Properties

Label 273.2.j.c.100.8
Level $273$
Weight $2$
Character 273.100
Analytic conductor $2.180$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(100,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.8
Root \(-0.828334 + 1.43472i\) of defining polynomial
Character \(\chi\) \(=\) 273.100
Dual form 273.2.j.c.172.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.828334 + 1.43472i) q^{2} +1.00000 q^{3} +(-0.372274 + 0.644798i) q^{4} +(1.05011 - 1.81885i) q^{5} +(0.828334 + 1.43472i) q^{6} +(-1.14598 - 2.38469i) q^{7} +2.07987 q^{8} +1.00000 q^{9} +3.47937 q^{10} -0.304241 q^{11} +(-0.372274 + 0.644798i) q^{12} +(-0.494423 + 3.57149i) q^{13} +(2.47210 - 3.61947i) q^{14} +(1.05011 - 1.81885i) q^{15} +(2.46737 + 4.27361i) q^{16} +(-2.90593 + 5.03321i) q^{17} +(0.828334 + 1.43472i) q^{18} -7.48756 q^{19} +(0.781858 + 1.35422i) q^{20} +(-1.14598 - 2.38469i) q^{21} +(-0.252013 - 0.436500i) q^{22} +(-3.00828 - 5.21049i) q^{23} +2.07987 q^{24} +(0.294535 + 0.510150i) q^{25} +(-5.53362 + 2.24903i) q^{26} +1.00000 q^{27} +(1.96426 + 0.148834i) q^{28} +(1.09353 - 1.89405i) q^{29} +3.47937 q^{30} +(3.51152 + 6.08213i) q^{31} +(-2.00775 + 3.47753i) q^{32} -0.304241 q^{33} -9.62831 q^{34} +(-5.54078 - 0.419832i) q^{35} +(-0.372274 + 0.644798i) q^{36} +(0.0524484 + 0.0908433i) q^{37} +(-6.20220 - 10.7425i) q^{38} +(-0.494423 + 3.57149i) q^{39} +(2.18409 - 3.78295i) q^{40} +(-1.00378 + 1.73860i) q^{41} +(2.47210 - 3.61947i) q^{42} +(4.03998 + 6.99746i) q^{43} +(0.113261 - 0.196174i) q^{44} +(1.05011 - 1.81885i) q^{45} +(4.98372 - 8.63206i) q^{46} +(4.30078 - 7.44916i) q^{47} +(2.46737 + 4.27361i) q^{48} +(-4.37347 + 5.46560i) q^{49} +(-0.487947 + 0.845149i) q^{50} +(-2.90593 + 5.03321i) q^{51} +(-2.11883 - 1.64838i) q^{52} +(-1.10014 - 1.90550i) q^{53} +(0.828334 + 1.43472i) q^{54} +(-0.319487 + 0.553367i) q^{55} +(-2.38348 - 4.95983i) q^{56} -7.48756 q^{57} +3.62323 q^{58} +(6.84210 - 11.8509i) q^{59} +(0.781858 + 1.35422i) q^{60} -11.0263 q^{61} +(-5.81742 + 10.0761i) q^{62} +(-1.14598 - 2.38469i) q^{63} +3.21714 q^{64} +(5.97679 + 4.64974i) q^{65} +(-0.252013 - 0.436500i) q^{66} +10.0815 q^{67} +(-2.16360 - 3.74747i) q^{68} +(-3.00828 - 5.21049i) q^{69} +(-3.98728 - 8.29721i) q^{70} +(-0.149636 - 0.259177i) q^{71} +2.07987 q^{72} +(-2.96778 - 5.14034i) q^{73} +(-0.0868896 + 0.150497i) q^{74} +(0.294535 + 0.510150i) q^{75} +(2.78743 - 4.82796i) q^{76} +(0.348653 + 0.725520i) q^{77} +(-5.53362 + 2.24903i) q^{78} +(6.54933 - 11.3438i) q^{79} +10.3641 q^{80} +1.00000 q^{81} -3.32586 q^{82} -9.33190 q^{83} +(1.96426 + 0.148834i) q^{84} +(6.10309 + 10.5709i) q^{85} +(-6.69291 + 11.5925i) q^{86} +(1.09353 - 1.89405i) q^{87} -0.632780 q^{88} +(-1.54769 - 2.68068i) q^{89} +3.47937 q^{90} +(9.08349 - 2.91380i) q^{91} +4.47962 q^{92} +(3.51152 + 6.08213i) q^{93} +14.2499 q^{94} +(-7.86277 + 13.6187i) q^{95} +(-2.00775 + 3.47753i) q^{96} +(-3.19711 - 5.53756i) q^{97} +(-11.4643 - 1.74736i) q^{98} -0.304241 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} - 16 q^{4} - 9 q^{7} - 12 q^{8} + 20 q^{9} + 8 q^{10} + 16 q^{11} - 16 q^{12} - 5 q^{13} - 9 q^{14} - 20 q^{16} - 14 q^{19} + 12 q^{20} - 9 q^{21} - 9 q^{22} - 14 q^{23} - 12 q^{24} - 32 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.828334 + 1.43472i 0.585721 + 1.01450i 0.994785 + 0.101992i \(0.0325217\pi\)
−0.409065 + 0.912505i \(0.634145\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.372274 + 0.644798i −0.186137 + 0.322399i
\(5\) 1.05011 1.81885i 0.469624 0.813412i −0.529773 0.848139i \(-0.677723\pi\)
0.999397 + 0.0347272i \(0.0110562\pi\)
\(6\) 0.828334 + 1.43472i 0.338166 + 0.585721i
\(7\) −1.14598 2.38469i −0.433139 0.901327i
\(8\) 2.07987 0.735344
\(9\) 1.00000 0.333333
\(10\) 3.47937 1.10027
\(11\) −0.304241 −0.0917321 −0.0458660 0.998948i \(-0.514605\pi\)
−0.0458660 + 0.998948i \(0.514605\pi\)
\(12\) −0.372274 + 0.644798i −0.107466 + 0.186137i
\(13\) −0.494423 + 3.57149i −0.137128 + 0.990553i
\(14\) 2.47210 3.61947i 0.660696 0.967344i
\(15\) 1.05011 1.81885i 0.271137 0.469624i
\(16\) 2.46737 + 4.27361i 0.616843 + 1.06840i
\(17\) −2.90593 + 5.03321i −0.704791 + 1.22073i 0.261976 + 0.965074i \(0.415626\pi\)
−0.966767 + 0.255659i \(0.917707\pi\)
\(18\) 0.828334 + 1.43472i 0.195240 + 0.338166i
\(19\) −7.48756 −1.71776 −0.858882 0.512173i \(-0.828841\pi\)
−0.858882 + 0.512173i \(0.828841\pi\)
\(20\) 0.781858 + 1.35422i 0.174829 + 0.302812i
\(21\) −1.14598 2.38469i −0.250073 0.520382i
\(22\) −0.252013 0.436500i −0.0537294 0.0930620i
\(23\) −3.00828 5.21049i −0.627270 1.08646i −0.988097 0.153830i \(-0.950839\pi\)
0.360828 0.932633i \(-0.382494\pi\)
\(24\) 2.07987 0.424551
\(25\) 0.294535 + 0.510150i 0.0589070 + 0.102030i
\(26\) −5.53362 + 2.24903i −1.08523 + 0.441071i
\(27\) 1.00000 0.192450
\(28\) 1.96426 + 0.148834i 0.371210 + 0.0281270i
\(29\) 1.09353 1.89405i 0.203063 0.351716i −0.746451 0.665441i \(-0.768244\pi\)
0.949514 + 0.313725i \(0.101577\pi\)
\(30\) 3.47937 0.635243
\(31\) 3.51152 + 6.08213i 0.630687 + 1.09238i 0.987411 + 0.158173i \(0.0505603\pi\)
−0.356724 + 0.934210i \(0.616106\pi\)
\(32\) −2.00775 + 3.47753i −0.354923 + 0.614745i
\(33\) −0.304241 −0.0529616
\(34\) −9.62831 −1.65124
\(35\) −5.54078 0.419832i −0.936563 0.0709645i
\(36\) −0.372274 + 0.644798i −0.0620457 + 0.107466i
\(37\) 0.0524484 + 0.0908433i 0.00862246 + 0.0149345i 0.870304 0.492514i \(-0.163922\pi\)
−0.861682 + 0.507449i \(0.830589\pi\)
\(38\) −6.20220 10.7425i −1.00613 1.74267i
\(39\) −0.494423 + 3.57149i −0.0791711 + 0.571896i
\(40\) 2.18409 3.78295i 0.345335 0.598138i
\(41\) −1.00378 + 1.73860i −0.156764 + 0.271524i −0.933700 0.358056i \(-0.883440\pi\)
0.776936 + 0.629580i \(0.216773\pi\)
\(42\) 2.47210 3.61947i 0.381453 0.558496i
\(43\) 4.03998 + 6.99746i 0.616092 + 1.06710i 0.990192 + 0.139714i \(0.0446183\pi\)
−0.374100 + 0.927388i \(0.622048\pi\)
\(44\) 0.113261 0.196174i 0.0170747 0.0295743i
\(45\) 1.05011 1.81885i 0.156541 0.271137i
\(46\) 4.98372 8.63206i 0.734809 1.27273i
\(47\) 4.30078 7.44916i 0.627333 1.08657i −0.360752 0.932662i \(-0.617480\pi\)
0.988085 0.153910i \(-0.0491867\pi\)
\(48\) 2.46737 + 4.27361i 0.356135 + 0.616843i
\(49\) −4.37347 + 5.46560i −0.624782 + 0.780799i
\(50\) −0.487947 + 0.845149i −0.0690061 + 0.119522i
\(51\) −2.90593 + 5.03321i −0.406911 + 0.704791i
\(52\) −2.11883 1.64838i −0.293829 0.228589i
\(53\) −1.10014 1.90550i −0.151116 0.261741i 0.780522 0.625128i \(-0.214953\pi\)
−0.931638 + 0.363388i \(0.881620\pi\)
\(54\) 0.828334 + 1.43472i 0.112722 + 0.195240i
\(55\) −0.319487 + 0.553367i −0.0430796 + 0.0746160i
\(56\) −2.38348 4.95983i −0.318506 0.662785i
\(57\) −7.48756 −0.991752
\(58\) 3.62323 0.475753
\(59\) 6.84210 11.8509i 0.890766 1.54285i 0.0518074 0.998657i \(-0.483502\pi\)
0.838959 0.544195i \(-0.183165\pi\)
\(60\) 0.781858 + 1.35422i 0.100937 + 0.174829i
\(61\) −11.0263 −1.41177 −0.705886 0.708325i \(-0.749451\pi\)
−0.705886 + 0.708325i \(0.749451\pi\)
\(62\) −5.81742 + 10.0761i −0.738813 + 1.27966i
\(63\) −1.14598 2.38469i −0.144380 0.300442i
\(64\) 3.21714 0.402142
\(65\) 5.97679 + 4.64974i 0.741329 + 0.576729i
\(66\) −0.252013 0.436500i −0.0310207 0.0537294i
\(67\) 10.0815 1.23165 0.615823 0.787885i \(-0.288824\pi\)
0.615823 + 0.787885i \(0.288824\pi\)
\(68\) −2.16360 3.74747i −0.262375 0.454448i
\(69\) −3.00828 5.21049i −0.362154 0.627270i
