Properties

Label 273.2.l.c.16.3
Level $273$
Weight $2$
Character 273.16
Analytic conductor $2.180$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(16,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.3
Root \(-0.828334 - 1.43472i\) of defining polynomial
Character \(\chi\) \(=\) 273.16
Dual form 273.2.l.c.256.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.65667 q^{2} +(-0.500000 + 0.866025i) q^{3} +0.744548 q^{4} +(1.05011 - 1.81885i) q^{5} +(0.828334 - 1.43472i) q^{6} +(-1.49221 + 2.18479i) q^{7} +2.07987 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.73968 + 3.01322i) q^{10} +(0.152120 - 0.263480i) q^{11} +(-0.372274 + 0.644798i) q^{12} +(-0.494423 - 3.57149i) q^{13} +(2.47210 - 3.61947i) q^{14} +(1.05011 + 1.81885i) q^{15} -4.93474 q^{16} +5.81185 q^{17} +(0.828334 + 1.43472i) q^{18} +(3.74378 + 6.48442i) q^{19} +(0.781858 - 1.35422i) q^{20} +(-1.14598 - 2.38469i) q^{21} +(-0.252013 + 0.436500i) q^{22} +6.01656 q^{23} +(-1.03993 + 1.80122i) q^{24} +(0.294535 + 0.510150i) q^{25} +(0.819095 + 5.91677i) q^{26} +1.00000 q^{27} +(-1.11102 + 1.62668i) q^{28} +(1.09353 + 1.89405i) q^{29} +(-1.73968 - 3.01322i) q^{30} +(3.51152 + 6.08213i) q^{31} +4.01550 q^{32} +(0.152120 + 0.263480i) q^{33} -9.62831 q^{34} +(2.40681 + 5.00837i) q^{35} +(-0.372274 - 0.644798i) q^{36} -0.104897 q^{37} +(-6.20220 - 10.7425i) q^{38} +(3.34021 + 1.35756i) q^{39} +(2.18409 - 3.78295i) q^{40} +(-1.00378 - 1.73860i) q^{41} +(1.89850 + 3.95064i) q^{42} +(4.03998 - 6.99746i) q^{43} +(0.113261 - 0.196174i) q^{44} -2.10022 q^{45} -9.96744 q^{46} +(4.30078 - 7.44916i) q^{47} +(2.46737 - 4.27361i) q^{48} +(-2.54661 - 6.52034i) q^{49} +(-0.487947 - 0.845149i) q^{50} +(-2.90593 + 5.03321i) q^{51} +(-0.368122 - 2.65915i) q^{52} +(-1.10014 - 1.90550i) q^{53} -1.65667 q^{54} +(-0.319487 - 0.553367i) q^{55} +(-3.10360 + 4.54407i) q^{56} -7.48756 q^{57} +(-1.81161 - 3.13781i) q^{58} -13.6842 q^{59} +(0.781858 + 1.35422i) q^{60} +(5.51315 + 9.54905i) q^{61} +(-5.81742 - 10.0761i) q^{62} +(2.63819 + 0.199899i) q^{63} +3.21714 q^{64} +(-7.01519 - 2.85118i) q^{65} +(-0.252013 - 0.436500i) q^{66} +(-5.04073 + 8.73079i) q^{67} +4.32721 q^{68} +(-3.00828 + 5.21049i) q^{69} +(-3.98728 - 8.29721i) q^{70} +(-0.149636 + 0.259177i) q^{71} +(-1.03993 - 1.80122i) q^{72} +(-2.96778 - 5.14034i) q^{73} +0.173779 q^{74} -0.589070 q^{75} +(2.78743 + 4.82796i) q^{76} +(0.348653 + 0.725520i) q^{77} +(-5.53362 - 2.24903i) q^{78} +(6.54933 - 11.3438i) q^{79} +(-5.18203 + 8.97554i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.66293 + 2.88028i) q^{82} -9.33190 q^{83} +(-0.853235 - 1.77552i) q^{84} +(6.10309 - 10.5709i) q^{85} +(-6.69291 + 11.5925i) q^{86} -2.18706 q^{87} +(0.316390 - 0.548004i) q^{88} +3.09538 q^{89} +3.47937 q^{90} +(8.54074 + 4.24921i) q^{91} +4.47962 q^{92} -7.02304 q^{93} +(-7.12496 + 12.3408i) q^{94} +15.7255 q^{95} +(-2.00775 + 3.47753i) q^{96} +(-3.19711 + 5.53756i) q^{97} +(4.21888 + 10.8020i) q^{98} -0.304241 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 10 q^{3} + 32 q^{4} + 3 q^{7} - 12 q^{8} - 10 q^{9} - 4 q^{10} - 8 q^{11} - 16 q^{12} - 5 q^{13} - 9 q^{14} + 40 q^{16} + 7 q^{19} + 12 q^{20} - 9 q^{21} - 9 q^{22} + 28 q^{23} + 6 q^{24} - 32 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65667 −1.17144 −0.585721 0.810513i \(-0.699188\pi\)
