03111 + 1.17266i 0.107498 + 0.0620640i
\(358\) −8.31434 4.80028i −0.439426 0.253703i
\(359\) 16.7725i 0.885220i −0.896714 0.442610i \(-0.854053\pi\)
0.896714 0.442610i \(-0.145947\pi\)
\(360\) 0.974363 1.68765i 0.0513534 0.0889468i
\(361\) 9.72307 + 16.8408i 0.511740 + 0.886360i
\(362\) 0.248078 0.143228i 0.0130387 0.00752789i
\(363\) −22.1329 −1.16167
\(364\) −0.0545559 6.35929i −0.00285951 0.333317i
\(365\) 8.13871 0.426000
\(366\) −3.21808 + 1.85796i −0.168212 + 0.0971171i
\(367\) 5.47023 + 9.47471i 0.285543 + 0.494576i 0.972741 0.231895i \(-0.0744926\pi\)
−0.687197 + 0.726471i \(0.741159\pi\)
\(368\) 7.27413 12.5992i 0.379190 0.656777i
\(369\) 8.88127i 0.462341i
\(370\) −2.11437 1.22073i −0.109921 0.0634629i
\(371\) −1.32389 0.764348i −0.0687329 0.0396830i
\(372\) 9.63784i 0.499699i
\(373\) 3.61767 6.26599i 0.187316 0.324441i −0.757039 0.653370i \(-0.773355\pi\)
0.944354 + 0.328930i \(0.106688\pi\)
\(374\) 3.28042 + 5.68186i 0.169627 + 0.293802i
\(375\) −8.17911 + 4.72221i −0.422367 + 0.243854i
\(376\) 9.54580 0.492287
\(377\) −20.2059 + 0.173345i −1.04065 + 0.00892770i
\(378\) 0.485989 0.0249966
\(379\) 2.28182 1.31741i 0.117209 0.0676707i −0.440249 0.897876i \(-0.645110\pi\)
0.557458 + 0.830205i \(0.311777\pi\)
\(380\) −5.82566 10.0903i −0.298850 0.517623i
\(381\) −0.593804 + 1.02850i −0.0304215 + 0.0526916i
\(382\) 4.45956i 0.228171i
\(383\) 7.45530 + 4.30432i 0.380948 + 0.219941i 0.678231 0.734849i \(-0.262747\pi\)
−0.297283 + 0.954790i \(0.596080\pi\)
\(384\) 9.76810 + 5.63962i 0.498476 + 0.287795i
\(385\) 6.13233i 0.312532i
\(386\) 0.798804 1.38357i 0.0406581 0.0704218i
\(387\) −4.77851 8.27662i −0.242905 0.420724i
\(388\) −25.6028 + 14.7818i −1.29978 + 0.750431i
\(389\) 19.9726 1.01265 0.506325 0.862343i \(-0.331004\pi\)
0.506325 + 0.862343i \(0.331004\pi\)
\(390\) −0.947227 1.60862i −0.0479647 0.0814554i
\(391\) 12.9309 0.653945
\(392\) 1.58411 0.914587i 0.0800097 0.0461936i
\(393\) 7.41307 + 12.8398i 0.373940 + 0.647683i
\(394\) 3.72276 6.44801i 0.187550 0.324846i
\(395\) 16.6353i 0.837012i
\(396\) −8.79251 5.07636i −0.441840 0.255097i
\(397\) −2.47610 1.42958i −0.124272 0.0717485i 0.436575 0.899668i \(-0.356191\pi\)
−0.560847 + 0.827919i \(0.689525\pi\)
\(398\) 7.05802i 0.353787i
\(399\) 3.10025 5.36979i 0.155206 0.268826i
\(400\) −5.09924 8.83215i −0.254962 0.441608i
\(401\) 15.6107 9.01285i 0.779562 0.450080i −0.0567132 0.998391i \(-0.518062\pi\)
0.836275 + 0.548310i \(0.184729\pi\)
\(402\) 1.59249 0.0794261
\(403\) −17.1459 9.70400i −0.854096 0.483391i
\(404\) 4.54413 0.226079
\(405\) −0.922628 + 0.532679i −0.0458457 + 0.0264691i
\(406\) −1.36181 2.35873i −0.0675857 0.117062i
\(407\) −13.5715 + 23.5065i −0.672714 + 1.16518i
\(408\) 4.29001i 0.212387i
\(409\) −7.58420 4.37874i −0.375015 0.216515i 0.300632 0.953740i \(-0.402802\pi\)
−0.675647 + 0.737225i \(0.736136\pi\)
\(410\) 3.98225 + 2.29915i 0.196669 + 0.113547i
\(411\) 6.57310i 0.324227i
\(412\) −9.15635 + 15.8593i −0.451101 + 0.781330i
\(413\) 5.23314 + 9.06406i 0.257506 + 0.446013i
\(414\) 2.32051 1.33975i 0.114047 0.0658449i
\(415\) 2.80523 0.137703
\(416\) 15.3504 9.03901i 0.752615 0.443174i
\(417\) −0.734630 −0.0359750
\(418\) 15.0215 8.67266i 0.734725 0.424194i
\(419\) 0.864446 + 1.49726i 0.0422310 + 0.0731462i 0.886368 0.462981i \(-0.153220\pi\)
−0.844137 + 0.536127i \(0.819887\pi\)
\(420\) −0.939548 + 1.62734i −0.0458452 + 0.0794063i
\(421\) 25.6427i 1.24975i −0.780726 0.624874i \(-0.785150\pi\)
0.780726 0.624874i \(-0.214850\pi\)
\(422\) −6.95598 4.01604i −0.338612 0.195498i
\(423\) −4.51947 2.60932i −0.219744 0.126869i
\(424\) 2.79625i 0.135798i
\(425\) 4.53236 7.85028i 0.219852 0.380795i
\(426\) 2.10653 + 3.64862i 0.102062 + 0.176776i
\(427\) 6.62171 3.82305i 0.320447 0.185010i
\(428\) 30.0474 1.45240
\(429\) −17.8838 + 10.5308i −0.863437 + 0.508431i
\(430\) −4.94818 −0.238622
\(431\) 0.222971 0.128733i 0.0107402 0.00620083i −0.494620 0.869109i \(-0.664693\pi\)
0.505360 + 0.862908i \(0.331360\pi\)
\(432\) −1.31934 2.28516i −0.0634765 0.109945i
\(433\) −12.1641 + 21.0688i −0.584570 + 1.01250i 0.410359 + 0.911924i \(0.365403\pi\)
−0.994929 + 0.100580i \(0.967930\pi\)
\(434\) 2.65554i 0.127470i
\(435\) 5.17068 + 2.98530i 0.247915 + 0.143134i
\(436\) 2.84308 + 1.64145i 0.136159 + 0.0786114i
\(437\) 34.1863i 1.63535i