\(70\) −3.98728 8.29721i −0.476571 0.991706i
\(71\) −0.149636 0.259177i −0.0177585 0.0307587i 0.857010 0.515300i \(-0.172320\pi\)
−0.874768 + 0.484542i \(0.838986\pi\)
\(72\) 2.07987 0.245115
\(73\) −2.96778 5.14034i −0.347352 0.601631i 0.638426 0.769683i \(-0.279586\pi\)
−0.985778 + 0.168052i \(0.946252\pi\)
\(74\) −0.0868896 + 0.150497i −0.0101007 + 0.0174949i
\(75\) 0.294535 + 0.510150i 0.0340100 + 0.0589070i
\(76\) 2.78743 4.82796i 0.319740 0.553805i
\(77\) 0.348653 + 0.725520i 0.0397327 + 0.0826806i
\(78\) −5.53362 + 2.24903i −0.626560 + 0.254652i
\(79\) 6.54933 11.3438i 0.736857 1.27627i −0.217047 0.976161i \(-0.569642\pi\)
0.953904 0.300112i \(-0.0970242\pi\)
\(80\) 10.3641 1.15874
\(81\) 1.00000 0.111111
\(82\) −3.32586 −0.367280
\(83\) −9.33190 −1.02431 −0.512155 0.858893i \(-0.671153\pi\)
−0.512155 + 0.858893i \(0.671153\pi\)
\(84\) 1.96426 + 0.148834i 0.214318 + 0.0162392i
\(85\) 6.10309 + 10.5709i 0.661973 + 1.14657i
\(86\) −6.69291 + 11.5925i −0.721715 + 1.25005i
\(87\) 1.09353 1.89405i 0.117239 0.203063i
\(88\) −0.632780 −0.0674546
\(89\) −1.54769 2.68068i −0.164055 0.284152i 0.772264 0.635301i \(-0.219124\pi\)
−0.936319 + 0.351150i \(0.885791\pi\)
\(90\) 3.47937 0.366758
\(91\) 9.08349 2.91380i 0.952208 0.305449i
\(92\) 4.47962 0.467033
\(93\) 3.51152 + 6.08213i 0.364127 + 0.630687i
\(94\) 14.2499 1.46977
\(95\) −7.86277 + 13.6187i −0.806703 + 1.39725i
\(96\) −2.00775 + 3.47753i −0.204915 + 0.354923i
\(97\) −3.19711 5.53756i −0.324618 0.562254i 0.656817 0.754050i \(-0.271902\pi\)
−0.981435 + 0.191795i \(0.938569\pi\)
\(98\) −11.4643 1.74736i −1.15807 0.176510i
\(99\) −0.304241 −0.0305774
\(100\) −0.438591 −0.0438591
\(101\) 1.38002 0.137317 0.0686584 0.997640i \(-0.478128\pi\)
0.0686584 + 0.997640i \(0.478128\pi\)
\(102\) −9.62831 −0.953345
\(103\) −2.82628 + 4.89525i −0.278481 + 0.482344i −0.971008 0.239049i \(-0.923164\pi\)
0.692526 + 0.721393i \(0.256498\pi\)
\(104\) −1.02833 + 7.42822i −0.100837 + 0.728397i
\(105\) −5.54078 0.419832i −0.540725 0.0409714i
\(106\) 1.82257 3.15678i 0.177023 0.306614i
\(107\) −7.06296 12.2334i −0.682802 1.18265i −0.974122 0.226022i \(-0.927428\pi\)
0.291321 0.956626i \(-0.405905\pi\)
\(108\) −0.372274 + 0.644798i −0.0358221 + 0.0620457i
\(109\) −4.56805 7.91209i −0.437539 0.757840i 0.559960 0.828520i \(-0.310817\pi\)
−0.997499 + 0.0706794i \(0.977483\pi\)
\(110\) −1.05857 −0.100930
\(111\) 0.0524484 + 0.0908433i 0.00497818 + 0.00862246i
\(112\) 7.36368 10.7814i 0.695803 1.01874i
\(113\) 5.58957 + 9.68142i 0.525823 + 0.910751i 0.999548 + 0.0300785i \(0.00957573\pi\)
−0.473725 + 0.880673i \(0.657091\pi\)
\(114\) −6.20220 10.7425i −0.580889 1.00613i
\(115\) −12.6361 −1.17832
\(116\) 0.814185 + 1.41021i 0.0755952 + 0.130935i
\(117\) −0.494423 + 3.57149i −0.0457095 + 0.330184i
\(118\) 22.6702 2.08696
\(119\) 15.3328 + 1.16178i 1.40555 + 0.106500i
\(120\) 2.18409 3.78295i 0.199379 0.345335i
\(121\) −10.9074 −0.991585
\(122\) −9.13346 15.8196i −0.826904 1.43224i
\(123\) −1.00378 + 1.73860i −0.0905079 + 0.156764i
\(124\) −5.22899 −0.469577
\(125\) 11.7383 1.04990
\(126\) 2.47210 3.61947i 0.220232 0.322448i
\(127\) −8.41791 + 14.5802i −0.746969 + 1.29379i 0.202300 + 0.979324i \(0.435158\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(128\) 6.68037 + 11.5707i 0.590466 + 1.02272i
\(129\) 4.03998 + 6.99746i 0.355701 + 0.616092i
\(130\) −1.72028 + 12.4265i −0.150879 + 1.08988i
\(131\) −6.97748 + 12.0854i −0.609625 + 1.05590i 0.381677 + 0.924296i \(0.375347\pi\)
−0.991302 + 0.131606i \(0.957987\pi\)
\(132\) 0.113261 0.196174i 0.00985811 0.0170747i
\(133\) 8.58057 + 17.8555i 0.744030 + 1.54827i
\(134\) 8.35081 + 14.4640i 0.721400 + 1.24950i
\(135\) 1.05011 1.81885i 0.0903791 0.156541i
\(136\) −6.04394 + 10.4684i −0.518264 + 0.897659i
\(137\) 0.304544 0.527486i 0.0260190 0.0450662i −0.852723 0.522364i \(-0.825050\pi\)
0.878742 + 0.477298i \(0.158384\pi\)
\(138\) 4.98372 8.63206i 0.424242 0.734809i
\(139\) −4.23753 7.33962i −0.359423 0.622539i 0.628442 0.777857i \(-0.283693\pi\)
−0.987865 + 0.155318i \(0.950360\pi\)
\(140\) 2.33340 3.41639i 0.197208 0.288738i
\(141\) 4.30078 7.44916i 0.362191 0.627333i
\(142\) 0.247897 0.429371i 0.0208031 0.0360320i
\(143\) 0.150424 1.08659i 0.0125791 0.0908655i
\(144\) 2.46737 + 4.27361i 0.205614 + 0.356135i
\(145\) −2.29665 3.97792i −0.190727 0.330348i
\(146\) 4.91662 8.51583i 0.406902 0.704775i
\(147\) −4.37347 + 5.46560i −0.360718 + 0.450795i
\(148\) −0.0781008 −0.00641984
\(149\) 6.62649 0.542863 0.271431 0.962458i \(-0.412503\pi\)
0.271431 + 0.962458i \(0.412503\pi\)
\(150\) −0.487947 + 0.845149i −0.0398407 + 0.0690061i
\(151\) 0.762113 + 1.32002i 0.0620199 + 0.107422i 0.895368 0.445327i \(-0.146912\pi\)
−0.833348 + 0.552748i \(0.813579\pi\)
\(152\) −15.5731 −1.26315
\(153\) −2.90593 + 5.03321i −0.234930 + 0.406911i
\(154\) −0.752114 + 1.10119i −0.0606071 + 0.0887365i
\(155\) 14.7499 1.18474
\(156\) −2.11883 1.64838i −0.169642 0.131976i
\(157\) 8.46505 + 14.6619i 0.675584 + 1.17015i 0.976298 + 0.216432i \(0.0694419\pi\)
−0.300713 + 0.953715i \(0.597225\pi\)
\(158\) 21.7001 1.72637
\(159\) −1.10014 1.90550i −0.0872468 0.151116i
\(160\) 4.21672 + 7.30357i 0.333361 + 0.577398i
\(161\) −8.97798 + 13.1449i −0.707564 + 1.03596i
\(162\) 0.828334 + 1.43472i 0.0650801 + 0.112722i
\(163\) 9.64163 0.755191 0.377595 0.925971i \(-0.376751\pi\)
0.377595 + 0.925971i \(0.376751\pi\)
\(164\) −0.747364 1.29447i −0.0583593 0.101081i
\(165\) −0.319487 + 0.553367i −0.0248720 + 0.0430796i
\(166\) −7.72993 13.3886i −0.599959 1.03916i
\(167\) 9.10684 15.7735i 0.704708 1.22059i −0.262088 0.965044i \(-0.584411\pi\)
0.966797 0.255547i \(-0.0822555\pi\)
\(168\) −2.38348 4.95983i −0.183889 0.382659i
\(169\) −12.5111 3.53166i −0.962392 0.271666i
\(170\) −10.1108 + 17.5124i −0.775462 + 1.34314i
\(171\) −7.48756 −0.572588
\(172\) −6.01593 −0.458710
\(173\) 21.5144 1.63571 0.817853 0.575427i \(-0.195164\pi\)
0.817853 + 0.575427i \(0.195164\pi\)
\(174\) 3.62323 0.274676
\(175\) 0.879018 1.28699i 0.0664475 0.0972876i
\(176\) −0.750676 1.30021i −0.0565843 0.0980069i
\(177\) 6.84210 11.8509i 0.514284 0.890766i
\(178\) 2.56401 4.44100i 0.192181 0.332867i
\(179\) −2.72518 −0.203689 −0.101845 0.994800i \(-0.532474\pi\)
−0.101845 + 0.994800i \(0.532474\pi\)
\(180\) 0.781858 + 1.35422i 0.0582763 + 0.100937i
\(181\) −6.47170 −0.481038 −0.240519 0.970644i \(-0.577318\pi\)
−0.240519 + 0.970644i \(0.577318\pi\)
\(182\) 11.7046 + 10.6186i 0.867606 + 0.787105i
\(183\) −11.0263 −0.815087
\(184\) −6.25682 10.8371i −0.461259 0.798924i
\(185\) 0.220307 0.0161973
\(186\) −5.81742 + 10.0761i −0.426554 + 0.738813i
\(187\) 0.884102 1.53131i 0.0646519 0.111980i
\(188\) 3.20214 + 5.54626i 0.233540 + 0.404503i
\(189\) −1.14598 2.38469i −0.0833576 0.173461i
\(190\) −26.0520 −1.89001
\(191\) 12.7429 0.922042 0.461021 0.887389i \(-0.347483\pi\)
0.461021 + 0.887389i \(0.347483\pi\)
\(192\) 3.21714 0.232177
\(193\) −0.652105 −0.0469395 −0.0234698 0.999725i \(-0.507471\pi\)
−0.0234698 + 0.999725i \(0.507471\pi\)
\(194\) 5.29656 9.17390i 0.380271 0.658648i
\(195\) 5.97679 + 4.64974i 0.428007 + 0.332975i
\(196\) −1.89607 4.85471i −0.135434 0.346765i
\(197\) 3.03080 5.24950i 0.215936 0.374011i −0.737626 0.675209i \(-0.764053\pi\)
0.953562 + 0.301198i \(0.0973866\pi\)