−0.585721 + 0.810513i \(0.699188\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.744548 0.372274
\(5\) 1.05011 1.81885i 0.469624 0.813412i −0.529773 0.848139i \(-0.677723\pi\)
0.999397 + 0.0347272i \(0.0110562\pi\)
\(6\) 0.828334 1.43472i 0.338166 0.585721i
\(7\) −1.49221 + 2.18479i −0.564003 + 0.825773i
\(8\) 2.07987 0.735344
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.73968 + 3.01322i −0.550137 + 0.952865i
\(11\) 0.152120 0.263480i 0.0458660 0.0794423i −0.842181 0.539195i \(-0.818729\pi\)
0.888047 + 0.459753i \(0.152062\pi\)
\(12\) −0.372274 + 0.644798i −0.107466 + 0.186137i
\(13\) −0.494423 3.57149i −0.137128 0.990553i
\(14\) 2.47210 3.61947i 0.660696 0.967344i
\(15\) 1.05011 + 1.81885i 0.271137 + 0.469624i
\(16\) −4.93474 −1.23369
\(17\) 5.81185 1.40958 0.704791 0.709415i \(-0.251041\pi\)
0.704791 + 0.709415i \(0.251041\pi\)
\(18\) 0.828334 + 1.43472i 0.195240 + 0.338166i
\(19\) 3.74378 + 6.48442i 0.858882 + 1.48763i 0.872996 + 0.487727i \(0.162174\pi\)
−0.0141142 + 0.999900i \(0.504493\pi\)
\(20\) 0.781858 1.35422i 0.174829 0.302812i
\(21\) −1.14598 2.38469i −0.250073 0.520382i
\(22\) −0.252013 + 0.436500i −0.0537294 + 0.0930620i
\(23\) 6.01656 1.25454 0.627270 0.778802i \(-0.284172\pi\)
0.627270 + 0.778802i \(0.284172\pi\)
\(24\) −1.03993 + 1.80122i −0.212275 + 0.367672i
\(25\) 0.294535 + 0.510150i 0.0589070 + 0.102030i
\(26\) 0.819095 + 5.91677i 0.160638 + 1.16037i
\(27\) 1.00000 0.192450
\(28\) −1.11102 + 1.62668i −0.209964 + 0.307414i
\(29\) 1.09353 + 1.89405i 0.203063 + 0.351716i 0.949514 0.313725i \(-0.101577\pi\)
−0.746451 + 0.665441i \(0.768244\pi\)
\(30\) −1.73968 3.01322i −0.317622 0.550137i
\(31\) 3.51152 + 6.08213i 0.630687 + 1.09238i 0.987411 + 0.158173i \(0.0505603\pi\)
−0.356724 + 0.934210i \(0.616106\pi\)
\(32\) 4.01550 0.709847
\(33\) 0.152120 + 0.263480i 0.0264808 + 0.0458660i
\(34\) −9.62831 −1.65124
\(35\) 2.40681 + 5.00837i 0.406824 + 0.846569i
\(36\) −0.372274 0.644798i −0.0620457 0.107466i
\(37\) −0.104897 −0.0172449 −0.00862246 0.999963i \(-0.502745\pi\)
−0.00862246 + 0.999963i \(0.502745\pi\)
\(38\) −6.20220 10.7425i −1.00613 1.74267i
\(39\) 3.34021 + 1.35756i 0.534862 + 0.217384i
\(40\) 2.18409 3.78295i 0.345335 0.598138i
\(41\) −1.00378 1.73860i −0.156764 0.271524i 0.776936 0.629580i \(-0.216773\pi\)
−0.933700 + 0.358056i \(0.883440\pi\)
\(42\) 1.89850 + 3.95064i 0.292945 + 0.609596i
\(43\) 4.03998 6.99746i 0.616092 1.06710i −0.374100 0.927388i \(-0.622048\pi\)
0.990192 0.139714i \(-0.0446183\pi\)
\(44\) 0.113261 0.196174i 0.0170747 0.0295743i
\(45\) −2.10022 −0.313083
\(46\) −9.96744 −1.46962
\(47\) 4.30078 7.44916i 0.627333 1.08657i −0.360752 0.932662i \(-0.617480\pi\)
0.988085 0.153910i \(-0.0491867\pi\)
\(48\) 2.46737 4.27361i 0.356135 0.616843i
\(49\) −2.54661 6.52034i −0.363801 0.931477i
\(50\) −0.487947 0.845149i −0.0690061 0.119522i
\(51\) −2.90593 + 5.03321i −0.406911 + 0.704791i
\(52\) −0.368122 2.65915i −0.0510494 0.368757i