\(438\) −1.85634 + 3.21527i −0.0886992 + 0.153631i
\(439\) 8.50900 + 14.7380i 0.406112 + 0.703407i 0.994450 0.105208i \(-0.0335509\pi\)
−0.588338 + 0.808615i \(0.700218\pi\)
\(440\) −9.71428 + 5.60854i −0.463110 + 0.267377i
\(441\) −1.00000 −0.0476190
\(442\) 3.57654 + 2.02421i 0.170118 + 0.0962816i
\(443\) 38.1564 1.81287 0.906433 0.422349i \(-0.138794\pi\)
0.906433 + 0.422349i \(0.138794\pi\)
\(444\) −7.20298 + 4.15864i −0.341838 + 0.197360i
\(445\) −6.42776 11.1332i −0.304705 0.527765i
\(446\) 5.27063 9.12900i 0.249572 0.432271i
\(447\) 22.6396i 1.07082i
\(448\) −2.49087 1.43810i −0.117683 0.0679440i
\(449\) 35.7959 + 20.6668i 1.68931 + 0.975325i 0.955043 + 0.296468i \(0.0958087\pi\)
0.734270 + 0.678858i \(0.237525\pi\)
\(450\) 1.87835i 0.0885464i
\(451\) 25.5608 44.2726i 1.20361 2.08472i
\(452\) 4.20442 + 7.28227i 0.197759 + 0.342529i
\(453\) 6.88064 3.97254i 0.323281 0.186646i
\(454\) 2.64160 0.123976
\(455\) 1.94907 + 3.30998i 0.0913738 + 0.155174i
\(456\) 11.3418 0.531127
\(457\) −16.1281 + 9.31158i −0.754442 + 0.435578i −0.827297 0.561765i \(-0.810123\pi\)
0.0728544 + 0.997343i \(0.476789\pi\)
\(458\) 2.42914 + 4.20739i 0.113506 + 0.196599i
\(459\) 1.17266 2.03111i 0.0547353 0.0948043i
\(460\) 10.3604i 0.483054i
\(461\) −6.58984 3.80465i −0.306919 0.177200i 0.338628 0.940920i \(-0.390037\pi\)
−0.645547 + 0.763720i \(0.723371\pi\)
\(462\) −2.42263 1.39870i −0.112711 0.0650736i
\(463\) 25.2029i 1.17128i −0.810571 0.585640i \(-0.800843\pi\)
0.810571 0.585640i \(-0.199157\pi\)
\(464\) −7.39395 + 12.8067i −0.343256 + 0.594536i
\(465\) 2.91067 + 5.04143i 0.134979 + 0.233791i
\(466\) −0.726241 + 0.419295i −0.0336425 + 0.0194235i
\(467\) 18.6005 0.860727 0.430364 0.902656i \(-0.358385\pi\)
0.430364 + 0.902656i \(0.358385\pi\)
\(468\) −6.35929 + 0.0545559i −0.293958 + 0.00252185i
\(469\) −3.27680 −0.151308
\(470\) −2.33997 + 1.35098i −0.107935 + 0.0623162i
\(471\) −7.74340 13.4120i −0.356797 0.617991i
\(472\) −9.57232 + 16.5797i −0.440602 + 0.763144i
\(473\) 55.0113i 2.52942i
\(474\) −6.57191 3.79429i −0.301858 0.174278i
\(475\) −20.7543 11.9825i −0.952272 0.549794i
\(476\) 4.13673i 0.189607i
\(477\) −0.764348 + 1.32389i −0.0349971 + 0.0606167i
\(478\) −1.41140 2.44462i −0.0645561 0.111814i
\(479\) −21.2514 + 12.2695i −0.971001 + 0.560608i −0.899541 0.436836i \(-0.856099\pi\)
−0.0714598 + 0.997443i \(0.522766\pi\)
\(480\) −5.26363 −0.240251
\(481\) 0.145854 + 17.0014i 0.00665035 + 0.775196i
\(482\) −5.40430 −0.246159
\(483\) −4.77481 + 2.75674i −0.217262 + 0.125436i
\(484\) 19.5191 + 33.8081i 0.887233 + 1.53673i
\(485\) 8.92832 15.4643i 0.405414 0.702198i
\(486\) 0.485989i 0.0220449i
\(487\) −26.6423 15.3819i −1.20728 0.697022i −0.245114 0.969494i \(-0.578825\pi\)
−0.962164 + 0.272472i \(0.912159\pi\)
\(488\) 12.1123 + 6.99301i 0.548296 + 0.316559i
\(489\) 5.89612i 0.266632i
\(490\) −0.258876 + 0.448387i −0.0116948 + 0.0202561i
\(491\) −9.60159 16.6304i −0.433313 0.750521i 0.563843 0.825882i \(-0.309322\pi\)
−0.997156 + 0.0753611i \(0.975989\pi\)
\(492\) 13.5662 7.83246i 0.611612 0.353114i
\(493\) −13.1439 −0.591973
\(494\) 5.35152 9.45551i 0.240776 0.425424i
\(495\) 6.13233 0.275628
\(496\) −12.4866 + 7.20912i −0.560663 + 0.323699i
\(497\) −4.33452 7.50761i −0.194430 0.336763i
\(498\) −0.639837 + 1.10823i −0.0286718 + 0.0496609i
\(499\) 14.0592i 0.629376i −0.949195 0.314688i \(-0.898100\pi\)
0.949195 0.314688i \(-0.101900\pi\)
\(500\) 14.4264 + 8.32910i 0.645169 + 0.372489i
\(501\) −8.23496 4.75446i −0.367911 0.212414i
\(502\) 4.73970i 0.211543i
\(503\) 0.301296 0.521861i 0.0134341 0.0232686i −0.859230 0.511589i \(-0.829057\pi\)
0.872664 + 0.488321i \(0.162390\pi\)
\(504\) −0.914587 1.58411i −0.0407389 0.0705619i
\(505\) −2.37697 + 1.37235i −0.105774 + 0.0610686i
\(506\) −15.4235 −0.685657
\(507\) −6.30589 + 11.3682i −0.280054 + 0.504879i
\(508\) 2.09472 0.0929382
\(509\) −6.81860 + 3.93672i −0.302229 + 0.174492i −0.643444 0.765493i \(-0.722495\pi\)
0.341215 + 0.939985i \(0.389162\pi\)
\(510\) −0.607151 1.05162i −0.0268851 0.0465663i
\(511\) 3.81971 6.61593i 0.168974 0.292671i
\(512\) 22.6901i 1.00277i
\(513\) −5.36979 3.10025i −0.237082 0.136879i
\(514\) −4.37470 2.52573i −0.192960 0.111405i
\(515\) 11.0610i 0.487407i
\(516\) −8.42841 + 14.5984i −0.371040 + 0.642660i