\(198\) −0.252013 0.436500i −0.0179098 0.0310207i
\(199\) −1.02227 + 1.77062i −0.0724666 + 0.125516i −0.899982 0.435927i \(-0.856420\pi\)
0.827515 + 0.561443i \(0.189754\pi\)
\(200\) 0.612594 + 1.06104i 0.0433169 + 0.0750271i
\(201\) 10.0815 0.711091
\(202\) 1.14311 + 1.97993i 0.0804293 + 0.139308i
\(203\) −5.76987 0.437190i −0.404966 0.0306847i
\(204\) −2.16360 3.74747i −0.151483 0.262375i
\(205\) 2.10816 + 3.65144i 0.147240 + 0.255028i
\(206\) −9.36440 −0.652449
\(207\) −3.00828 5.21049i −0.209090 0.362154i
\(208\) −16.4831 + 6.69922i −1.14290 + 0.464507i
\(209\) 2.27802 0.157574
\(210\) −3.98728 8.29721i −0.275148 0.572562i
\(211\) −2.27669 + 3.94334i −0.156734 + 0.271471i −0.933689 0.358085i \(-0.883430\pi\)
0.776955 + 0.629556i \(0.216763\pi\)
\(212\) 1.63822 0.112513
\(213\) −0.149636 0.259177i −0.0102529 0.0177585i
\(214\) 11.7010 20.2667i 0.799862 1.38540i
\(215\) 16.9697 1.15733
\(216\) 2.07987 0.141517
\(217\) 10.4799 15.3439i 0.711419 1.04161i
\(218\) 7.56773 13.1077i 0.512552 0.887765i
\(219\) −2.96778 5.14034i −0.200544 0.347352i
\(220\) −0.237873 0.412009i −0.0160374 0.0277776i
\(221\) −16.5393 12.8670i −1.11255 0.865530i
\(222\) −0.0868896 + 0.150497i −0.00583165 + 0.0101007i
\(223\) 7.85506 13.6054i 0.526014 0.911082i −0.473527 0.880779i \(-0.657019\pi\)
0.999541 0.0303029i \(-0.00964720\pi\)
\(224\) 10.5936 + 0.802693i 0.707818 + 0.0536322i
\(225\) 0.294535 + 0.510150i 0.0196357 + 0.0340100i
\(226\) −9.26006 + 16.0389i −0.615970 + 1.06689i
\(227\) 6.27169 10.8629i 0.416267 0.720995i −0.579294 0.815119i \(-0.696672\pi\)
0.995561 + 0.0941238i \(0.0300049\pi\)
\(228\) 2.78743 4.82796i 0.184602 0.319740i
\(229\) −10.3182 + 17.8717i −0.681849 + 1.18100i 0.292567 + 0.956245i \(0.405490\pi\)
−0.974416 + 0.224752i \(0.927843\pi\)
\(230\) −10.4669 18.1292i −0.690168 1.19541i
\(231\) 0.348653 + 0.725520i 0.0229397 + 0.0477357i
\(232\) 2.27439 3.93936i 0.149321 0.258632i
\(233\) 4.00908 6.94394i 0.262644 0.454912i −0.704300 0.709903i \(-0.748739\pi\)
0.966944 + 0.254990i \(0.0820723\pi\)
\(234\) −5.53362 + 2.24903i −0.361744 + 0.147024i
\(235\) −9.03258 15.6449i −0.589221 1.02056i
\(236\) 5.09428 + 8.82355i 0.331609 + 0.574364i
\(237\) 6.54933 11.3438i 0.425425 0.736857i
\(238\) 11.0338 + 22.9605i 0.715217 + 1.48831i
\(239\) −1.16836 −0.0755752 −0.0377876 0.999286i \(-0.512031\pi\)
−0.0377876 + 0.999286i \(0.512031\pi\)
\(240\) 10.3641 0.668997
\(241\) 0.536076 0.928511i 0.0345317 0.0598107i −0.848243 0.529607i \(-0.822339\pi\)
0.882775 + 0.469796i \(0.155673\pi\)
\(242\) −9.03500 15.6491i −0.580792 1.00596i
\(243\) 1.00000 0.0641500
\(244\) 4.10481 7.10973i 0.262783 0.455154i
\(245\) 5.34844 + 13.6941i 0.341699 + 0.874887i
\(246\) −3.32586 −0.212049
\(247\) 3.70203 26.7418i 0.235554 1.70154i
\(248\) 7.30349 + 12.6500i 0.463772 + 0.803277i
\(249\) −9.33190 −0.591385
\(250\) 9.72322 + 16.8411i 0.614950 + 1.06513i
\(251\) −6.29717 10.9070i −0.397474 0.688445i 0.595940 0.803029i \(-0.296780\pi\)
−0.993414 + 0.114584i \(0.963446\pi\)
\(252\) 1.96426 + 0.148834i 0.123737 + 0.00937568i
\(253\) 0.915242 + 1.58525i 0.0575408 + 0.0996635i
\(254\) −27.8914 −1.75006
\(255\) 6.10309 + 10.5709i 0.382190 + 0.661973i
\(256\) −7.85001 + 13.5966i −0.490626 + 0.849788i
\(257\) 10.6490 + 18.4446i 0.664268 + 1.15055i 0.979483 + 0.201526i \(0.0645899\pi\)
−0.315215 + 0.949020i \(0.602077\pi\)
\(258\) −6.69291 + 11.5925i −0.416683 + 0.721715i
\(259\) 0.156528 0.229177i 0.00972619 0.0142404i
\(260\) −5.22315 + 2.12284i −0.323926 + 0.131653i
\(261\) 1.09353 1.89405i 0.0676877 0.117239i
\(262\) −23.1187 −1.42828
\(263\) −22.0285 −1.35833 −0.679167 0.733984i \(-0.737659\pi\)
−0.679167 + 0.733984i \(0.737659\pi\)
\(264\) −0.632780 −0.0389449
\(265\) −4.62108 −0.283871
\(266\) −18.5100 + 27.1010i −1.13492 + 1.66167i
\(267\) −1.54769 2.68068i −0.0947172 0.164055i
\(268\) −3.75307 + 6.50050i −0.229255 + 0.397081i
\(269\) −8.92932 + 15.4660i −0.544430 + 0.942981i 0.454212 + 0.890893i \(0.349921\pi\)
−0.998643 + 0.0520871i \(0.983413\pi\)
\(270\) 3.47937 0.211748
\(271\) 3.60531 + 6.24459i 0.219007 + 0.379332i 0.954505 0.298196i \(-0.0963848\pi\)
−0.735497 + 0.677527i \(0.763051\pi\)
\(272\) −28.6800 −1.73898
\(273\) 9.08349 2.91380i 0.549758 0.176351i
\(274\) 1.00906 0.0609594
\(275\) −0.0896097 0.155208i −0.00540367 0.00935942i
\(276\) 4.47962 0.269641
\(277\) 2.19138 3.79558i 0.131667 0.228054i −0.792652 0.609674i \(-0.791300\pi\)
0.924319 + 0.381620i \(0.124634\pi\)
\(278\) 7.02018 12.1593i 0.421043 0.729267i
\(279\) 3.51152 + 6.08213i 0.210229 + 0.364127i
\(280\) −11.5241 0.873193i −0.688696 0.0521833i
\(281\) −0.474280 −0.0282932 −0.0141466 0.999900i \(-0.504503\pi\)
−0.0141466 + 0.999900i \(0.504503\pi\)
\(282\) 14.2499 0.848570
\(283\) −1.12693 −0.0669888 −0.0334944 0.999439i \(-0.510664\pi\)
−0.0334944 + 0.999439i \(0.510664\pi\)
\(284\) 0.222823 0.0132221
\(285\) −7.86277 + 13.6187i −0.465750 + 0.806703i
\(286\) 1.68356 0.684247i 0.0995507 0.0404604i
\(287\) 5.29633 + 0.401309i 0.312632 + 0.0236885i
\(288\) −2.00775 + 3.47753i −0.118308 + 0.204915i
\(289\) −8.38883 14.5299i −0.493460 0.854698i
\(290\) 3.80479 6.59009i 0.223425 0.386983i
\(291\) −3.19711 5.53756i −0.187418 0.324618i
\(292\) 4.41931 0.258620
\(293\) 6.43732 + 11.1498i 0.376072 + 0.651376i 0.990487 0.137607i \(-0.0439411\pi\)
−0.614415 + 0.788983i \(0.710608\pi\)
\(294\) −11.4643 1.74736i −0.668610 0.101908i
\(295\) −14.3699 24.8895i −0.836650 1.44912i
\(296\) 0.109086 + 0.188942i 0.00634048 + 0.0109820i
\(297\) −0.304241 −0.0176539
\(298\) 5.48894 + 9.50713i 0.317966 + 0.550733i
\(299\) 20.0966 8.16785i 1.16222 0.472359i
\(300\) −0.438591 −0.0253221
\(301\) 12.0570 17.6530i 0.694955 1.01750i
\(302\) −1.26257 + 2.18683i −0.0726526 + 0.125838i
\(303\) 1.38002 0.0792799
\(304\) −18.4746 31.9989i −1.05959 1.83527i
\(305\) −11.5788 + 20.0551i −0.663002 + 1.14835i
\(306\) −9.62831 −0.550414
\(307\) −8.01524 −0.457454 −0.228727 0.973491i \(-0.573456\pi\)
−0.228727 + 0.973491i \(0.573456\pi\)
\(308\) −0.597608 0.0452815i −0.0340519 0.00258015i
\(309\) −2.82628 + 4.89525i −0.160781 + 0.278481i
\(310\) 12.2179 + 21.1620i 0.693928 + 1.20192i
\(311\) −1.57684 2.73117i −0.0894145 0.154871i 0.817849 0.575433i \(-0.195166\pi\)
−0.907264 + 0.420562i \(0.861833\pi\)
\(312\) −1.02833 + 7.42822i −0.0582180 + 0.420540i
\(313\) 0.264591 0.458285i 0.0149556 0.0259038i −0.858451 0.512896i \(-0.828573\pi\)
0.873406 + 0.486992i \(0.161906\pi\)
\(314\) −14.0238 + 24.2899i −0.791407 + 1.37076i
\(315\) −5.54078 0.419832i −0.312188 0.0236548i
\(316\) 4.87629 + 8.44599i 0.274313 + 0.475124i
\(317\) −2.19029 + 3.79369i −0.123019 + 0.213075i −0.920957 0.389665i \(-0.872591\pi\)
0.797938 + 0.602739i \(0.205924\pi\)
\(318\) 1.82257 3.15678i 0.102205 0.177023i
\(319\) −0.332696 + 0.576247i −0.0186274 + 0.0322636i
\(320\) 3.37835 5.85148i 0.188856 0.327107i
\(321\) −7.06296 12.2334i −0.394216 0.682802i
\(322\) −26.2960 1.99248i −1.46542 0.111036i
\(323\) 21.7583 37.6865i 1.21066 2.09693i
\(324\) −0.372274 + 0.644798i −0.0206819 + 0.0358221i
\(325\) −1.96762 + 0.799700i −0.109144 + 0.0443593i
\(326\) 7.98649 + 13.8330i 0.442331 + 0.766139i
\(327\) −4.56805 7.91209i −0.252613 0.437539i
\(328\) −2.08773 + 3.61605i −0.115276 + 0.199663i
\(329\) −22.6925 1.71944i −1.25108 0.0947957i
\(330\) −1.05857 −0.0582722