\(53\) −1.10014 1.90550i −0.151116 0.261741i 0.780522 0.625128i \(-0.214953\pi\)
−0.931638 + 0.363388i \(0.881620\pi\)
\(54\) −1.65667 −0.225444
\(55\) −0.319487 0.553367i −0.0430796 0.0746160i
\(56\) −3.10360 + 4.54407i −0.414736 + 0.607227i
\(57\) −7.48756 −0.991752
\(58\) −1.81161 3.13781i −0.237877 0.412014i
\(59\) −13.6842 −1.78153 −0.890766 0.454462i \(-0.849832\pi\)
−0.890766 + 0.454462i \(0.849832\pi\)
\(60\) 0.781858 + 1.35422i 0.100937 + 0.174829i
\(61\) 5.51315 + 9.54905i 0.705886 + 1.22263i 0.966371 + 0.257153i \(0.0827844\pi\)
−0.260484 + 0.965478i \(0.583882\pi\)
\(62\) −5.81742 10.0761i −0.738813 1.27966i
\(63\) 2.63819 + 0.199899i 0.332381 + 0.0251849i
\(64\) 3.21714 0.402142
\(65\) −7.01519 2.85118i −0.870127 0.353645i
\(66\) −0.252013 0.436500i −0.0310207 0.0537294i
\(67\) −5.04073 + 8.73079i −0.615823 + 1.06664i 0.374417 + 0.927261i \(0.377843\pi\)
−0.990240 + 0.139376i \(0.955490\pi\)
\(68\) 4.32721 0.524751
\(69\) −3.00828 + 5.21049i −0.362154 + 0.627270i
\(70\) −3.98728 8.29721i −0.476571 0.991706i
\(71\) −0.149636 + 0.259177i −0.0177585 + 0.0307587i −0.874768 0.484542i \(-0.838986\pi\)
0.857010 + 0.515300i \(0.172320\pi\)
\(72\) −1.03993 1.80122i −0.122557 0.212275i
\(73\) −2.96778 5.14034i −0.347352 0.601631i 0.638426 0.769683i \(-0.279586\pi\)
−0.985778 + 0.168052i \(0.946252\pi\)
\(74\) 0.173779 0.0202014
\(75\) −0.589070 −0.0680200
\(76\) 2.78743 + 4.82796i 0.319740 + 0.553805i
\(77\) 0.348653 + 0.725520i 0.0397327 + 0.0826806i
\(78\) −5.53362 2.24903i −0.626560 0.254652i
\(79\) 6.54933 11.3438i 0.736857 1.27627i −0.217047 0.976161i \(-0.569642\pi\)
0.953904 0.300112i \(-0.0970242\pi\)
\(80\) −5.18203 + 8.97554i −0.579368 + 1.00350i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.66293 + 2.88028i 0.183640 + 0.318074i
\(83\) −9.33190 −1.02431 −0.512155 0.858893i \(-0.671153\pi\)
−0.512155 + 0.858893i \(0.671153\pi\)
\(84\) −0.853235 1.77552i −0.0930956 0.193725i
\(85\) 6.10309 10.5709i 0.661973 1.14657i
\(86\) −6.69291 + 11.5925i −0.721715 + 1.25005i
\(87\) −2.18706 −0.234477
\(88\) 0.316390 0.548004i 0.0337273 0.0584174i
\(89\) 3.09538 0.328110 0.164055 0.986451i \(-0.447543\pi\)
0.164055 + 0.986451i \(0.447543\pi\)
\(90\) 3.47937 0.366758
\(91\) 8.54074 + 4.24921i 0.895313 + 0.445438i
\(92\) 4.47962 0.467033
\(93\) −7.02304 −0.728255
\(94\) −7.12496 + 12.3408i −0.734883 + 1.27286i
\(95\) 15.7255 1.61341
\(96\) −2.00775 + 3.47753i −0.204915 + 0.354923i
\(97\) −3.19711 + 5.53756i −0.324618 + 0.562254i −0.981435 0.191795i \(-0.938569\pi\)
0.656817 + 0.754050i \(0.271902\pi\)
\(98\) 4.21888 + 10.8020i 0.426172 + 1.09117i
\(99\) −0.304241 −0.0305774
\(100\) 0.219296 + 0.379831i 0.0219296 + 0.0379831i
\(101\) −0.690008 + 1.19513i −0.0686584 + 0.118920i −0.898311 0.439360i \(-0.855205\pi\)
0.829653 + 0.558280i \(0.188539\pi\)
\(102\) 4.81416 8.33836i 0.476672 0.825621i
\(103\) −2.82628 + 4.89525i −0.278481 + 0.482344i −0.971008 0.239049i \(-0.923164\pi\)
0.692526 + 0.721393i \(0.256498\pi\)
\(104\) −1.02833 7.42822i −0.100837 0.728397i
\(105\) −5.54078 0.419832i −0.540725 0.0409714i
\(106\) 1.82257 + 3.15678i 0.177023 + 0.306614i
\(107\) 14.1259 1.36560 0.682802 0.730604i \(-0.260761\pi\)