\(517\) 15.0195 + 26.0146i 0.660559 + 1.14412i
\(518\) −1.98466 + 1.14584i −0.0872009 + 0.0503455i
\(519\) 1.62465 0.0713142
\(520\) −3.46079 + 6.11481i −0.151766 + 0.268152i
\(521\) −26.5275 −1.16219 −0.581096 0.813835i \(-0.697376\pi\)
−0.581096 + 0.813835i \(0.697376\pi\)
\(522\) −2.35873 + 1.36181i −0.103239 + 0.0596050i
\(523\) 3.77968 + 6.54661i 0.165274 + 0.286263i 0.936753 0.349992i \(-0.113816\pi\)
−0.771479 + 0.636255i \(0.780482\pi\)
\(524\) 13.0753 22.6471i 0.571197 0.989341i
\(525\) 3.86501i 0.168683i
\(526\) −10.3027 5.94824i −0.449217 0.259356i
\(527\) −11.0984 6.40768i −0.483455 0.279123i
\(528\) 15.1885i 0.660994i
\(529\) −3.69924 + 6.40727i −0.160836 + 0.278577i
\(530\) 0.395743 + 0.685447i 0.0171900 + 0.0297739i
\(531\) 9.06406 5.23314i 0.393347 0.227099i
\(532\) −10.9365 −0.474158
\(533\) −0.274703 32.0207i −0.0118987 1.38697i
\(534\) 5.86436 0.253776
\(535\) −15.7174 + 9.07445i −0.679523 + 0.392323i
\(536\) −2.99692 5.19081i −0.129447 0.224209i
\(537\) 9.87735 17.1081i 0.426239 0.738268i
\(538\) 2.45823i 0.105982i
\(539\) 4.98494 + 2.87806i 0.214717 + 0.123967i
\(540\) 1.62734 + 0.939548i 0.0700297 + 0.0404317i
\(541\) 13.8116i 0.593807i 0.954907 + 0.296904i \(0.0959540\pi\)
−0.954907 + 0.296904i \(0.904046\pi\)
\(542\) −3.29752 + 5.71148i −0.141641 + 0.245329i
\(543\) 0.294714 + 0.510460i 0.0126474 + 0.0219059i
\(544\) 10.0352 5.79380i 0.430254 0.248407i
\(545\) −1.98291 −0.0849383
\(546\) −1.75219 + 0.0150320i −0.0749870 + 0.000643308i
\(547\) 15.3668 0.657039 0.328519 0.944497i \(-0.393450\pi\)
0.328519 + 0.944497i \(0.393450\pi\)
\(548\) −10.0405 + 5.79687i −0.428908 + 0.247630i
\(549\) −3.82305 6.62171i −0.163164 0.282608i
\(550\) −5.40601 + 9.36348i −0.230513 + 0.399260i
\(551\) 34.7494i 1.48038i
\(552\) −8.73396 5.04256i −0.371742 0.214625i
\(553\) 13.5228 + 7.80736i 0.575046 + 0.332003i
\(554\) 11.4567i 0.486747i
\(555\) 2.51185 4.35066i 0.106622 0.184675i
\(556\) 0.647876 + 1.12215i 0.0274760 + 0.0475899i
\(557\) −22.5868 + 13.0405i −0.957032 + 0.552542i −0.895258 0.445548i \(-0.853009\pi\)
−0.0617734 + 0.998090i \(0.519676\pi\)
\(558\) −2.65554 −0.112418
\(559\) 17.4845 + 29.6929i 0.739517 + 1.25588i
\(560\) 2.81113 0.118792
\(561\) −11.6913 + 6.74999i −0.493608 + 0.284985i
\(562\) 3.61303 + 6.25795i 0.152406 + 0.263976i
\(563\) −6.43529 + 11.1462i −0.271215 + 0.469758i −0.969173 0.246380i \(-0.920759\pi\)
0.697958 + 0.716138i \(0.254092\pi\)
\(564\) 9.20471i 0.387588i
\(565\) −4.39855 2.53950i −0.185048 0.106838i
\(566\) 8.83409 + 5.10037i 0.371325 + 0.214384i
\(567\) 1.00000i 0.0419961i
\(568\) 7.92859 13.7327i 0.332676 0.576212i
\(569\) −2.47488 4.28662i −0.103752 0.179704i 0.809475 0.587154i \(-0.199752\pi\)
−0.913228 + 0.407449i \(0.866418\pi\)
\(570\) −2.78022 + 1.60516i −0.116451 + 0.0672328i
\(571\) 28.2860 1.18373 0.591865 0.806037i \(-0.298392\pi\)
0.591865 + 0.806037i \(0.298392\pi\)
\(572\) 31.8577 + 18.0304i 1.33204 + 0.753891i
\(573\) 9.17624 0.383343
\(574\) 3.73794 2.15810i 0.156019 0.0900774i
\(575\) 10.6548 + 18.4547i 0.444337 + 0.769615i
\(576\) −1.43810 + 2.49087i −0.0599210 + 0.103786i
\(577\) 30.1903i 1.25684i −0.777875 0.628419i \(-0.783702\pi\)
0.777875 0.628419i \(-0.216298\pi\)
\(578\) −4.83987 2.79430i −0.201312 0.116228i
\(579\) 2.84691 + 1.64367i 0.118314 + 0.0683084i
\(580\) 10.5310i 0.437277i
\(581\) 1.31657 2.28036i 0.0546203 0.0946052i
\(582\) 4.07287 + 7.05441i 0.168826 + 0.292415i
\(583\) 7.62046 4.39967i 0.315607 0.182216i
\(584\) 13.9738 0.578240
\(585\) 3.30998 1.94907i 0.136851 0.0805841i
\(586\) −3.58691 −0.148174
\(587\) −22.5606 + 13.0253i −0.931174 + 0.537614i −0.887183 0.461418i \(-0.847341\pi\)
−0.0439914 + 0.999032i \(0.514007\pi\)
\(588\) 0.881907 + 1.52751i 0.0363692 + 0.0629934i
\(589\) −16.9404 + 29.3416i −0.698016 + 1.20900i
\(590\) 5.41895i 0.223094i
\(591\) 13.2678 + 7.66017i 0.545765 + 0.315097i
\(592\) 10.7757 + 6.22134i 0.442877 + 0.255695i
\(593\) 10.6780i 0.438494i −0.975669 0.219247i \(-0.929640\pi\)
0.975669 0.219247i \(-0.0703601\pi\)
\(594\) −1.39870 + 2.42263i −0.0573896 + 0.0994016i
\(595\) 1.24931 + 2.16387i 0.0512167 + 0.0887099i
\(596\) −34.5822 + 19.9660i −1.41654 + 0.817840i
\(597\) 14.5230 0.594387
\(598\) −8.32497 + 4.90212i −0.340433 + 0.200463i
\(599\) −13.3791 −0.546655 −0.273327 0.961921i \(-0.588124\pi\)