\(331\) −26.9352 −1.48049 −0.740246 0.672336i \(-0.765291\pi\)
−0.740246 + 0.672336i \(0.765291\pi\)
\(332\) 3.47403 6.01719i 0.190662 0.330236i
\(333\) 0.0524484 + 0.0908433i 0.00287415 + 0.00497818i
\(334\) 30.1740 1.65105
\(335\) 10.5866 18.3366i 0.578410 1.00184i
\(336\) 7.36368 10.7814i 0.401722 0.588172i
\(337\) 20.8356 1.13498 0.567492 0.823379i \(-0.307914\pi\)
0.567492 + 0.823379i \(0.307914\pi\)
\(338\) −5.29643 20.8753i −0.288088 1.13546i
\(339\) 5.58957 + 9.68142i 0.303584 + 0.525823i
\(340\) −9.08809 −0.492871
\(341\) −1.06835 1.85043i −0.0578543 0.100207i
\(342\) −6.20220 10.7425i −0.335377 0.580889i
\(343\) 18.0456 + 4.16592i 0.974373 + 0.224939i
\(344\) 8.40263 + 14.5538i 0.453039 + 0.784687i
\(345\) −12.6361 −0.680305
\(346\) 17.8211 + 30.8670i 0.958067 + 1.65942i
\(347\) 6.66918 11.5514i 0.358021 0.620110i −0.629610 0.776912i \(-0.716785\pi\)
0.987630 + 0.156802i \(0.0501185\pi\)
\(348\) 0.814185 + 1.41021i 0.0436449 + 0.0755952i
\(349\) −10.2622 + 17.7746i −0.549322 + 0.951453i 0.449000 + 0.893532i \(0.351780\pi\)
−0.998321 + 0.0579208i \(0.981553\pi\)
\(350\) 2.57459 + 0.195080i 0.137618 + 0.0104275i
\(351\) −0.494423 + 3.57149i −0.0263904 + 0.190632i
\(352\) 0.610840 1.05801i 0.0325579 0.0563919i
\(353\) −6.44714 −0.343147 −0.171573 0.985171i \(-0.554885\pi\)
−0.171573 + 0.985171i \(0.554885\pi\)
\(354\) 22.6702 1.20491
\(355\) −0.628538 −0.0333593
\(356\) 2.30466 0.122147
\(357\) 15.3328 + 1.16178i 0.811496 + 0.0614880i
\(358\) −2.25736 3.90986i −0.119305 0.206642i
\(359\) −4.38549 + 7.59588i −0.231457 + 0.400895i −0.958237 0.285975i \(-0.907683\pi\)
0.726780 + 0.686870i \(0.241016\pi\)
\(360\) 2.18409 3.78295i 0.115112 0.199379i
\(361\) 37.0636 1.95071
\(362\) −5.36073 9.28506i −0.281754 0.488012i
\(363\) −10.9074 −0.572492
\(364\) −1.50274 + 6.94175i −0.0787648 + 0.363846i
\(365\) −12.4660 −0.652499
\(366\) −9.13346 15.8196i −0.477413 0.826904i
\(367\) 12.1796 0.635772 0.317886 0.948129i \(-0.397027\pi\)
0.317886 + 0.948129i \(0.397027\pi\)
\(368\) 14.8451 25.7125i 0.773854 1.34035i
\(369\) −1.00378 + 1.73860i −0.0522548 + 0.0905079i
\(370\) 0.182487 + 0.316077i 0.00948707 + 0.0164321i
\(371\) −3.28329 + 4.80715i −0.170460 + 0.249575i
\(372\) −5.22899 −0.271111
\(373\) 30.5975 1.58428 0.792140 0.610339i \(-0.208967\pi\)
0.792140 + 0.610339i \(0.208967\pi\)
\(374\) 2.92933 0.151472
\(375\) 11.7383 0.606162
\(376\) 8.94504 15.4933i 0.461305 0.799004i
\(377\) 6.22391 + 4.84199i 0.320547 + 0.249375i
\(378\) 2.47210 3.61947i 0.127151 0.186165i
\(379\) −2.54078 + 4.40075i −0.130511 + 0.226052i −0.923874 0.382698i \(-0.874995\pi\)
0.793363 + 0.608749i \(0.208328\pi\)
\(380\) −5.85421 10.1398i −0.300315 0.520160i
\(381\) −8.41791 + 14.5802i −0.431263 + 0.746969i
\(382\) 10.5554 + 18.2824i 0.540059 + 0.935410i
\(383\) −24.6280 −1.25843 −0.629217 0.777230i \(-0.716624\pi\)
−0.629217 + 0.777230i \(0.716624\pi\)
\(384\) 6.68037 + 11.5707i 0.340906 + 0.590466i
\(385\) 1.68573 + 0.127730i 0.0859129 + 0.00650972i
\(386\) −0.540161 0.935585i −0.0274934 0.0476200i
\(387\) 4.03998 + 6.99746i 0.205364 + 0.355701i
\(388\) 4.76081 0.241694
\(389\) −9.26991 16.0559i −0.470003 0.814069i 0.529409 0.848367i \(-0.322414\pi\)
−0.999412 + 0.0342980i \(0.989080\pi\)
\(390\) −1.72028 + 12.4265i −0.0871099 + 0.629242i
\(391\) 34.9674 1.76838
\(392\) −9.09624 + 11.3677i −0.459429 + 0.574156i
\(393\) −6.97748 + 12.0854i −0.351967 + 0.609625i
\(394\) 10.0421 0.505912
\(395\) −13.7550 23.8244i −0.692091 1.19874i
\(396\) 0.113261 0.196174i 0.00569158 0.00985811i
\(397\) 31.2026 1.56601 0.783007 0.622013i \(-0.213685\pi\)
0.783007 + 0.622013i \(0.213685\pi\)
\(398\) −3.38712 −0.169781
\(399\) 8.58057 + 17.8555i 0.429566 + 0.893893i
\(400\) −1.45346 + 2.51746i −0.0726728 + 0.125873i
\(401\) 17.1125 + 29.6396i 0.854555 + 1.48013i 0.877057 + 0.480386i \(0.159504\pi\)
−0.0225016 + 0.999747i \(0.507163\pi\)
\(402\) 8.35081 + 14.4640i 0.416501 + 0.721400i
\(403\) −23.4584 + 9.53421i −1.16855 + 0.474933i
\(404\) −0.513745 + 0.889832i −0.0255598 + 0.0442708i
\(405\) 1.05011 1.81885i 0.0521804 0.0903791i
\(406\) −4.15214 8.64027i −0.206067 0.428809i
\(407\) −0.0159570 0.0276383i −0.000790957 0.00136998i
\(408\) −6.04394 + 10.4684i −0.299220 + 0.518264i
\(409\) 4.97900 8.62389i 0.246196 0.426424i −0.716271 0.697822i \(-0.754153\pi\)
0.962467 + 0.271398i \(0.0874860\pi\)
\(410\) −3.49252 + 6.04923i −0.172484 + 0.298750i
\(411\) 0.304544 0.527486i 0.0150221 0.0260190i
\(412\) −2.10430 3.64475i −0.103671 0.179564i
\(413\) −36.1015 2.73546i −1.77644 0.134603i
\(414\) 4.98372 8.63206i 0.244936 0.424242i
\(415\) −9.79953 + 16.9733i −0.481040 + 0.833186i
\(416\) −11.4273 8.89003i −0.560268 0.435870i
\(417\) −4.23753 7.33962i −0.207513 0.359423i
\(418\) 1.88696 + 3.26832i 0.0922944 + 0.159859i
\(419\) 0.586220 1.01536i 0.0286387 0.0496037i −0.851351 0.524597i \(-0.824216\pi\)
0.879990 + 0.474993i \(0.157549\pi\)
\(420\) 2.33340 3.41639i 0.113858 0.166703i
\(421\) −10.2374 −0.498938 −0.249469 0.968383i \(-0.580256\pi\)
−0.249469 + 0.968383i \(0.580256\pi\)
\(422\) −7.54343 −0.367209
\(423\) 4.30078 7.44916i 0.209111 0.362191i
\(424\) −2.28815 3.96318i −0.111122 0.192469i
\(425\) −3.42359 −0.166069
\(426\) 0.247897 0.429371i 0.0120107 0.0208031i
\(427\) 12.6359 + 26.2943i 0.611493 + 1.27247i
\(428\) 10.5174 0.508379
\(429\) 0.150424 1.08659i 0.00726253 0.0524612i
\(430\) 14.0566 + 24.3467i 0.677869 + 1.17410i
\(431\) 23.6395 1.13868 0.569338 0.822103i \(-0.307200\pi\)
0.569338 + 0.822103i \(0.307200\pi\)
\(432\) 2.46737 + 4.27361i 0.118712 + 0.205614i
\(433\) −0.246165 0.426370i −0.0118299 0.0204900i 0.860050 0.510210i \(-0.170432\pi\)
−0.871880 + 0.489720i \(0.837099\pi\)
\(434\) 30.6949 + 2.32579i 1.47340 + 0.111641i
\(435\) −2.29665 3.97792i −0.110116 0.190727i
\(436\) 6.80226 0.325769
\(437\) 22.5247 + 39.0139i 1.07750 + 1.86629i
\(438\) 4.91662 8.51583i 0.234925 0.406902i
\(439\) 7.53188 + 13.0456i 0.359477 + 0.622633i 0.987874 0.155261i \(-0.0496217\pi\)
−0.628396 + 0.777893i \(0.716288\pi\)
\(440\) −0.664490 + 1.15093i −0.0316783 + 0.0548684i
\(441\) −4.37347 + 5.46560i −0.208261 + 0.260266i
\(442\) 4.76046 34.3874i 0.226432 1.63564i
\(443\) −13.3996 + 23.2088i −0.636635 + 1.10268i 0.349531 + 0.936925i \(0.386341\pi\)
−0.986166 + 0.165760i \(0.946992\pi\)
\(444\) −0.0781008 −0.00370650
\(445\) −6.50099 −0.308177
\(446\) 26.0264 1.23239
\(447\) 6.62649 0.313422
\(448\) −3.68677 7.67187i −0.174183 0.362462i
\(449\) 2.26268 + 3.91908i 0.106783 + 0.184953i 0.914465 0.404665i \(-0.132612\pi\)
−0.807683 + 0.589618i \(0.799278\pi\)
\(450\) −0.487947 + 0.845149i −0.0230020 + 0.0398407i
\(451\) 0.305391 0.528953i 0.0143803 0.0249074i
\(452\) −8.32341 −0.391500
\(453\) 0.762113 + 1.32002i 0.0358072 + 0.0620199i
\(454\) 20.7802 0.975264
\(455\) 4.23892 19.5813i 0.198723 0.917984i
\(456\) −15.5731 −0.729278
\(457\) −17.1770 29.7514i −0.803505 1.39171i −0.917296 0.398207i \(-0.869633\pi\)
0.113790 0.993505i \(-0.463701\pi\)
\(458\) −34.1878 −1.59749
\(459\) −2.90593 + 5.03321i −0.135637 + 0.234930i
\(460\) 4.70410 8.14773i 0.219330 0.379890i
\(461\) −0.499436 0.865049i −0.0232611 0.0402893i 0.854161 0.520009i \(-0.174072\pi\)
−0.877422 + 0.479720i \(0.840738\pi\)
\(462\) −0.752114 + 1.10119i −0.0349915 + 0.0512320i
\(463\) 32.5538 1.51290 0.756452 0.654049i \(-0.226931\pi\)