0.682802 + 0.730604i \(0.260761\pi\)
\(108\) 0.744548 0.0716442
\(109\) −4.56805 7.91209i −0.437539 0.757840i 0.559960 0.828520i \(-0.310817\pi\)
−0.997499 + 0.0706794i \(0.977483\pi\)
\(110\) 0.529283 + 0.916746i 0.0504652 + 0.0874083i
\(111\) 0.0524484 0.0908433i 0.00497818 0.00862246i
\(112\) 7.36368 10.7814i 0.695803 1.01874i
\(113\) 5.58957 9.68142i 0.525823 0.910751i −0.473725 0.880673i \(-0.657091\pi\)
0.999548 0.0300785i \(-0.00957573\pi\)
\(114\) 12.4044 1.16178
\(115\) 6.31805 10.9432i 0.589161 1.02046i
\(116\) 0.814185 + 1.41021i 0.0755952 + 0.130935i
\(117\) −2.84579 + 2.21393i −0.263093 + 0.204678i
\(118\) 22.6702 2.08696
\(119\) −8.67252 + 12.6977i −0.795008 + 1.16399i
\(120\) 2.18409 + 3.78295i 0.199379 + 0.345335i
\(121\) 5.45372 + 9.44612i 0.495793 + 0.858738i
\(122\) −9.13346 15.8196i −0.826904 1.43224i
\(123\) 2.00756 0.181016
\(124\) 2.61450 + 4.52844i 0.234789 + 0.406666i
\(125\) 11.7383 1.04990
\(126\) −4.37060 0.331166i −0.389364 0.0295026i
\(127\) −8.41791 14.5802i −0.746969 1.29379i −0.949269 0.314464i \(-0.898175\pi\)
0.202300 0.979324i \(-0.435158\pi\)
\(128\) −13.3607 −1.18093
\(129\) 4.03998 + 6.99746i 0.355701 + 0.616092i
\(130\) 11.6218 + 4.72346i 1.01930 + 0.414275i
\(131\) −6.97748 + 12.0854i −0.609625 + 1.05590i 0.381677 + 0.924296i \(0.375347\pi\)
−0.991302 + 0.131606i \(0.957987\pi\)
\(132\) 0.113261 + 0.196174i 0.00985811 + 0.0170747i
\(133\) −19.7536 1.49675i −1.71285 0.129785i
\(134\) 8.35081 14.4640i 0.721400 1.24950i
\(135\) 1.05011 1.81885i 0.0903791 0.156541i
\(136\) 12.0879 1.03653
\(137\) −0.609088 −0.0520379 −0.0260190 0.999661i \(-0.508283\pi\)
−0.0260190 + 0.999661i \(0.508283\pi\)
\(138\) 4.98372 8.63206i 0.424242 0.734809i
\(139\) −4.23753 + 7.33962i −0.359423 + 0.622539i −0.987865 0.155318i \(-0.950360\pi\)
0.628442 + 0.777857i \(0.283693\pi\)
\(140\) 1.79198 + 3.72898i 0.151450 + 0.315156i
\(141\) 4.30078 + 7.44916i 0.362191 + 0.627333i
\(142\) 0.247897 0.429371i 0.0208031 0.0360320i
\(143\) −1.01623 0.413026i −0.0849814 0.0345390i
\(144\) 2.46737 + 4.27361i 0.205614 + 0.356135i
\(145\) 4.59330 0.381453
\(146\) 4.91662 + 8.51583i 0.406902 + 0.704775i
\(147\) 6.92008 + 1.05474i 0.570759 + 0.0869936i
\(148\) −0.0781008 −0.00641984
\(149\) −3.31324 5.73871i −0.271431 0.470133i 0.697797 0.716295i \(-0.254164\pi\)
−0.969229 + 0.246162i \(0.920830\pi\)
\(150\) 0.975894 0.0796814
\(151\) 0.762113 + 1.32002i 0.0620199 + 0.107422i 0.895368 0.445327i \(-0.146912\pi\)
−0.833348 + 0.552748i \(0.813579\pi\)
\(152\) 7.78656 + 13.4867i 0.631574 + 1.09392i
\(153\) −2.90593 5.03321i −0.234930 0.406911i
\(154\) −0.577602 1.20195i −0.0465445 0.0968555i
\(155\) 14.7499 1.18474
\(156\) 2.48695 + 1.01077i 0.199115 + 0.0809264i
\(157\) 8.46505 + 14.6619i 0.675584 + 1.17015i 0.976298 + 0.216432i \(0.0694419\pi\)
−0.300713 + 0.953715i \(0.597225\pi\)
\(158\) −10.8501 + 18.7929i −0.863184 + 1.49508i
\(159\) 2.20028 0.174494
\(160\) 4.21672 7.30357i 0.333361 0.577398i
\(161\) −8.97798 + 13.1449i −0.707564 + 1.03596i
\(162\) 0.828334 1.43472i 0.0650801 0.112722i
\(163\) −4.82081 8.34989i −0.377595 0.654014i 0.613117 0.789992i \(-0.289916\pi\)