−0.273327 + 0.961921i \(0.588124\pi\)
\(600\) −6.12260 + 3.53489i −0.249954 + 0.144311i
\(601\) −17.4475 30.2199i −0.711697 1.23270i −0.964220 0.265105i \(-0.914593\pi\)
0.252522 0.967591i \(-0.418740\pi\)
\(602\) −2.32230 + 4.02235i −0.0946501 + 0.163939i
\(603\) 3.27680i 0.133442i
\(604\) −12.1362 7.00682i −0.493814 0.285104i
\(605\) −20.4204 11.7897i −0.830207 0.479320i
\(606\) 1.25206i 0.0508614i
\(607\) 17.4463 30.2179i 0.708123 1.22651i −0.257429 0.966297i \(-0.582875\pi\)
0.965553 0.260208i \(-0.0837912\pi\)
\(608\) −15.3174 26.5306i −0.621204 1.07596i
\(609\) 4.85347 2.80215i 0.196672 0.113549i
\(610\) −3.95879 −0.160287
\(611\) 16.3753 + 9.26790i 0.662474 + 0.374939i
\(612\) −4.13673 −0.167217
\(613\) −3.51431 + 2.02899i −0.141942 + 0.0819500i −0.569289 0.822137i \(-0.692781\pi\)
0.427347 + 0.904087i \(0.359448\pi\)
\(614\) −6.37063 11.0343i −0.257098 0.445306i
\(615\) −4.73087 + 8.19411i −0.190767 + 0.330418i
\(616\) 10.5289i 0.424223i
\(617\) −1.33035 0.768080i −0.0535580 0.0309217i 0.472982 0.881072i \(-0.343178\pi\)
−0.526540 + 0.850150i \(0.676511\pi\)
\(618\) 4.36975 + 2.52288i 0.175777 + 0.101485i
\(619\) 15.0023i 0.602993i 0.953467 + 0.301496i \(0.0974861\pi\)
−0.953467 + 0.301496i \(0.902514\pi\)
\(620\) 5.13388 8.89214i 0.206182 0.357117i
\(621\) 2.75674 + 4.77481i 0.110624 + 0.191607i
\(622\) 9.83721 5.67951i 0.394436 0.227728i
\(623\) −12.0669 −0.483448
\(624\) 4.82744 + 8.19813i 0.193252 + 0.328188i
\(625\) 9.26336 0.370534
\(626\) 8.64222 4.98959i 0.345412 0.199424i
\(627\) 17.8454 + 30.9091i 0.712676 + 1.23439i
\(628\) −13.6579 + 23.6562i −0.545011 + 0.943986i
\(629\) 11.0594i 0.440968i
\(630\) 0.448387 + 0.258876i 0.0178642 + 0.0103139i
\(631\) −8.08574 4.66831i −0.321888 0.185842i 0.330346 0.943860i \(-0.392835\pi\)
−0.652234 + 0.758018i \(0.726168\pi\)
\(632\) 28.5620i 1.13614i
\(633\) 8.26364 14.3130i 0.328450 0.568892i
\(634\) −0.665131 1.15204i −0.0264157 0.0457534i
\(635\) −1.09572 + 0.632614i −0.0434823 + 0.0251045i
\(636\) 2.69634 0.106917
\(637\) 3.60542 0.0309306i 0.142852 0.00122552i
\(638\) 15.6775 0.620679
\(639\) −7.50761 + 4.33452i −0.296997 + 0.171471i
\(640\) 6.00821 + 10.4065i 0.237495 + 0.411354i
\(641\) −6.54834 + 11.3421i −0.258644 + 0.447984i −0.965879 0.258994i \(-0.916609\pi\)
0.707235 + 0.706979i \(0.249942\pi\)
\(642\) 8.27906i 0.326748i
\(643\) −12.0111 6.93458i −0.473670 0.273473i 0.244105 0.969749i \(-0.421506\pi\)
−0.717775 + 0.696276i \(0.754839\pi\)
\(644\) 8.42189 + 4.86238i 0.331869 + 0.191605i
\(645\) 10.1817i 0.400902i
\(646\) 3.53368 6.12051i 0.139031 0.240808i
\(647\) 5.83908 + 10.1136i 0.229558 + 0.397606i 0.957677 0.287845i \(-0.0929387\pi\)
−0.728119 + 0.685450i \(0.759605\pi\)
\(648\) −1.58411 + 0.914587i −0.0622297 + 0.0359284i
\(649\) −60.2451 −2.36483
\(650\) 0.0580987 + 6.77225i 0.00227882 + 0.265630i
\(651\) 5.46420 0.214159
\(652\) −9.00637 + 5.19983i −0.352716 + 0.203641i
\(653\) −4.34307 7.52242i −0.169958 0.294375i 0.768447 0.639913i \(-0.221030\pi\)
−0.938405 + 0.345538i \(0.887696\pi\)
\(654\) 0.452275 0.783363i 0.0176854 0.0306319i
\(655\) 15.7952i 0.617168i
\(656\) −20.2951 11.7174i −0.792390 0.457487i
\(657\) −6.61593 3.81971i −0.258112 0.149021i
\(658\) 2.53620i 0.0988715i
\(659\) 24.1981 41.9124i 0.942626 1.63268i 0.182190 0.983263i \(-0.441681\pi\)
0.760436 0.649413i \(-0.224985\pi\)
\(660\) −5.40814 9.36718i −0.210512 0.364617i
\(661\) −22.0611 + 12.7370i −0.858076 + 0.495410i −0.863367 0.504576i \(-0.831649\pi\)
0.00529178 + 0.999986i \(0.498316\pi\)
\(662\) 4.69051 0.182302
\(663\) −4.16512 + 7.35929i −0.161760 + 0.285811i
\(664\) 4.81645 0.186915
\(665\) 5.72075 3.30288i 0.221841 0.128080i
\(666\) 1.14584 + 1.98466i 0.0444005 + 0.0769040i
\(667\) 15.4496 26.7595i 0.598211 1.03613i
\(668\) 16.7720i 0.648927i
\(669\) 18.7844 + 10.8452i 0.726246 + 0.419298i
\(670\) 1.46927 + 0.848286i 0.0567630 + 0.0327721i
\(671\) 44.0118i 1.69906i
\(672\) −2.47036 + 4.27878i −0.0952961 + 0.165058i
\(673\) −0.655263 1.13495i −0.0252585 0.0437491i 0.853120 0.521715i \(-0.174708\pi\)
−0.878378 + 0.477966i \(0.841374\pi\)
\(674\) −4.77142 + 2.75478i −0.183788 + 0.106110i
\(675\) 3.86501 0.148764
\(676\) 22.9262 0.393394i 0.881777 0.0151305i
\(677\) −47.4782 −1.82473 −0.912367 0.409373i \(-0.865747\pi\)
−0.912367 + 0.409373i \(0.865747\pi\)