0.756452 + 0.654049i \(0.226931\pi\)
\(464\) 10.7926 0.501032
\(465\) 14.7499 0.684012
\(466\) 13.2834 0.615343
\(467\) 12.1056 20.9675i 0.560180 0.970261i −0.437300 0.899316i \(-0.644065\pi\)
0.997480 0.0709451i \(-0.0226015\pi\)
\(468\) −2.11883 1.64838i −0.0979429 0.0761963i
\(469\) −11.5531 24.0411i −0.533473 1.11012i
\(470\) 14.9640 25.9184i 0.690237 1.19553i
\(471\) 8.46505 + 14.6619i 0.390049 + 0.675584i
\(472\) 14.2307 24.6482i 0.655019 1.13453i
\(473\) −1.22913 2.12891i −0.0565154 0.0978875i
\(474\) 21.7001 0.996720
\(475\) −2.20535 3.81978i −0.101188 0.175263i
\(476\) −6.45711 + 9.45404i −0.295961 + 0.433325i
\(477\) −1.10014 1.90550i −0.0503720 0.0872468i
\(478\) −0.967796 1.67627i −0.0442660 0.0766709i
\(479\) −30.3368 −1.38612 −0.693061 0.720879i \(-0.743738\pi\)
−0.693061 + 0.720879i \(0.743738\pi\)
\(480\) 4.21672 + 7.30357i 0.192466 + 0.333361i
\(481\) −0.350378 + 0.142404i −0.0159758 + 0.00649306i
\(482\) 1.77620 0.0809037
\(483\) −8.97798 + 13.1449i −0.408512 + 0.598114i
\(484\) 4.06056 7.03309i 0.184571 0.319686i
\(485\) −13.4293 −0.609793
\(486\) 0.828334 + 1.43472i 0.0375740 + 0.0650801i
\(487\) 2.69224 4.66310i 0.121997 0.211305i −0.798558 0.601918i \(-0.794403\pi\)
0.920555 + 0.390613i \(0.127737\pi\)
\(488\) −22.9332 −1.03814
\(489\) 9.64163 0.436009
\(490\) −15.2169 + 19.0168i −0.687431 + 0.859093i
\(491\) −17.4920 + 30.2970i −0.789401 + 1.36728i 0.136933 + 0.990580i \(0.456275\pi\)
−0.926334 + 0.376703i \(0.877058\pi\)
\(492\) −0.747364 1.29447i −0.0336938 0.0583593i
\(493\) 6.35543 + 11.0079i 0.286234 + 0.495772i
\(494\) 41.4333 16.8397i 1.86417 0.757656i
\(495\) −0.319487 + 0.553367i −0.0143599 + 0.0248720i
\(496\) −17.3284 + 30.0137i −0.778070 + 1.34766i
\(497\) −0.446577 + 0.653846i −0.0200317 + 0.0293290i
\(498\) −7.72993 13.3886i −0.346386 0.599959i
\(499\) −0.527303 + 0.913315i −0.0236053 + 0.0408856i −0.877587 0.479418i \(-0.840848\pi\)
0.853981 + 0.520303i \(0.174181\pi\)
\(500\) −4.36986 + 7.56882i −0.195426 + 0.338488i
\(501\) 9.10684 15.7735i 0.406864 0.704708i
\(502\) 10.4323 18.0693i 0.465617 0.806472i
\(503\) 6.93072 + 12.0044i 0.309026 + 0.535248i 0.978150 0.207903i \(-0.0666638\pi\)
−0.669124 + 0.743151i \(0.733330\pi\)
\(504\) −2.38348 4.95983i −0.106169 0.220928i
\(505\) 1.44917 2.51004i 0.0644872 0.111695i
\(506\) −1.51625 + 2.62623i −0.0674056 + 0.116750i
\(507\) −12.5111 3.53166i −0.555637 0.156846i
\(508\) −6.26754 10.8557i −0.278077 0.481644i
\(509\) −14.6143 25.3127i −0.647768 1.12197i −0.983655 0.180064i \(-0.942369\pi\)
0.335887 0.941902i \(-0.390964\pi\)
\(510\) −10.1108 + 17.5124i −0.447713 + 0.775462i
\(511\) −8.85710 + 12.9679i −0.391815 + 0.573667i
\(512\) 0.711748 0.0314551
\(513\) −7.48756 −0.330584
\(514\) −17.6419 + 30.5567i −0.778151 + 1.34780i
\(515\) 5.93581 + 10.2811i 0.261563 + 0.453040i
\(516\) −6.01593 −0.264837
\(517\) −1.30847 + 2.26634i −0.0575465 + 0.0996735i
\(518\) 0.458462 + 0.0347382i 0.0201437 + 0.00152631i
\(519\) 21.5144 0.944376
\(520\) 12.4309 + 9.67084i 0.545132 + 0.424094i
\(521\) −4.13001 7.15338i −0.180939 0.313395i 0.761262 0.648445i \(-0.224580\pi\)
−0.942201 + 0.335049i \(0.891247\pi\)
\(522\) 3.62323 0.158584
\(523\) 0.228220 + 0.395289i 0.00997937 + 0.0172848i 0.870972 0.491333i \(-0.163490\pi\)
−0.860993 + 0.508617i \(0.830157\pi\)
\(524\) −5.19507 8.99813i −0.226948 0.393085i
\(525\) 0.879018 1.28699i 0.0383635 0.0561690i
\(526\) −18.2469 31.6046i −0.795604 1.37803i
\(527\) −40.8169 −1.77801
\(528\) −0.750676 1.30021i −0.0326690 0.0565843i
\(529\) −6.59949 + 11.4307i −0.286934 + 0.496985i
\(530\) −3.82780 6.62994i −0.166269 0.287986i
\(531\) 6.84210 11.8509i 0.296922 0.514284i
\(532\) −14.7075 1.11441i −0.637651 0.0483156i
\(533\) −5.71310 4.44460i −0.247462 0.192517i
\(534\) 2.56401 4.44100i 0.110956 0.192181i
\(535\) −29.6675 −1.28264
\(536\) 20.9681 0.905683
\(537\) −2.72518 −0.117600
\(538\) −29.5858 −1.27554
\(539\) 1.33059 1.66286i 0.0573126 0.0716244i
\(540\) 0.781858 + 1.35422i 0.0336458 + 0.0582763i
\(541\) −10.6399 + 18.4289i −0.457447 + 0.792321i −0.998825 0.0484578i \(-0.984569\pi\)
0.541378 + 0.840779i \(0.317903\pi\)
\(542\) −5.97281 + 10.3452i −0.256554 + 0.444365i
\(543\) −6.47170 −0.277727
\(544\) −11.6688 20.2109i −0.500294 0.866534i
\(545\) −19.1878 −0.821916
\(546\) 11.7046 + 10.6186i 0.500912 + 0.454435i
\(547\) −43.8895 −1.87658 −0.938290 0.345849i \(-0.887591\pi\)
−0.938290 + 0.345849i \(0.887591\pi\)
\(548\) 0.226748 + 0.392739i 0.00968619 + 0.0167770i
\(549\) −11.0263 −0.470591
\(550\) 0.148453 0.257129i 0.00633008 0.0109640i
\(551\) −8.18786 + 14.1818i −0.348815 + 0.604165i
\(552\) −6.25682 10.8371i −0.266308 0.461259i
\(553\) −34.5567 2.61840i −1.46950 0.111346i
\(554\) 7.26077 0.308480
\(555\) 0.220307 0.00935149
\(556\) 6.31010 0.267608
\(557\) −36.5882 −1.55029 −0.775145 0.631783i \(-0.782323\pi\)
−0.775145 + 0.631783i \(0.782323\pi\)
\(558\) −5.81742 + 10.0761i −0.246271 + 0.426554i
\(559\) −26.9888 + 10.9691i −1.14151 + 0.463942i
\(560\) −11.8770 24.7150i −0.501894 1.04440i
\(561\) 0.884102 1.53131i 0.0373268 0.0646519i
\(562\) −0.392862 0.680457i −0.0165719 0.0287033i
\(563\) 21.6405 37.4824i 0.912036 1.57969i 0.100853 0.994901i \(-0.467843\pi\)
0.811183 0.584792i \(-0.198824\pi\)
\(564\) 3.20214 + 5.54626i 0.134834 + 0.233540i
\(565\) 23.4787 0.987755
\(566\) −0.933471 1.61682i −0.0392367 0.0679600i
\(567\) −1.14598 2.38469i −0.0481265 0.100147i
\(568\) −0.311223 0.539054i −0.0130586 0.0226182i
\(569\) 7.76021 + 13.4411i 0.325325 + 0.563479i 0.981578 0.191062i \(-0.0611930\pi\)
−0.656253 + 0.754541i \(0.727860\pi\)
\(570\) −26.0520 −1.09120
\(571\) 5.62473 + 9.74231i 0.235387 + 0.407703i 0.959385 0.282099i \(-0.0910308\pi\)
−0.723998 + 0.689802i \(0.757697\pi\)
\(572\) 0.644634 + 0.501504i 0.0269535 + 0.0209689i
\(573\) 12.7429 0.532341
\(574\) 3.81136 + 7.93115i 0.159083 + 0.331040i
\(575\) 1.77209 3.06935i 0.0739012 0.128001i
\(576\) 3.21714 0.134047
\(577\) 13.0442 + 22.5933i 0.543038 + 0.940570i 0.998728 + 0.0504308i \(0.0160594\pi\)
−0.455689 + 0.890139i \(0.650607\pi\)
\(578\) 13.8975 24.0712i 0.578060 1.00123i
\(579\) −0.652105 −0.0271006
\(580\) 3.41994 0.142005
\(581\) 10.6941 + 22.2537i 0.443668 + 0.923238i
\(582\) 5.29656 9.17390i 0.219549 0.380271i
\(583\) 0.334708 + 0.579731i 0.0138622 + 0.0240100i
\(584\) −6.17258 10.6912i −0.255423 0.442406i
\(585\) 5.97679 + 4.64974i 0.247110 + 0.192243i
\(586\) −10.6645 + 18.4715i −0.440547 + 0.763049i
\(587\) −20.9471 + 36.2815i −0.864581 + 1.49750i 0.00288215 + 0.999996i \(0.499083\pi\)
−0.867463 + 0.497502i \(0.834251\pi\)
\(588\) −1.89607 4.85471i −0.0781927 0.200205i
\(589\) −26.2927 45.5403i −1.08337 1.87646i
\(590\) 23.8062 41.2336i 0.980086 1.69756i
\(591\) 3.03080 5.24950i 0.124670 0.215936i
\(592\) −0.258819 + 0.448288i −0.0106374 + 0.0184245i
\(593\) 0.0938527 0.162558i 0.00385407 0.00667544i −0.864092 0.503334i \(-0.832107\pi\)
0.867946 + 0.496659i \(0.165440\pi\)
\(594\) −0.252013 0.436500i −0.0103402 0.0179098i
\(595\) 18.2142 26.6679i 0.746710 1.09328i
\(596\) −2.46687 + 4.27275i −0.101047 + 0.175018i
\(597\) −1.02227 + 1.77062i −0.0418386 + 0.0724666i
\(598\) 28.3652 + 22.0672i 1.15994 + 0.902395i
\(599\) 11.9802 + 20.7503i 0.489498 + 0.847835i 0.999927 0.0120845i \(-0.00384672\pi\)
−0.510429 + 0.859920i \(0.670513\pi\)