−0.990712 + 0.135978i \(0.956582\pi\)
\(164\) −0.747364 1.29447i −0.0583593 0.101081i
\(165\) 0.638973 0.0497440
\(166\) 15.4599 1.19992
\(167\) 9.10684 + 15.7735i 0.704708 + 1.22059i 0.966797 + 0.255547i \(0.0822555\pi\)
−0.262088 + 0.965044i \(0.584411\pi\)
\(168\) −2.38348 4.95983i −0.183889 0.382659i
\(169\) −12.5111 + 3.53166i −0.962392 + 0.271666i
\(170\) −10.1108 + 17.5124i −0.775462 + 1.34314i
\(171\) 3.74378 6.48442i 0.286294 0.495876i
\(172\) 3.00796 5.20995i 0.229355 0.397255i
\(173\) −10.7572 18.6320i −0.817853 1.41656i −0.907261 0.420568i \(-0.861831\pi\)
0.0894078 0.995995i \(-0.471503\pi\)
\(174\) 3.62323 0.274676
\(175\) −1.55408 0.117754i −0.117477 0.00890140i
\(176\) −0.750676 + 1.30021i −0.0565843 + 0.0980069i
\(177\) 6.84210 11.8509i 0.514284 0.890766i
\(178\) −5.12802 −0.384362
\(179\) 1.36259 2.36007i 0.101845 0.176400i −0.810600 0.585600i \(-0.800859\pi\)
0.912445 + 0.409200i \(0.134192\pi\)
\(180\) −1.56372 −0.116553
\(181\) −6.47170 −0.481038 −0.240519 0.970644i \(-0.577318\pi\)
−0.240519 + 0.970644i \(0.577318\pi\)
\(182\) −14.1492 7.03953i −1.04881 0.521805i
\(183\) −11.0263 −0.815087
\(184\) 12.5136 0.922518
\(185\) −0.110153 + 0.190791i −0.00809863 + 0.0140272i
\(186\) 11.6348 0.853108
\(187\) 0.884102 1.53131i 0.0646519 0.111980i
\(188\) 3.20214 5.54626i 0.233540 0.404503i
\(189\) −1.49221 + 2.18479i −0.108542 + 0.158920i
\(190\) −26.0520 −1.89001
\(191\) −6.37144 11.0357i −0.461021 0.798512i 0.537991 0.842951i \(-0.319183\pi\)
−0.999012 + 0.0444385i \(0.985850\pi\)
\(192\) −1.60857 + 2.78612i −0.116088 + 0.201071i
\(193\) 0.326052 0.564739i 0.0234698 0.0406508i −0.854052 0.520188i \(-0.825862\pi\)
0.877522 + 0.479537i \(0.159195\pi\)
\(194\) 5.29656 9.17390i 0.380271 0.658648i
\(195\) 5.97679 4.64974i 0.428007 0.332975i
\(196\) −1.89607 4.85471i −0.135434 0.346765i
\(197\) 3.03080 + 5.24950i 0.215936 + 0.374011i 0.953562 0.301198i \(-0.0973866\pi\)
−0.737626 + 0.675209i \(0.764053\pi\)
\(198\) 0.504026 0.0358196
\(199\) 2.04454 0.144933 0.0724666 0.997371i \(-0.476913\pi\)
0.0724666 + 0.997371i \(0.476913\pi\)
\(200\) 0.612594 + 1.06104i 0.0433169 + 0.0750271i
\(201\) −5.04073 8.73079i −0.355545 0.615823i
\(202\) 1.14311 1.97993i 0.0804293 0.139308i
\(203\) −5.76987 0.437190i −0.404966 0.0306847i
\(204\) −2.16360 + 3.74747i −0.151483 + 0.262375i
\(205\) −4.21632 −0.294481
\(206\) 4.68220 8.10981i 0.326224 0.565037i
\(207\) −3.00828 5.21049i −0.209090 0.362154i
\(208\) 2.43985 + 17.6244i 0.169173 + 1.22203i
\(209\) 2.27802 0.157574
\(210\) 9.17923 + 0.695521i 0.633427 + 0.0479955i
\(211\) −2.27669 3.94334i −0.156734 0.271471i 0.776955 0.629556i \(-0.216763\pi\)
−0.933689 + 0.358085i \(0.883430\pi\)
\(212\) −0.819108 1.41874i −0.0562566 0.0974392i
\(213\) −0.149636 0.259177i −0.0102529 0.0177585i
\(214\) −23.4019 −1.59972
\(215\) −8.48486 14.6962i −0.578663 1.00227i
\(216\) 2.07987 0.141517
\(217\) −18.5281 1.40390i −1.25777 0.0953027i
\(218\) 7.56773 + 13.1077i 0.512552 + 0.887765i
\(219\) 5.93555 0.401087
\(220\) −0.237873 0.412009i −0.0160374 0.0277776i
\(221\) −2.87352 20.7570i −0.193294 1.39627i