\(678\) 2.00650 1.15846i 0.0770594 0.0444902i
\(679\) −8.38057 14.5156i −0.321617 0.557057i
\(680\) −2.28520 + 3.95809i −0.0876335 + 0.151786i
\(681\) 5.43551i 0.208289i
\(682\) 13.2377 + 7.64281i 0.506899 + 0.292658i
\(683\) 11.4380 + 6.60376i 0.437665 + 0.252686i 0.702607 0.711579i \(-0.252019\pi\)
−0.264942 + 0.964264i \(0.585353\pi\)
\(684\) 10.9365i 0.418168i
\(685\) 3.50136 6.06453i 0.133780 0.231714i
\(686\) 0.242995 + 0.420879i 0.00927758 + 0.0160692i
\(687\) −8.65738 + 4.99834i −0.330300 + 0.190699i
\(688\) 25.2178 0.961421
\(689\) 2.71484 4.79682i 0.103427 0.182744i
\(690\) 2.85462 0.108674
\(691\) −5.74831 + 3.31879i −0.218676 + 0.126253i −0.605337 0.795969i \(-0.706962\pi\)
0.386661 + 0.922222i \(0.373628\pi\)
\(692\) −1.43279 2.48166i −0.0544665 0.0943387i
\(693\) 2.87806 4.98494i 0.109328 0.189362i
\(694\) 9.56103i 0.362932i
\(695\) −0.677790 0.391322i −0.0257100 0.0148437i
\(696\) 8.87783 + 5.12562i 0.336513 + 0.194286i
\(697\) 20.8295i 0.788974i
\(698\) −1.91637 + 3.31926i −0.0725358 + 0.125636i
\(699\) −0.862767 1.49436i −0.0326328 0.0565217i
\(700\) 5.90384 3.40858i 0.223144 0.128832i
\(701\) −49.2722 −1.86099 −0.930494 0.366308i \(-0.880622\pi\)
−0.930494 + 0.366308i \(0.880622\pi\)
\(702\) 0.0150320 + 1.75219i 0.000567344 + 0.0661323i
\(703\) 29.2385 1.10275
\(704\) 14.3377 8.27789i 0.540373 0.311985i
\(705\) −2.77986 4.81486i −0.104696 0.181338i
\(706\) −3.56767 + 6.17938i −0.134271 + 0.232564i
\(707\) 2.57631i 0.0968921i
\(708\) −15.9873 9.23029i −0.600840 0.346895i
\(709\) −10.0225 5.78651i −0.376404 0.217317i 0.299848 0.953987i \(-0.403064\pi\)
−0.676253 + 0.736670i \(0.736397\pi\)
\(710\) 4.48842i 0.168448i
\(711\) 7.80736 13.5228i 0.292799 0.507143i
\(712\) −11.0362 19.1152i −0.413598 0.716373i
\(713\) 26.0906 15.0634i 0.977099 0.564129i
\(714\) −1.13980 −0.0426561
\(715\) −22.1096 + 0.189677i −0.826852 + 0.00709351i
\(716\) −34.8436 −1.30217
\(717\) 5.03020 2.90419i 0.187856 0.108459i
\(718\) 4.07563 + 7.05920i 0.152101 + 0.263447i
\(719\) −6.02564 + 10.4367i −0.224718 + 0.389224i −0.956235 0.292600i \(-0.905480\pi\)
0.731516 + 0.681824i \(0.238813\pi\)
\(720\) 2.81113i 0.104765i
\(721\) −8.99146 5.19122i −0.334860 0.193331i
\(722\) −8.18447 4.72531i −0.304594 0.175858i
\(723\) 11.1202i 0.413565i
\(724\) 0.519821 0.900356i 0.0193190 0.0334615i
\(725\) −10.8303 18.7587i −0.402229 0.696681i
\(726\) 9.31525 5.37816i 0.345721 0.199602i
\(727\) −35.1133 −1.30228 −0.651139 0.758958i \(-0.725709\pi\)
−0.651139 + 0.758958i \(0.725709\pi\)
\(728\) 3.34647 + 5.68309i 0.124028 + 0.210629i
\(729\) 1.00000 0.0370370
\(730\) −3.42541 + 1.97766i −0.126780 + 0.0731966i
\(731\) 11.2072 + 19.4114i 0.414513 + 0.717957i
\(732\) −6.74315 + 11.6795i −0.249234 + 0.431686i
\(733\) 4.72292i 0.174445i 0.996189 + 0.0872225i \(0.0277991\pi\)
−0.996189 + 0.0872225i \(0.972201\pi\)
\(734\) −4.60461 2.65847i −0.169959 0.0981259i
\(735\) −0.922628 0.532679i −0.0340316 0.0196482i
\(736\) 27.2405i 1.00410i
\(737\) 9.43081 16.3346i 0.347388 0.601694i
\(738\) −2.15810 3.73794i −0.0794408 0.137595i
\(739\) 5.24267 3.02686i 0.192855 0.111345i −0.400464 0.916313i \(-0.631151\pi\)
0.593318 + 0.804968i \(0.297818\pi\)
\(740\) −8.86089 −0.325733
\(741\) 19.4562 + 11.0116i 0.714742 + 0.404521i
\(742\) 0.742930 0.0272738
\(743\) 20.5317 11.8540i 0.753235 0.434880i −0.0736267 0.997286i \(-0.523457\pi\)
0.826862 + 0.562406i \(0.190124\pi\)
\(744\) 4.99749 + 8.65590i 0.183217 + 0.317341i
\(745\) 12.0596 20.8879i 0.441831 0.765274i
\(746\) 3.51630i 0.128741i
\(747\) −2.28036 1.31657i −0.0834339 0.0481706i
\(748\) 20.6213 + 11.9057i 0.753991 + 0.435317i
\(749\) 17.0355i 0.622463i
\(750\) 2.29494 3.97496i 0.0837994 0.145145i
\(751\) 12.0552 + 20.8801i 0.439899 + 0.761927i 0.997681 0.0680602i \(-0.0216810\pi\)
−0.557782 + 0.829987i \(0.688348\pi\)
\(752\) 11.9254 6.88514i 0.434875 0.251075i
\(753\) −9.75269 −0.355408
\(754\) 8.46210 4.98287i 0.308171 0.181465i
\(755\) 8.46436 0.308050
\(756\) 1.52751 0.881907i 0.0555549 0.0320747i
\(757\) 18.0820 + 31.3189i 0.657200 + 1.13830i 0.981337 + 0.192294i \(0.0615927\pi\)
−0.324137 + 0.946010i \(0.605074\pi\)
\(758\) −0.640246 + 1.10894i −0.0232548 + 0.0402785i
\(759\) 31.7362i 1.15195i
\(760\) 10.4642 + 6.04153i 0.379578 + 0.219149i