\(600\) 0.612594 + 1.06104i 0.0250090 + 0.0433169i
\(601\) −11.4417 + 19.8176i −0.466717 + 0.808377i −0.999277 0.0380151i \(-0.987896\pi\)
0.532561 + 0.846392i \(0.321230\pi\)
\(602\) 35.3143 + 2.67581i 1.43930 + 0.109058i
\(603\) 10.0815 0.410549
\(604\) −1.13486 −0.0461768
\(605\) −11.4540 + 19.8389i −0.465672 + 0.806568i
\(606\) 1.14311 + 1.97993i 0.0464359 + 0.0804293i
\(607\) 1.97432 0.0801350 0.0400675 0.999197i \(-0.487243\pi\)
0.0400675 + 0.999197i \(0.487243\pi\)
\(608\) 15.0332 26.0382i 0.609675 1.05599i
\(609\) −5.76987 0.437190i −0.233807 0.0177158i
\(610\) −38.3646 −1.55334
\(611\) 24.4782 + 19.0432i 0.990282 + 0.770406i
\(612\) −2.16360 3.74747i −0.0874585 0.151483i
\(613\) 3.15262 0.127333 0.0636667 0.997971i \(-0.479721\pi\)
0.0636667 + 0.997971i \(0.479721\pi\)
\(614\) −6.63930 11.4996i −0.267940 0.464086i
\(615\) 2.10816 + 3.65144i 0.0850093 + 0.147240i
\(616\) 0.725152 + 1.50898i 0.0292172 + 0.0607987i
\(617\) −6.03895 10.4598i −0.243119 0.421094i 0.718482 0.695545i \(-0.244837\pi\)
−0.961601 + 0.274451i \(0.911504\pi\)
\(618\) −9.36440 −0.376692
\(619\) −20.4442 35.4104i −0.821722 1.42327i −0.904399 0.426689i \(-0.859680\pi\)
0.0826762 0.996576i \(-0.473653\pi\)
\(620\) −5.49102 + 9.51072i −0.220525 + 0.381960i
\(621\) −3.00828 5.21049i −0.120718 0.209090i
\(622\) 2.61230 4.52464i 0.104744 0.181422i
\(623\) −4.61897 + 6.76276i −0.185055 + 0.270944i
\(624\) −16.4831 + 6.69922i −0.659852 + 0.268184i
\(625\) 10.8538 18.7994i 0.434153 0.751975i
\(626\) 0.876680 0.0350392
\(627\) 2.27802 0.0909755
\(628\) −12.6053 −0.503005
\(629\) −0.609645 −0.0243081
\(630\) −3.98728 8.29721i −0.158857 0.330569i
\(631\) 17.6950 + 30.6486i 0.704427 + 1.22010i 0.966898 + 0.255163i \(0.0821293\pi\)
−0.262471 + 0.964940i \(0.584537\pi\)
\(632\) 13.6217 23.5935i 0.541843 0.938500i
\(633\) −2.27669 + 3.94334i −0.0904902 + 0.156734i
\(634\) −7.25715 −0.288218
\(635\) 17.6795 + 30.6218i 0.701589 + 1.21519i
\(636\) 1.63822 0.0649595
\(637\) −17.3580 18.3221i −0.687748 0.725949i
\(638\) −1.10233 −0.0436418
\(639\) −0.149636 0.259177i −0.00591951 0.0102529i
\(640\) 28.0605 1.10919
\(641\) −13.9438 + 24.1513i −0.550747 + 0.953921i 0.447474 + 0.894297i \(0.352324\pi\)
−0.998221 + 0.0596242i \(0.981010\pi\)
\(642\) 11.7010 20.2667i 0.461801 0.799862i
\(643\) −3.37661 5.84847i −0.133161 0.230641i 0.791733 0.610868i \(-0.209179\pi\)
−0.924893 + 0.380227i \(0.875846\pi\)
\(644\) −5.13354 10.6825i −0.202290 0.420949i
\(645\) 16.9697 0.668182
\(646\) 72.0926 2.83644
\(647\) 46.0687 1.81115 0.905574 0.424189i \(-0.139441\pi\)
0.905574 + 0.424189i \(0.139441\pi\)
\(648\) 2.07987 0.0817049
\(649\) −2.08165 + 3.60552i −0.0817118 + 0.141529i
\(650\) −2.77719 2.16056i −0.108930 0.0847441i
\(651\) 10.4799 15.3439i 0.410738 0.601373i
\(652\) −3.58933 + 6.21690i −0.140569 + 0.243473i
\(653\) −17.9401 31.0732i −0.702052 1.21599i −0.967745 0.251932i \(-0.918934\pi\)
0.265693 0.964058i \(-0.414399\pi\)
\(654\) 7.56773 13.1077i 0.295922 0.512552i
\(655\) 14.6543 + 25.3819i 0.572589 + 0.991753i
\(656\) −9.90681 −0.386796
\(657\) −2.96778 5.14034i −0.115784 0.200544i
\(658\) −16.3301 33.9816i −0.636613 1.32474i
\(659\) −17.2510 29.8796i −0.672004 1.16395i −0.977335 0.211699i \(-0.932100\pi\)
0.305331 0.952246i \(-0.401233\pi\)
\(660\) −0.237873 0.412009i −0.00925921 0.0160374i
\(661\) −40.5569 −1.57748 −0.788740 0.614727i \(-0.789266\pi\)
−0.788740 + 0.614727i \(0.789266\pi\)
\(662\) −22.3113 38.6444i −0.867155 1.50196i
\(663\) −16.5393 12.8670i −0.642334 0.499714i
\(664\) −19.4091 −0.753219
\(665\) 41.4869 + 3.14351i 1.60879 + 0.121900i
\(666\) −0.0868896 + 0.150497i −0.00336690 + 0.00583165i
\(667\) −13.1586 −0.509501
\(668\) 6.78048 + 11.7441i 0.262345 + 0.454395i
\(669\) 7.85506 13.6054i 0.303694 0.526014i
\(670\) 35.0771 1.35515
\(671\) 3.35465 0.129505
\(672\) 10.5936 + 0.802693i 0.408659 + 0.0309646i
\(673\) −11.5572 + 20.0177i −0.445498 + 0.771625i −0.998087 0.0618288i \(-0.980307\pi\)
0.552589 + 0.833454i \(0.313640\pi\)
\(674\) 17.2588 + 29.8931i 0.664784 + 1.15144i
\(675\) 0.294535 + 0.510150i 0.0113367 + 0.0196357i
\(676\) 6.93476 6.75238i 0.266722 0.259707i
\(677\) 8.56573 14.8363i 0.329208 0.570205i −0.653147 0.757231i \(-0.726552\pi\)
0.982355 + 0.187026i \(0.0598850\pi\)
\(678\) −9.26006 + 16.0389i −0.355631 + 0.615970i
\(679\) −9.54154 + 13.9700i −0.366171 + 0.536121i
\(680\) 12.6936 + 21.9860i 0.486778 + 0.843124i
\(681\) 6.27169 10.8629i 0.240332 0.416267i
\(682\) 1.76990 3.06555i 0.0677729 0.117386i
\(683\) 22.0922 38.2648i 0.845335 1.46416i −0.0399956 0.999200i \(-0.512734\pi\)
0.885330 0.464963i \(-0.153932\pi\)
\(684\) 2.78743 4.82796i 0.106580 0.184602i
\(685\) −0.639610 1.10784i −0.0244382 0.0423283i
\(686\) 8.97090 + 29.3412i 0.342511 + 1.12025i
\(687\) −10.3182 + 17.8717i −0.393665 + 0.681849i
\(688\) −19.9363 + 34.5307i −0.760064 + 1.31647i
\(689\) 7.34941 2.98702i 0.279990 0.113796i
\(690\) −10.4669 18.1292i −0.398469 0.690168i
\(691\) 5.02584 + 8.70500i 0.191192 + 0.331154i 0.945645 0.325199i \(-0.105431\pi\)
−0.754454 + 0.656353i \(0.772098\pi\)
\(692\) −8.00924 + 13.8724i −0.304466 + 0.527350i
\(693\) 0.348653 + 0.725520i 0.0132442 + 0.0275602i
\(694\) 22.0972 0.838800
\(695\) −17.7995 −0.675174
\(696\) 2.27439 3.93936i 0.0862107 0.149321i
\(697\) −5.83383 10.1045i −0.220972 0.382735i
\(698\) −34.0020 −1.28700
\(699\) 4.00908 6.94394i 0.151637 0.262644i
\(700\) 0.502616 + 1.04590i 0.0189971 + 0.0395314i
\(701\) 11.0843 0.418647 0.209323 0.977846i \(-0.432874\pi\)
0.209323 + 0.977846i \(0.432874\pi\)
\(702\) −5.53362 + 2.24903i −0.208853 + 0.0848841i
\(703\) −0.392711 0.680195i −0.0148114 0.0256540i
\(704\) −0.978785 −0.0368894
\(705\) −9.03258 15.6449i −0.340187 0.589221i
\(706\) −5.34039 9.24982i −0.200988 0.348122i
\(707\) −1.58147 3.29091i −0.0594772 0.123767i
\(708\) 5.09428 + 8.82355i 0.191455 + 0.331609i
\(709\) −1.43514 −0.0538980 −0.0269490 0.999637i \(-0.508579\pi\)
−0.0269490 + 0.999637i \(0.508579\pi\)
\(710\) −0.520639 0.901773i −0.0195392 0.0338430i
\(711\) 6.54933 11.3438i 0.245619 0.425425i
\(712\) −3.21899 5.57546i −0.120637 0.208949i
\(713\) 21.1273 36.5935i 0.791222 1.37044i
\(714\) 11.0338 + 22.9605i 0.412931 + 0.859276i
\(715\) −1.81838 1.41464i −0.0680037 0.0529046i
\(716\) 1.01451 1.75719i 0.0379141 0.0656692i
\(717\) −1.16836 −0.0436334
\(718\) −14.5306 −0.542277
\(719\) −36.2706 −1.35267 −0.676333 0.736596i \(-0.736432\pi\)
−0.676333 + 0.736596i \(0.736432\pi\)
\(720\) 10.3641 0.386246
\(721\) 14.9125 + 1.12994i 0.555371 + 0.0420811i
\(722\) 30.7010 + 53.1757i 1.14257 + 1.97899i
\(723\) 0.536076 0.928511i 0.0199369 0.0345317i
\(724\) 2.40925 4.17294i 0.0895390 0.155086i
\(725\) 1.28833 0.0478474
\(726\) −9.03500 15.6491i −0.335320 0.580792i
\(727\) 45.0943 1.67245 0.836227 0.548384i \(-0.184757\pi\)
0.836227 + 0.548384i \(0.184757\pi\)
\(728\) 18.8924 6.06032i 0.700200 0.224610i
\(729\) 1.00000 0.0370370
\(730\) −10.3260 17.8851i −0.382182 0.661958i
\(731\) −46.9596 −1.73686
\(732\) 4.10481 7.10973i 0.151718 0.262783i
\(733\) −9.09554 + 15.7539i −0.335952 + 0.581885i −0.983667 0.179997i \(-0.942391\pi\)
0.647716 + 0.761882i \(0.275725\pi\)
\(734\) 10.0888 + 17.4743i 0.372385 + 0.644989i
\(735\) 5.34844 + 13.6941i 0.197280 + 0.505116i
\(736\) 24.1595 0.890531
\(737\) −3.06719 −0.112981