\(222\) −0.0868896 + 0.150497i −0.00583165 + 0.0101007i
\(223\) 7.85506 + 13.6054i 0.526014 + 0.911082i 0.999541 + 0.0303029i \(0.00964720\pi\)
−0.473527 + 0.880779i \(0.657019\pi\)
\(224\) −5.99198 + 8.77302i −0.400356 + 0.586172i
\(225\) 0.294535 0.510150i 0.0196357 0.0340100i
\(226\) −9.26006 + 16.0389i −0.615970 + 1.06689i
\(227\) −12.5434 −0.832533 −0.416267 0.909243i \(-0.636662\pi\)
−0.416267 + 0.909243i \(0.636662\pi\)
\(228\) −5.57485 −0.369204
\(229\) −10.3182 + 17.8717i −0.681849 + 1.18100i 0.292567 + 0.956245i \(0.405490\pi\)
−0.974416 + 0.224752i \(0.927843\pi\)
\(230\) −10.4669 + 18.1292i −0.690168 + 1.19541i
\(231\) −0.802645 0.0608174i −0.0528102 0.00400149i
\(232\) 2.27439 + 3.93936i 0.149321 + 0.258632i
\(233\) 4.00908 6.94394i 0.262644 0.454912i −0.704300 0.709903i \(-0.748739\pi\)
0.966944 + 0.254990i \(0.0820723\pi\)
\(234\) 4.71453 3.66774i 0.308198 0.239768i
\(235\) −9.03258 15.6449i −0.589221 1.02056i
\(236\) −10.1886 −0.663219
\(237\) 6.54933 + 11.3438i 0.425425 + 0.736857i
\(238\) 14.3675 21.0358i 0.931305 1.36355i
\(239\) −1.16836 −0.0755752 −0.0377876 0.999286i \(-0.512031\pi\)
−0.0377876 + 0.999286i \(0.512031\pi\)
\(240\) −5.18203 8.97554i −0.334498 0.579368i
\(241\) −1.07215 −0.0690634 −0.0345317 0.999404i \(-0.510994\pi\)
−0.0345317 + 0.999404i \(0.510994\pi\)
\(242\) −9.03500 15.6491i −0.580792 1.00596i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 4.10481 + 7.10973i 0.262783 + 0.455154i
\(245\) −14.5337 2.21519i −0.928524 0.141523i
\(246\) −3.32586 −0.212049
\(247\) 21.3080 16.5769i 1.35580 1.05476i
\(248\) 7.30349 + 12.6500i 0.463772 + 0.803277i
\(249\) 4.66595 8.08166i 0.295693 0.512155i
\(250\) −19.4464 −1.22990
\(251\) −6.29717 + 10.9070i −0.397474 + 0.688445i −0.993414 0.114584i \(-0.963446\pi\)
0.595940 + 0.803029i \(0.296780\pi\)
\(252\) 1.96426 + 0.148834i 0.123737 + 0.00937568i
\(253\) 0.915242 1.58525i 0.0575408 0.0996635i
\(254\) 13.9457 + 24.1546i 0.875030 + 1.51560i
\(255\) 6.10309 + 10.5709i 0.382190 + 0.661973i
\(256\) 15.7000 0.981251
\(257\) −21.2980 −1.32854 −0.664268 0.747495i \(-0.731257\pi\)
−0.664268 + 0.747495i \(0.731257\pi\)
\(258\) −6.69291 11.5925i −0.416683 0.721715i
\(259\) 0.156528 0.229177i 0.00972619 0.0142404i
\(260\) −5.22315 2.12284i −0.323926 0.131653i
\(261\) 1.09353 1.89405i 0.0676877 0.117239i
\(262\) 11.5594 20.0214i 0.714140 1.23693i
\(263\) 11.0142 19.0772i 0.679167 1.17635i −0.296065 0.955168i \(-0.595674\pi\)
0.975232 0.221184i \(-0.0709922\pi\)
\(264\) 0.316390 + 0.548004i 0.0194725 + 0.0337273i
\(265\) −4.62108 −0.283871
\(266\) 32.7252 + 2.47962i 2.00651 + 0.152035i
\(267\) −1.54769 + 2.68068i −0.0947172 + 0.164055i
\(268\) −3.75307 + 6.50050i −0.229255 + 0.397081i
\(269\) 17.8586 1.08886 0.544430 0.838806i \(-0.316746\pi\)
0.544430 + 0.838806i \(0.316746\pi\)
\(270\) −1.73968 + 3.01322i −0.105874 + 0.183379i
\(271\) −7.21063 −0.438015 −0.219007 0.975723i \(-0.570282\pi\)
−0.219007 + 0.975723i \(0.570282\pi\)
\(272\) −28.6800 −1.73898
\(273\) −7.95029 + 5.27189i −0.481174 + 0.319069i
\(274\) 1.00906 0.0609594
\(275\) 0.179219 0.0108073
\(276\) −2.23981 + 3.87946i −0.134821 + 0.233516i