\(761\) −11.8683 6.85216i −0.430225 0.248390i 0.269218 0.963079i \(-0.413235\pi\)
−0.699442 + 0.714689i \(0.746568\pi\)
\(762\) 0.577165i 0.0209085i
\(763\) −0.930628 + 1.61189i −0.0336910 + 0.0583545i
\(764\) −8.09260 14.0168i −0.292780 0.507110i
\(765\) 2.16387 1.24931i 0.0782347 0.0451688i
\(766\) −4.18371 −0.151163
\(767\) −32.5179 + 19.1480i −1.17415 + 0.691395i
\(768\) 0.270832 0.00977281
\(769\) 36.7196 21.2001i 1.32414 0.764494i 0.339756 0.940513i \(-0.389655\pi\)
0.984387 + 0.176019i \(0.0563221\pi\)
\(770\) −1.49012 2.58097i −0.0537003 0.0930116i
\(771\) 5.19710 9.00164i 0.187169 0.324186i
\(772\) 5.79825i 0.208683i
\(773\) −3.66142 2.11392i −0.131692 0.0760325i 0.432707 0.901535i \(-0.357559\pi\)
−0.564399 + 0.825502i \(0.690892\pi\)
\(774\) 4.02235 + 2.32230i 0.144580 + 0.0834735i
\(775\) 21.1192i 0.758624i
\(776\) 15.3295 26.5515i 0.550298 0.953144i
\(777\) −2.35775 4.08375i −0.0845840 0.146504i
\(778\) −8.40604 + 4.85323i −0.301371 + 0.173997i
\(779\) −55.0683 −1.97303
\(780\) −5.89632 3.33713i −0.211122 0.119488i
\(781\) 49.9000 1.78556
\(782\) −5.44236 + 3.14215i −0.194618 + 0.112363i
\(783\) −2.80215 4.85347i −0.100141 0.173449i
\(784\) 1.31934 2.28516i 0.0471191 0.0816127i
\(785\) 16.4990i 0.588875i
\(786\) −6.24001 3.60267i −0.222574 0.128503i
\(787\) 13.3645 + 7.71598i 0.476392 + 0.275045i 0.718912 0.695101i \(-0.244641\pi\)
−0.242520 + 0.970147i \(0.577974\pi\)
\(788\) 27.0223i 0.962628i
\(789\) 12.2395 21.1994i 0.435736 0.754717i
\(790\) −4.04229 7.00144i −0.143818 0.249100i
\(791\) −4.12870 + 2.38371i −0.146800 + 0.0847549i
\(792\) 10.5289 0.374129
\(793\) 13.9885 + 23.7558i 0.496746 + 0.843593i
\(794\) 1.38952 0.0493122
\(795\) −1.41042 + 0.814305i −0.0500223 + 0.0288804i
\(796\) −12.8079 22.1840i −0.453966 0.786291i
\(797\) 10.0729 17.4467i 0.356799 0.617994i −0.630625 0.776088i \(-0.717201\pi\)
0.987424 + 0.158094i \(0.0505348\pi\)
\(798\) 3.01337i 0.106672i
\(799\) 10.5997 + 6.11972i 0.374989 + 0.216500i
\(800\) 16.5375 + 9.54795i 0.584690 + 0.337571i
\(801\) 12.0669i 0.426361i
\(802\) −4.38015 + 7.58664i −0.154668 + 0.267893i
\(803\) 21.9867 + 38.0820i 0.775893 + 1.34389i
\(804\) 5.00534 2.88983i 0.176525 0.101917i
\(805\) −5.87384 −0.207026
\(806\) 9.57435 0.0821377i 0.337242 0.00289318i
\(807\) 5.05819 0.178057
\(808\) −4.08116 + 2.35626i −0.143575 + 0.0828929i
\(809\) −17.0108 29.4635i −0.598067 1.03588i −0.993106 0.117218i \(-0.962602\pi\)
0.395040 0.918664i \(-0.370731\pi\)
\(810\) 0.258876 0.448387i 0.00909599 0.0157547i
\(811\) 30.0516i 1.05525i −0.849477 0.527626i \(-0.823082\pi\)
0.849477 0.527626i \(-0.176918\pi\)
\(812\) −8.56062 4.94247i −0.300419 0.173447i
\(813\) −11.7523 6.78518i −0.412170 0.237967i
\(814\) 13.1912i 0.462352i
\(815\) 3.14074 5.43992i 0.110015 0.190552i
\(816\) 3.09428 + 5.35944i 0.108321 + 0.187618i
\(817\) 51.3192 29.6291i 1.79543 1.03659i
\(818\) 4.25604 0.148809
\(819\) −0.0309306 3.60542i −0.00108080 0.125984i
\(820\) 16.6888 0.582797
\(821\) 11.7870 6.80525i 0.411370 0.237505i −0.280008 0.959998i \(-0.590337\pi\)
0.691378 + 0.722493i \(0.257004\pi\)
\(822\) 1.59723 + 2.76648i 0.0557098 + 0.0964921i
\(823\) 20.1300 34.8662i 0.701688 1.21536i −0.266186 0.963922i \(-0.585763\pi\)
0.967874 0.251437i \(-0.0809032\pi\)
\(824\) 18.9913i 0.661593i
\(825\) −19.2669 11.1237i −0.670786 0.387278i
\(826\) −4.40504 2.54325i −0.153271 0.0884910i
\(827\) 16.6662i 0.579541i −0.957096 0.289771i \(-0.906421\pi\)
0.957096 0.289771i \(-0.0935790\pi\)
\(828\) 4.86238 8.42189i 0.168979 0.292681i
\(829\) 6.11891 + 10.5983i 0.212518 + 0.368093i 0.952502 0.304532i \(-0.0985001\pi\)
−0.739984 + 0.672625i \(0.765167\pi\)
\(830\) −1.18066 + 0.681655i −0.0409814 + 0.0236606i
\(831\) 23.5739 0.817770
\(832\) 5.10792 9.02511i 0.177085 0.312889i
\(833\) 2.34533 0.0812608
\(834\) 0.309190 0.178511i 0.0107064 0.00618134i
\(835\) −5.06520 8.77319i −0.175289 0.303609i
\(836\) 31.4759 54.5179i 1.08862 1.88554i
\(837\) 5.46420i 0.188871i
\(838\) −0.727654 0.420111i −0.0251364 0.0145125i
\(839\) 40.5002 + 23.3828i 1.39822 + 0.807265i 0.994206 0.107487i \(-0.0342804\pi\)
0.404017 + 0.914752i \(0.367614\pi\)
\(840\) 1.94873i 0.0672374i
\(841\) −1.20410 + 2.08555i −0.0415205 + 0.0719157i
\(842\) 6.23103 + 10.7925i 0.214736 + 0.371933i
\(843\) −12.8767 + 7.43438i −0.443498 + 0.256054i
\(844\) −29.1511 −1.00342