\(738\) −3.32586 −0.122427
\(739\) −25.9042 −0.952902 −0.476451 0.879201i \(-0.658077\pi\)
−0.476451 + 0.879201i \(0.658077\pi\)
\(740\) −0.0820144 + 0.142053i −0.00301491 + 0.00522198i
\(741\) 3.70203 26.7418i 0.135997 0.982383i
\(742\) −9.61656 0.728658i −0.353035 0.0267499i
\(743\) −22.0599 + 38.2089i −0.809301 + 1.40175i 0.104049 + 0.994572i \(0.466820\pi\)
−0.913349 + 0.407177i \(0.866513\pi\)
\(744\) 7.30349 + 12.6500i 0.267759 + 0.463772i
\(745\) 6.95855 12.0526i 0.254941 0.441571i
\(746\) 25.3450 + 43.8988i 0.927946 + 1.60725i
\(747\) −9.33190 −0.341436
\(748\) 0.658257 + 1.14013i 0.0240683 + 0.0416874i
\(749\) −21.0789 + 30.8621i −0.770204 + 1.12768i
\(750\) 9.72322 + 16.8411i 0.355042 + 0.614950i
\(751\) 2.06035 + 3.56863i 0.0751831 + 0.130221i 0.901166 0.433474i \(-0.142713\pi\)
−0.825983 + 0.563695i \(0.809379\pi\)
\(752\) 42.4465 1.54786
\(753\) −6.29717 10.9070i −0.229482 0.397474i
\(754\) −1.79141 + 12.9403i −0.0652393 + 0.471259i
\(755\) 3.20121 0.116504
\(756\) 1.96426 + 0.148834i 0.0714394 + 0.00541305i
\(757\) 20.4854 35.4818i 0.744556 1.28961i −0.205846 0.978584i \(-0.565995\pi\)
0.950402 0.311024i \(-0.100672\pi\)
\(758\) −8.41845 −0.305772
\(759\) 0.915242 + 1.58525i 0.0332212 + 0.0575408i
\(760\) −16.3535 + 28.3251i −0.593204 + 1.02746i
\(761\) 44.3948 1.60931 0.804654 0.593743i \(-0.202351\pi\)
0.804654 + 0.593743i \(0.202351\pi\)
\(762\) −27.8914 −1.01040
\(763\) −13.6330 + 19.9604i −0.493547 + 0.722616i
\(764\) −4.74385 + 8.21658i −0.171626 + 0.297266i
\(765\) 6.10309 + 10.5709i 0.220658 + 0.382190i
\(766\) −20.4002 35.3342i −0.737090 1.27668i
\(767\) 38.9424 + 30.2959i 1.40613 + 1.09392i
\(768\) −7.85001 + 13.5966i −0.283263 + 0.490626i
\(769\) 6.60276 11.4363i 0.238101 0.412404i −0.722068 0.691822i \(-0.756808\pi\)
0.960169 + 0.279418i \(0.0901416\pi\)
\(770\) 1.21309 + 2.52435i 0.0437168 + 0.0909713i
\(771\) 10.6490 + 18.4446i 0.383515 + 0.664268i
\(772\) 0.242762 0.420476i 0.00873719 0.0151333i
\(773\) 8.68483 15.0426i 0.312372 0.541044i −0.666504 0.745502i \(-0.732210\pi\)
0.978875 + 0.204458i \(0.0655432\pi\)
\(774\) −6.69291 + 11.5925i −0.240572 + 0.416683i
\(775\) −2.06853 + 3.58280i −0.0743038 + 0.128698i
\(776\) −6.64957 11.5174i −0.238706 0.413450i
\(777\) 0.156528 0.229177i 0.00561542 0.00822169i
\(778\) 15.3572 26.5994i 0.550581 0.953634i
\(779\) 7.51587 13.0179i 0.269284 0.466414i
\(780\) −5.22315 + 2.12284i −0.187019 + 0.0760099i
\(781\) 0.0455254 + 0.0788523i 0.00162903 + 0.00282156i
\(782\) 28.9647 + 50.1683i 1.03577 + 1.79401i
\(783\) 1.09353 1.89405i 0.0390795 0.0676877i
\(784\) −34.1488 5.20488i −1.21960 0.185888i
\(785\) 35.5569 1.26908
\(786\) −23.1187 −0.824618
\(787\) 2.07480 3.59366i 0.0739587 0.128100i −0.826674 0.562681i \(-0.809770\pi\)
0.900633 + 0.434581i \(0.143103\pi\)
\(788\) 2.25658 + 3.90851i 0.0803872 + 0.139235i
\(789\) −22.0285 −0.784235
\(790\) 22.7875 39.4692i 0.810744 1.40425i
\(791\) 16.6816 24.4241i 0.593131 0.868420i
\(792\) −0.632780 −0.0224849
\(793\) 5.45166 39.3803i 0.193594 1.39844i
\(794\) 25.8462 + 44.7669i 0.917247 + 1.58872i
\(795\) −4.62108 −0.163893
\(796\) −0.761128 1.31831i −0.0269775 0.0467263i
\(797\) −10.4435 18.0887i −0.369928 0.640735i 0.619626 0.784897i \(-0.287284\pi\)
−0.989554 + 0.144163i \(0.953951\pi\)
\(798\) −18.5100 + 27.1010i −0.655247 + 0.959365i
\(799\) 24.9955 + 43.2934i 0.884277 + 1.53161i
\(800\) −2.36541 −0.0836300
\(801\) −1.54769 2.68068i −0.0546850 0.0947172i
\(802\) −28.3497 + 49.1030i −1.00106 + 1.73389i
\(803\) 0.902919 + 1.56390i 0.0318633 + 0.0551889i
\(804\) −3.75307 + 6.50050i −0.132360 + 0.229255i
\(805\) 14.4807 + 30.1332i 0.510377 + 1.06205i
\(806\) −33.1103 25.7587i −1.16626 0.907312i
\(807\) −8.92932 + 15.4660i −0.314327 + 0.544430i
\(808\) 2.87025 0.100975
\(809\) 3.58471 0.126032 0.0630158 0.998013i \(-0.479928\pi\)
0.0630158 + 0.998013i \(0.479928\pi\)
\(810\) 3.47937 0.122253
\(811\) 47.0892 1.65353 0.826763 0.562551i \(-0.190180\pi\)
0.826763 + 0.562551i \(0.190180\pi\)
\(812\) 2.42987 3.55765i 0.0852718 0.124849i
\(813\) 3.60531 + 6.24459i 0.126444 + 0.219007i
\(814\) 0.0264354 0.0457874i 0.000926559 0.00160485i
\(815\) 10.1248 17.5366i 0.354655 0.614281i
\(816\) −28.6800 −1.00400
\(817\) −30.2496 52.3939i −1.05830 1.83303i
\(818\) 16.4971 0.576808
\(819\) 9.08349 2.91380i 0.317403 0.101816i
\(820\) −3.13926 −0.109628
\(821\) 5.68240 + 9.84220i 0.198317 + 0.343495i 0.947983 0.318321i \(-0.103119\pi\)
−0.749666 + 0.661816i \(0.769786\pi\)
\(822\) 1.00906 0.0351949
\(823\) −5.06585 + 8.77431i −0.176584 + 0.305853i −0.940708 0.339216i \(-0.889838\pi\)
0.764124 + 0.645069i \(0.223172\pi\)
\(824\) −5.87828 + 10.1815i −0.204779 + 0.354688i
\(825\) −0.0896097 0.155208i −0.00311981 0.00540367i
\(826\) −25.9795 54.0613i −0.903943 1.88103i
\(827\) −47.6358 −1.65646 −0.828230 0.560388i \(-0.810652\pi\)
−0.828230 + 0.560388i \(0.810652\pi\)
\(828\) 4.47962 0.155678
\(829\) 19.7666 0.686521 0.343260 0.939240i \(-0.388469\pi\)
0.343260 + 0.939240i \(0.388469\pi\)
\(830\) −32.4691 −1.12702
\(831\) 2.19138 3.79558i 0.0760180 0.131667i
\(832\) −1.59063 + 11.4900i −0.0551451 + 0.398343i
\(833\) −14.8005 37.8952i −0.512807 1.31299i
\(834\) 7.02018 12.1593i 0.243089 0.421043i
\(835\) −19.1264 33.1279i −0.661896 1.14644i
\(836\) −0.848049 + 1.46886i −0.0293304 + 0.0508017i
\(837\) 3.51152 + 6.08213i 0.121376 + 0.210229i
\(838\) 1.94234 0.0670972
\(839\) −3.47420 6.01748i −0.119943 0.207747i 0.799802 0.600264i \(-0.204938\pi\)
−0.919745 + 0.392517i \(0.871604\pi\)
\(840\) −11.5241 0.873193i −0.397619 0.0301280i
\(841\) 12.1084 + 20.9723i 0.417531 + 0.723184i
\(842\) −8.47995 14.6877i −0.292238 0.506172i
\(843\) −0.474280 −0.0163351
\(844\) −1.69511 2.93601i −0.0583479 0.101062i
\(845\) −19.5616 + 19.0471i −0.672938 + 0.655240i
\(846\) 14.2499 0.489922
\(847\) 12.4997 + 26.0108i 0.429494 + 0.893743i
\(848\) 5.42891 9.40315i 0.186430 0.322906i
\(849\) −1.12693 −0.0386760
\(850\) −2.83588 4.91188i −0.0972698 0.168476i
\(851\) 0.315559 0.546564i 0.0108172 0.0187360i
\(852\) 0.222823 0.00763378
\(853\) 40.0909 1.37269 0.686343 0.727278i \(-0.259215\pi\)
0.686343 + 0.727278i \(0.259215\pi\)
\(854\) −27.2581 + 39.9094i −0.932753 + 1.36567i
\(855\) −7.86277 + 13.6187i −0.268901 + 0.465750i
\(856\) −14.6900 25.4438i −0.502094 0.869652i
\(857\) 2.09069 + 3.62118i 0.0714166 + 0.123697i 0.899522 0.436875i \(-0.143915\pi\)
−0.828106 + 0.560572i \(0.810581\pi\)
\(858\) 1.68356 0.684247i 0.0574756 0.0233598i
\(859\) −2.22930 + 3.86127i −0.0760629 + 0.131745i −0.901548 0.432679i \(-0.857568\pi\)
0.825485 + 0.564424i \(0.190902\pi\)
\(860\) −6.31739 + 10.9420i −0.215421 + 0.373121i
\(861\) 5.29633 + 0.401309i 0.180498 + 0.0136766i
\(862\) 19.5814 + 33.9160i 0.666946 + 1.15518i
\(863\) −6.39008 + 11.0680i −0.217521 + 0.376757i −0.954049 0.299649i \(-0.903130\pi\)
0.736528 + 0.676407i \(0.236464\pi\)
\(864\) −2.00775 + 3.47753i −0.0683050 + 0.118308i
\(865\) 22.5925 39.1313i 0.768167 1.33050i
\(866\) 0.407813 0.706353i 0.0138581 0.0240029i
\(867\) −8.38883 14.5299i −0.284899 0.493460i
\(868\) 5.99230 + 12.4695i 0.203392 + 0.423243i
\(869\) −1.99257 + 3.45124i −0.0675934 + 0.117075i
\(870\) 3.80479 6.59009i 0.128994 0.223425i
\(871\) −4.98451 + 36.0058i −0.168894 + 1.22001i
\(872\) −9.50092 16.4561i −0.321742 0.557273i