\(277\) −4.38275 −0.263334 −0.131667 0.991294i \(-0.542033\pi\)
−0.131667 + 0.991294i \(0.542033\pi\)
\(278\) 7.02018 12.1593i 0.421043 0.729267i
\(279\) 3.51152 6.08213i 0.210229 0.364127i
\(280\) 5.00583 + 10.4167i 0.299156 + 0.622520i
\(281\) −0.474280 −0.0282932 −0.0141466 0.999900i \(-0.504503\pi\)
−0.0141466 + 0.999900i \(0.504503\pi\)
\(282\) −7.12496 12.3408i −0.424285 0.734883i
\(283\) 0.563463 0.975947i 0.0334944 0.0580140i −0.848792 0.528726i \(-0.822670\pi\)
0.882287 + 0.470712i \(0.156003\pi\)
\(284\) −0.111411 + 0.192970i −0.00661104 + 0.0114507i
\(285\) −7.86277 + 13.6187i −0.465750 + 0.806703i
\(286\) 1.68356 + 0.684247i 0.0995507 + 0.0404604i
\(287\) 5.29633 + 0.401309i 0.312632 + 0.0236885i
\(288\) −2.00775 3.47753i −0.118308 0.204915i
\(289\) 16.7777 0.986921
\(290\) −7.60958 −0.446850
\(291\) −3.19711 5.53756i −0.187418 0.324618i
\(292\) −2.20965 3.82723i −0.129310 0.223972i
\(293\) 6.43732 11.1498i 0.376072 0.651376i −0.614415 0.788983i \(-0.710608\pi\)
0.990487 + 0.137607i \(0.0439411\pi\)
\(294\) −11.4643 1.74736i −0.668610 0.101908i
\(295\) −14.3699 + 24.8895i −0.836650 + 1.44912i
\(296\) −0.218171 −0.0126810
\(297\) 0.152120 0.263480i 0.00882693 0.0152887i
\(298\) 5.48894 + 9.50713i 0.317966 + 0.550733i
\(299\) −2.97473 21.4881i −0.172033 1.24269i
\(300\) −0.438591 −0.0253221
\(301\) 9.25946 + 19.2682i 0.533706 + 1.11060i
\(302\) −1.26257 2.18683i −0.0726526 0.125838i
\(303\) −0.690008 1.19513i −0.0396399 0.0686584i
\(304\) −18.4746 31.9989i −1.05959 1.83527i
\(305\) 23.1577 1.32600
\(306\) 4.81416 + 8.33836i 0.275207 + 0.476672i
\(307\) −8.01524 −0.457454 −0.228727 0.973491i \(-0.573456\pi\)
−0.228727 + 0.973491i \(0.573456\pi\)
\(308\) 0.259589 + 0.540185i 0.0147915 + 0.0307799i
\(309\) −2.82628 4.89525i −0.160781 0.278481i
\(310\) −24.4357 −1.38786
\(311\) −1.57684 2.73117i −0.0894145 0.154871i 0.817849 0.575433i \(-0.195166\pi\)
−0.907264 + 0.420562i \(0.861833\pi\)
\(312\) 6.94720 + 2.82355i 0.393308 + 0.159852i
\(313\) 0.264591 0.458285i 0.0149556 0.0259038i −0.858451 0.512896i \(-0.828573\pi\)
0.873406 + 0.486992i \(0.161906\pi\)
\(314\) −14.0238 24.2899i −0.791407 1.37076i
\(315\) 3.13398 4.58854i 0.176579 0.258535i
\(316\) 4.87629 8.44599i 0.274313 0.475124i
\(317\) −2.19029 + 3.79369i −0.123019 + 0.213075i −0.920957 0.389665i \(-0.872591\pi\)
0.797938 + 0.602739i \(0.205924\pi\)
\(318\) −3.64514 −0.204409
\(319\) 0.665392 0.0372548
\(320\) 3.37835 5.85148i 0.188856 0.327107i
\(321\) −7.06296 + 12.2334i −0.394216 + 0.682802i
\(322\) 14.8735 21.7768i 0.828870 1.21357i
\(323\) 21.7583 + 37.6865i 1.21066 + 2.09693i
\(324\) −0.372274 + 0.644798i −0.0206819 + 0.0358221i
\(325\) 1.67637 1.30416i 0.0929883 0.0723418i
\(326\) 7.98649 + 13.8330i 0.442331 + 0.766139i
\(327\) 9.13609 0.505227
\(328\) −2.08773 3.61605i −0.115276 0.199663i
\(329\) 9.85718 + 20.5120i 0.543444 + 1.13086i
\(330\) −1.05857 −0.0582722
\(331\) 13.4676 + 23.3266i 0.740246 + 1.28214i 0.952383 + 0.304904i \(0.0986243\pi\)
−0.212137 + 0.977240i \(0.568042\pi\)
\(332\) −6.94805 −0.381324
\(333\) 0.0524484 + 0.0908433i 0.00287415 + 0.00497818i
\(334\) −15.0870 26.1315i −0.825524 1.42985i