\(845\) −11.8736 + 7.12959i −0.408464 + 0.245265i
\(846\) 2.53620 0.0871965
\(847\) −19.1676 + 11.0664i −0.658607 + 0.380247i
\(848\) −2.01686 3.49331i −0.0692593 0.119961i
\(849\) −10.4948 + 18.1776i −0.360181 + 0.623852i
\(850\) 4.40536i 0.151103i
\(851\) −22.5157 12.9994i −0.771827 0.445615i
\(852\) 13.2420 + 7.64530i 0.453665 + 0.261923i
\(853\) 4.23317i 0.144941i 0.997371 + 0.0724704i \(0.0230883\pi\)
−0.997371 + 0.0724704i \(0.976912\pi\)
\(854\) −1.85796 + 3.21808i −0.0635781 + 0.110120i
\(855\) −3.30288 5.72075i −0.112956 0.195645i
\(856\) −26.9861 + 15.5804i −0.922366 + 0.532528i
\(857\) 12.7087 0.434122 0.217061 0.976158i \(-0.430353\pi\)
0.217061 + 0.976158i \(0.430353\pi\)
\(858\) 4.96798 8.77785i 0.169604 0.299671i
\(859\) 12.6692 0.432266 0.216133 0.976364i \(-0.430655\pi\)
0.216133 + 0.976364i \(0.430655\pi\)
\(860\) −15.5526 + 8.97928i −0.530338 + 0.306191i
\(861\) 4.44064 + 7.69141i 0.151336 + 0.262122i
\(862\) −0.0625626 + 0.108362i −0.00213089 + 0.00369081i
\(863\) 27.6136i 0.939979i 0.882672 + 0.469989i \(0.155742\pi\)
−0.882672 + 0.469989i \(0.844258\pi\)
\(864\) 4.27878 + 2.47036i 0.145567 + 0.0840432i
\(865\) 1.49895 + 0.865417i 0.0509657 + 0.0294251i
\(866\) 11.8232i 0.401770i
\(867\) 5.74972 9.95880i 0.195271 0.338219i
\(868\) −4.81892 8.34662i −0.163565 0.283303i
\(869\) −77.8385 + 44.9401i −2.64049 + 1.52449i
\(870\) −2.90164 −0.0983749
\(871\) −0.101353 11.8142i −0.00343423 0.400310i
\(872\) −3.40456 −0.115293
\(873\) −14.5156 + 8.38057i −0.491278 + 0.283639i
\(874\) 8.30709 + 14.3883i 0.280991 + 0.486692i
\(875\) −4.72221 + 8.17911i −0.159640 + 0.276504i
\(876\) 13.4745i 0.455261i
\(877\) −2.23965 1.29306i −0.0756275 0.0436636i 0.461709 0.887031i \(-0.347236\pi\)
−0.537337 + 0.843368i \(0.680570\pi\)
\(878\) −7.16252 4.13528i −0.241723 0.139559i
\(879\) 7.38064i 0.248943i
\(880\) −8.09060 + 14.0133i −0.272734 + 0.472389i
\(881\) 7.62486 + 13.2067i 0.256888 + 0.444943i 0.965407 0.260749i \(-0.0839695\pi\)
−0.708518 + 0.705692i \(0.750636\pi\)
\(882\) 0.420879 0.242995i 0.0141717 0.00818205i
\(883\) 20.9880 0.706304 0.353152 0.935566i \(-0.385110\pi\)
0.353152 + 0.935566i \(0.385110\pi\)
\(884\) 14.9146 0.127952i 0.501633 0.00430348i
\(885\) 11.1503 0.374815
\(886\) −16.0592 + 9.27180i −0.539521 + 0.311492i
\(887\) −0.684569 1.18571i −0.0229856 0.0398122i 0.854304 0.519774i \(-0.173984\pi\)
−0.877289 + 0.479962i \(0.840651\pi\)
\(888\) 4.31274 7.46989i 0.144726 0.250673i
\(889\) 1.18761i 0.0398311i
\(890\) 5.41062 + 3.12382i 0.181364 + 0.104711i
\(891\) −4.98494 2.87806i −0.167002 0.0964185i
\(892\) 38.2577i 1.28096i
\(893\) 16.1791 28.0230i 0.541412 0.937753i
\(894\) 5.50130 + 9.52853i 0.183991 + 0.318682i
\(895\) 18.2262 10.5229i 0.609236 0.351742i
\(896\) 11.2792 0.376813
\(897\) −10.0869 17.1299i −0.336792 0.571952i
\(898\) −20.0877 −0.670334
\(899\) −26.5203 + 15.3115i −0.884503 + 0.510668i
\(900\) −3.40858 5.90384i −0.113619 0.196795i
\(901\) 1.79265 3.10496i 0.0597217 0.103441i
\(902\) 24.8446i 0.827233i
\(903\) −8.27662 4.77851i −0.275429 0.159019i
\(904\) −7.55211 4.36021i −0.251180 0.145019i
\(905\) 0.627952i 0.0208738i
\(906\) −1.93061 + 3.34392i −0.0641403 + 0.111094i
\(907\) −14.3349 24.8288i −0.475984 0.824428i 0.523638 0.851941i \(-0.324575\pi\)
−0.999621 + 0.0275130i \(0.991241\pi\)
\(908\) 8.30279 4.79362i 0.275538 0.159082i
\(909\) 2.57631 0.0854508
\(910\) −1.62463 0.919489i −0.0538560 0.0304808i
\(911\) 11.9761 0.396784 0.198392 0.980123i \(-0.436428\pi\)
0.198392 + 0.980123i \(0.436428\pi\)
\(912\) 14.1691 8.18053i 0.469186 0.270884i
\(913\) 7.57830 + 13.1260i 0.250805 + 0.434407i
\(914\) 4.52533 7.83810i 0.149685 0.259261i
\(915\) 8.14583i 0.269293i
\(916\) 15.2700 + 8.81614i 0.504535 + 0.291294i
\(917\) 12.8398 + 7.41307i 0.424008 + 0.244801i
\(918\) 1.13980i 0.0376192i
\(919\) −13.0048 + 22.5249i −0.428988 + 0.743029i −0.996784 0.0801408i \(-0.974463\pi\)
0.567796 + 0.823169i \(0.307796\pi\)
\(920\) −5.37213 9.30480i −0.177114 0.306770i
\(921\) 22.7047 13.1086i 0.748146 0.431942i
\(922\) 3.69803 0.121788
\(923\) 26.9340 15.8600i 0.886544 0.522038i
\(924\) −10.1527 −0.334000
\(925\) −15.7837 + 9.11274i −0.518966 + 0.299625i
\(926\) 6.12418 + 10.6074i 0.201253 + 0.348580i
\(927\) −5.19122 + 8.99146i −0.170502 + 0.295318i