\(873\) −3.19711 5.53756i −0.108206 0.187418i
\(874\) −37.3159 + 64.6330i −1.26223 + 2.18625i
\(875\) −13.4518 27.9921i −0.454754 0.946307i
\(876\) 4.41931 0.149314
\(877\) 46.1431 1.55814 0.779070 0.626937i \(-0.215692\pi\)
0.779070 + 0.626937i \(0.215692\pi\)
\(878\) −12.4778 + 21.6122i −0.421106 + 0.729377i
\(879\) 6.43732 + 11.1498i 0.217125 + 0.376072i
\(880\) −3.15317 −0.106293
\(881\) 6.60175 11.4346i 0.222419 0.385240i −0.733123 0.680096i \(-0.761938\pi\)
0.955542 + 0.294855i \(0.0952715\pi\)
\(882\) −11.4643 1.74736i −0.386022 0.0588365i
\(883\) −23.5256 −0.791701 −0.395850 0.918315i \(-0.629550\pi\)
−0.395850 + 0.918315i \(0.629550\pi\)
\(884\) 14.4538 5.87445i 0.486134 0.197579i
\(885\) −14.3699 24.8895i −0.483040 0.836650i
\(886\) −44.3974 −1.49156
\(887\) 18.9356 + 32.7975i 0.635796 + 1.10123i 0.986346 + 0.164687i \(0.0526613\pi\)
−0.350550 + 0.936544i \(0.614005\pi\)
\(888\) 0.109086 + 0.188942i 0.00366068 + 0.00634048i
\(889\) 44.4161 + 3.36546i 1.48967 + 0.112874i
\(890\) −5.38499 9.32708i −0.180505 0.312644i
\(891\) −0.304241 −0.0101925
\(892\) 5.84847 + 10.1298i 0.195821 + 0.339172i
\(893\) −32.2023 + 55.7761i −1.07761 + 1.86647i
\(894\) 5.48894 + 9.50713i 0.183578 + 0.317966i
\(895\) −2.86174 + 4.95667i −0.0956573 + 0.165683i
\(896\) 19.9370 29.1904i 0.666050 0.975182i
\(897\) 20.0966 8.16785i 0.671006 0.272717i
\(898\) −3.74851 + 6.49261i −0.125089 + 0.216661i
\(899\) 15.3598 0.512277
\(900\) −0.438591 −0.0146197
\(901\) 12.7877 0.426021
\(902\) 1.01186 0.0336914
\(903\) 12.0570 17.6530i 0.401233 0.587456i
\(904\) 11.6256 + 20.1361i 0.386660 + 0.669715i
\(905\) −6.79600 + 11.7710i −0.225907 + 0.391282i
\(906\) −1.26257 + 2.18683i −0.0419460 + 0.0726526i
\(907\) −45.3930 −1.50725 −0.753625 0.657304i \(-0.771697\pi\)
−0.753625 + 0.657304i \(0.771697\pi\)
\(908\) 4.66958 + 8.08794i 0.154965 + 0.268408i
\(909\) 1.38002 0.0457723
\(910\) 31.6048 10.1382i 1.04769 0.336078i
\(911\) −45.3167 −1.50141 −0.750704 0.660638i \(-0.770286\pi\)
−0.750704 + 0.660638i \(0.770286\pi\)
\(912\) −18.4746 31.9989i −0.611755 1.05959i
\(913\) 2.83915 0.0939620
\(914\) 28.4566 49.2882i 0.941259 1.63031i
\(915\) −11.5788 + 20.0551i −0.382784 + 0.663002i
\(916\) −7.68243 13.3064i −0.253835 0.439655i
\(917\) 36.8158 + 2.78958i 1.21577 + 0.0921200i
\(918\) −9.62831 −0.317782
\(919\) −37.5888 −1.23994 −0.619970 0.784626i \(-0.712855\pi\)
−0.619970 + 0.784626i \(0.712855\pi\)
\(920\) −26.2814 −0.866472
\(921\) −8.01524 −0.264111
\(922\) 0.827400 1.43310i 0.0272490 0.0471966i
\(923\) 0.999633 0.406280i 0.0329033 0.0133729i
\(924\) −0.597608 0.0452815i −0.0196599 0.00148965i
\(925\) −0.0308958 + 0.0535131i −0.00101585 + 0.00175950i
\(926\) 26.9654 + 46.7055i 0.886139 + 1.53484i
\(927\) −2.82628 + 4.89525i −0.0928271 + 0.160781i
\(928\) 4.39106 + 7.60555i 0.144144 + 0.249664i
\(929\) −15.7982 −0.518321 −0.259160 0.965834i \(-0.583446\pi\)
−0.259160 + 0.965834i \(0.583446\pi\)
\(930\) 12.2179 + 21.1620i 0.400640 + 0.693928i
\(931\) 32.7466 40.9240i 1.07323 1.34123i
\(932\) 2.98496 + 5.17010i 0.0977755 + 0.169352i
\(933\) −1.57684 2.73117i −0.0516235 0.0894145i
\(934\) 40.1099 1.31244
\(935\) −1.85681 3.21609i −0.0607242 0.105177i
\(936\) −1.02833 + 7.42822i −0.0336122 + 0.242799i
\(937\) 3.77902 0.123455 0.0617276 0.998093i \(-0.480339\pi\)
0.0617276 + 0.998093i \(0.480339\pi\)
\(938\) 24.9224 36.4895i 0.813744 1.19142i
\(939\) 0.264591 0.458285i 0.00863461 0.0149556i
\(940\) 13.4504 0.438703
\(941\) 5.19282 + 8.99424i 0.169281 + 0.293204i 0.938167 0.346182i \(-0.112522\pi\)
−0.768886 + 0.639386i \(0.779189\pi\)
\(942\) −14.0238 + 24.2899i −0.456919 + 0.791407i
\(943\) 12.0786 0.393334
\(944\) 67.5281 2.19785
\(945\) −5.54078 0.419832i −0.180242 0.0136571i
\(946\) 2.03626 3.52690i 0.0662045 0.114669i
\(947\) 1.51945 + 2.63177i 0.0493755 + 0.0855209i 0.889657 0.456630i \(-0.150944\pi\)
−0.840281 + 0.542151i \(0.817610\pi\)
\(948\) 4.87629 + 8.44599i 0.158375 + 0.274313i
\(949\) 19.8260 8.05788i 0.643579 0.261570i
\(950\) 3.65353 6.32810i 0.118536 0.205311i
\(951\) −2.19029 + 3.79369i −0.0710249 + 0.123019i
\(952\) 31.8901 + 2.41635i 1.03356 + 0.0783144i
\(953\) 1.70817 + 2.95863i 0.0553329 + 0.0958394i 0.892365 0.451314i \(-0.149045\pi\)
−0.837032 + 0.547154i \(0.815711\pi\)
\(954\) 1.82257 3.15678i 0.0590078 0.102205i
\(955\) 13.3814 23.1773i 0.433013 0.750001i
\(956\) 0.434952 0.753359i 0.0140674 0.0243654i
\(957\) −0.332696 + 0.576247i −0.0107545 + 0.0186274i
\(958\) −25.1290 43.5247i −0.811880 1.40622i
\(959\) −1.60689 0.121756i −0.0518892 0.00393171i
\(960\) 3.37835 5.85148i 0.109036 0.188856i
\(961\) −9.16152 + 15.8682i −0.295533 + 0.511878i
\(962\) −0.494539 0.384735i −0.0159446 0.0124043i
\(963\) −7.06296 12.2334i −0.227601 0.394216i
\(964\) 0.399135 + 0.691322i 0.0128553 + 0.0222660i
\(965\) −0.684782 + 1.18608i −0.0220439 + 0.0381812i
\(966\) −26.2960 1.99248i −0.846060 0.0641069i
\(967\) 2.27084 0.0730254 0.0365127 0.999333i \(-0.488375\pi\)
0.0365127 + 0.999333i \(0.488375\pi\)
\(968\) −22.6860 −0.729156
\(969\) 21.7583 37.6865i 0.698977 1.21066i
\(970\) −11.1239 19.2672i −0.357168 0.618633i
\(971\) −22.0727 −0.708347 −0.354174 0.935180i \(-0.615238\pi\)
−0.354174 + 0.935180i \(0.615238\pi\)
\(972\) −0.372274 + 0.644798i −0.0119407 + 0.0206819i
\(973\) −12.6466 + 18.5162i −0.405431 + 0.593603i
\(974\) 8.92030 0.285825
\(975\) −1.96762 + 0.799700i −0.0630143 + 0.0256109i
\(976\) −27.2060 47.1221i −0.870842 1.50834i
\(977\) −4.29757 −0.137491 −0.0687457 0.997634i \(-0.521900\pi\)
−0.0687457 + 0.997634i \(0.521900\pi\)
\(978\) 7.98649 + 13.8330i 0.255380 + 0.442331i
\(979\) 0.470871 + 0.815573i 0.0150491 + 0.0260658i
\(980\) −10.8210 1.64932i −0.345666 0.0526855i
\(981\) −4.56805 7.91209i −0.145846 0.252613i
\(982\) −57.9567 −1.84947
\(983\) −1.81793 3.14875i −0.0579831 0.100430i 0.835577 0.549374i \(-0.185134\pi\)
−0.893560 + 0.448944i \(0.851800\pi\)
\(984\) −2.08773 + 3.61605i −0.0665544 + 0.115276i
\(985\) −6.36535 11.0251i −0.202817 0.351289i
\(986\) −10.5288 + 18.2365i −0.335306 + 0.580768i
\(987\) −22.6925 1.71944i −0.722311 0.0547303i
\(988\) 15.8649 + 12.3423i 0.504728 + 0.392662i
\(989\) 24.3068 42.1006i 0.772912 1.33872i
\(990\) −1.05857 −0.0336435
\(991\) 2.14200 0.0680429 0.0340214 0.999421i \(-0.489169\pi\)
0.0340214 + 0.999421i \(0.489169\pi\)
\(992\) −28.2010 −0.895383
\(993\) −26.9352 −0.854762
\(994\) −1.30800 0.0991087i −0.0414872 0.00314354i
\(995\) 2.14699 + 3.71869i 0.0680641 + 0.117890i
\(996\) 3.47403 6.01719i 0.110079 0.190662i
\(997\) 11.0526 19.1436i 0.350038 0.606284i −0.636217 0.771510i \(-0.719502\pi\)
0.986256 + 0.165225i \(0.0528352\pi\)
\(998\) −1.74713 −0.0553045
\(999\) 0.0524484 + 0.0908433i 0.00165939 + 0.00287415i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.j.c.100.8 20
3.2 odd 2 819.2.n.f.100.3 20
7.4 even 3 273.2.l.c.256.3 yes 20
13.3 even 3 273.2.l.c.16.3 yes 20
21.11 odd 6 819.2.s.f.802.8 20
39.29 odd 6 819.2.s.f.289.8 20
91.81 even 3 inner 273.2.j.c.172.8 yes 20
273.263 odd 6 819.2.n.f.172.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.8 20 1.1 even 1 trivial
273.2.j.c.172.8 yes 20 91.81 even 3 inner
273.2.l.c.16.3 yes 20 13.3 even 3
273.2.l.c.256.3 yes 20 7.4 even 3
819.2.n.f.100.3 20 3.2 odd 2
819.2.n.f.172.3 20 273.263 odd 6
819.2.s.f.289.8 20 39.29 odd 6
819.2.s.f.802.8 20 21.11 odd 6