\(928\) 27.6892i 0.908944i
\(929\) −24.7855 14.3099i −0.813185 0.469492i 0.0348760 0.999392i \(-0.488896\pi\)
−0.848061 + 0.529899i \(0.822230\pi\)
\(930\) −2.45008 1.41455i −0.0803413 0.0463850i
\(931\) 6.20049i 0.203213i
\(932\) −1.52176 + 2.63577i −0.0498469 + 0.0863374i
\(933\) 11.6865 + 20.2416i 0.382599 + 0.662681i
\(934\) −7.82855 + 4.51982i −0.256158 + 0.147893i
\(935\) −14.3823 −0.470352
\(936\) 5.68309 3.34647i 0.185758 0.109383i
\(937\) −45.1573 −1.47522 −0.737612 0.675225i \(-0.764047\pi\)
−0.737612 + 0.675225i \(0.764047\pi\)
\(938\) 1.37914 0.796244i 0.0450304 0.0259983i
\(939\) 10.2669 + 17.7827i 0.335046 + 0.580318i
\(940\) −4.90316 + 8.49252i −0.159923 + 0.276996i
\(941\) 33.5054i 1.09224i 0.837705 + 0.546122i \(0.183897\pi\)
−0.837705 + 0.546122i \(0.816103\pi\)
\(942\) 6.51807 + 3.76321i 0.212370 + 0.122612i
\(943\) 42.4064 + 24.4834i 1.38094 + 0.797288i
\(944\) 27.6171i 0.898859i
\(945\) −0.532679 + 0.922628i −0.0173281 + 0.0300131i
\(946\) −13.3675 23.1531i −0.434613 0.752772i
\(947\) 35.4712 20.4793i 1.15266 0.665488i 0.203125 0.979153i \(-0.434890\pi\)
0.949534 + 0.313665i \(0.101557\pi\)
\(948\) −27.5415 −0.894506
\(949\) 23.9713 + 13.5670i 0.778142 + 0.440404i
\(950\) 11.6467 0.377870
\(951\) 2.37051 1.36861i 0.0768689 0.0443803i
\(952\) 2.14501 + 3.71526i 0.0695201 + 0.120412i
\(953\) −13.5406 + 23.4530i −0.438622 + 0.759716i −0.997584 0.0694777i \(-0.977867\pi\)
0.558961 + 0.829194i \(0.311200\pi\)
\(954\) 0.742930i 0.0240532i
\(955\) 8.46626 + 4.88800i 0.273962 + 0.158172i
\(956\) −8.87233 5.12244i −0.286952 0.165672i
\(957\) 32.2590i 1.04279i
\(958\) 5.96284 10.3279i 0.192651 0.333681i
\(959\) −3.28655 5.69247i −0.106128 0.183820i
\(960\) −2.65367 + 1.53210i −0.0856468 + 0.0494482i
\(961\) 1.14247 0.0368538
\(962\) −4.19263 7.12008i −0.135176 0.229561i
\(963\) 17.0355 0.548961
\(964\) −16.9862 + 9.80699i −0.547089 + 0.315862i
\(965\) 1.75109 + 3.03298i 0.0563697 + 0.0976352i
\(966\) 1.33975 2.32051i 0.0431056 0.0746611i
\(967\) 57.7720i 1.85782i 0.370301 + 0.928912i \(0.379254\pi\)
−0.370301 + 0.928912i \(0.620746\pi\)
\(968\) −35.0609 20.2424i −1.12690 0.650616i
\(969\) 12.5939 + 7.27110i 0.404575 + 0.233581i
\(970\) 8.67813i 0.278638i
\(971\) −27.8843 + 48.2970i −0.894849 + 1.54992i −0.0608566 + 0.998147i \(0.519383\pi\)
−0.833992 + 0.551777i \(0.813950\pi\)
\(972\) −0.881907 1.52751i −0.0282872 0.0489948i
\(973\) −0.636208 + 0.367315i −0.0203959 + 0.0117756i
\(974\) 14.9509 0.479058
\(975\) −13.9350 + 0.119547i −0.446277 + 0.00382857i
\(976\) 20.1755 0.645803
\(977\) −25.4683 + 14.7042i −0.814804 + 0.470427i −0.848621 0.529001i \(-0.822567\pi\)
0.0338172 + 0.999428i \(0.489234\pi\)
\(978\) 1.43272 + 2.48155i 0.0458135 + 0.0793513i
\(979\) 34.7291 60.1526i 1.10995 1.92248i
\(980\) 1.87910i 0.0600255i
\(981\) 1.61189 + 0.930628i 0.0514638 + 0.0297127i
\(982\) 8.08221 + 4.66627i 0.257914 + 0.148907i
\(983\) 43.0253i 1.37229i −0.727464 0.686146i \(-0.759301\pi\)
0.727464 0.686146i \(-0.240699\pi\)
\(984\) −8.12269 + 14.0689i −0.258942 + 0.448501i
\(985\) 8.16083 + 14.1350i 0.260026 + 0.450378i
\(986\) 5.53201 3.19390i 0.176175 0.101715i
\(987\) −5.21864 −0.166111
\(988\) −0.338274 39.4307i −0.0107619 1.25446i
\(989\) −52.6925 −1.67552
\(990\) −2.58097 + 1.49012i −0.0820285 + 0.0473592i
\(991\) 25.9615 + 44.9666i 0.824693 + 1.42841i 0.902154 + 0.431414i \(0.141985\pi\)
−0.0774611 + 0.996995i \(0.524681\pi\)
\(992\) 13.4985 23.3801i 0.428579 0.742320i
\(993\) 9.65148i 0.306280i
\(994\) 3.64862 + 2.10653i 0.115727 + 0.0668151i
\(995\) 13.3993 + 7.73611i 0.424787 + 0.245251i
\(996\) 4.64435i 0.147162i
\(997\) 4.05357 7.02099i 0.128378 0.222357i −0.794670 0.607041i \(-0.792356\pi\)
0.923048 + 0.384684i \(0.125690\pi\)
\(998\) 3.41631 + 5.91722i 0.108141 + 0.187306i
\(999\) −4.08375 + 2.35775i −0.129204 + 0.0745960i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.bd.a.127.4 yes 16
3.2 odd 2 819.2.ct.b.127.5 16
13.2 odd 12 3549.2.a.bb.1.4 8
13.4 even 6 inner 273.2.bd.a.43.4 16
13.11 odd 12 3549.2.a.bd.1.5 8
39.17 odd 6 819.2.ct.b.316.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.bd.a.43.4 16 13.4 even 6 inner
273.2.bd.a.127.4 yes 16 1.1 even 1 trivial
819.2.ct.b.127.5 16 3.2 odd 2
819.2.ct.b.316.5 16 39.17 odd 6
3549.2.a.bb.1.4 8 13.2 odd 12
3549.2.a.bd.1.5 8 13.11 odd 12