\(335\) 10.5866 + 18.3366i 0.578410 + 1.00184i
\(336\) 5.65510 + 11.7678i 0.308511 + 0.641988i
\(337\) 20.8356 1.13498 0.567492 0.823379i \(-0.307914\pi\)
0.567492 + 0.823379i \(0.307914\pi\)
\(338\) 20.7267 5.85078i 1.12739 0.318241i
\(339\) 5.58957 + 9.68142i 0.303584 + 0.525823i
\(340\) 4.54405 7.87052i 0.246436 0.426839i
\(341\) 2.13670 0.115709
\(342\) −6.20220 + 10.7425i −0.335377 + 0.580889i
\(343\) 18.0456 + 4.16592i 0.974373 + 0.224939i
\(344\) 8.40263 14.5538i 0.453039 0.784687i
\(345\) 6.31805 + 10.9432i 0.340153 + 0.589161i
\(346\) 17.8211 + 30.8670i 0.958067 + 1.65942i
\(347\) −13.3384 −0.716041 −0.358021 0.933714i \(-0.616548\pi\)
−0.358021 + 0.933714i \(0.616548\pi\)
\(348\) −1.62837 −0.0872898
\(349\) −10.2622 17.7746i −0.549322 0.951453i −0.998321 0.0579208i \(-0.981553\pi\)
0.449000 0.893532i \(-0.351780\pi\)
\(350\) 2.57459 + 0.195080i 0.137618 + 0.0104275i
\(351\) −0.494423 3.57149i −0.0263904 0.190632i
\(352\) 0.610840 1.05801i 0.0325579 0.0563919i
\(353\) 3.22357 5.58339i 0.171573 0.297174i −0.767397 0.641173i \(-0.778448\pi\)
0.938970 + 0.343999i \(0.111782\pi\)
\(354\) −11.3351 + 19.6330i −0.602453 + 1.04348i
\(355\) 0.314269 + 0.544330i 0.0166797 + 0.0288900i
\(356\) 2.30466 0.122147
\(357\) −6.66025 13.8595i −0.352498 0.733520i
\(358\) −2.25736 + 3.90986i −0.119305 + 0.206642i
\(359\) −4.38549 + 7.59588i −0.231457 + 0.400895i −0.958237 0.285975i \(-0.907683\pi\)
0.726780 + 0.686870i \(0.241016\pi\)
\(360\) −4.36818 −0.230223
\(361\) −18.5318 + 32.0980i −0.975357 + 1.68937i
\(362\) 10.7215 0.563507
\(363\) −10.9074 −0.572492
\(364\) 6.35899 + 3.16374i 0.333302 + 0.165825i
\(365\) −12.4660 −0.652499
\(366\) 18.2669 0.954827
\(367\) −6.08982 + 10.5479i −0.317886 + 0.550595i −0.980047 0.198767i \(-0.936306\pi\)
0.662161 + 0.749362i \(0.269640\pi\)
\(368\) −29.6902 −1.54771
\(369\) −1.00378 + 1.73860i −0.0522548 + 0.0905079i
\(370\) 0.182487 0.316077i 0.00948707 0.0164321i
\(371\) 5.80476 + 0.439833i 0.301368 + 0.0228350i
\(372\) −5.22899 −0.271111
\(373\) −15.2988 26.4983i −0.792140 1.37203i −0.924639 0.380844i \(-0.875633\pi\)
0.132499 0.991183i \(-0.457700\pi\)
\(374\) −1.46466 + 2.53687i −0.0757359 + 0.131179i
\(375\) −5.86914 + 10.1657i −0.303081 + 0.524952i
\(376\) 8.94504 15.4933i 0.461305 0.799004i
\(377\) 6.22391 4.84199i 0.320547 0.249375i
\(378\) 2.47210 3.61947i 0.127151 0.186165i
\(379\) −2.54078 4.40075i −0.130511 0.226052i 0.793363 0.608749i \(-0.208328\pi\)
−0.923874 + 0.382698i \(0.874995\pi\)
\(380\) 11.7084 0.600629
\(381\) 16.8358 0.862525
\(382\) 10.5554 + 18.2824i 0.540059 + 0.935410i
\(383\) 12.3140 + 21.3285i 0.629217 + 1.08984i 0.987709 + 0.156303i \(0.0499575\pi\)
−0.358493 + 0.933533i \(0.616709\pi\)
\(384\) 6.68037 11.5707i 0.340906 0.590466i
\(385\) 1.68573 + 0.127730i 0.0859129 + 0.00650972i
\(386\) −0.540161 + 0.935585i −0.0274934 + 0.0476200i
\(387\) −8.07997 −0.410728
\(388\) −2.38041 + 4.12299i −0.120847 + 0.209313i
\(389\) −9.26991 16.0559i −0.470003 0.814069i 0.529409 0.848367i \(-0.322414\pi\)
−0.999412 + 0.0342980i \(0.989080\pi\)
\(390\) −9.90155 + 7.70308i −0.501385 + 0.390060i
\(391\) 34.9674 1.76838
\(392\) −5.29660 13.5614i −0.267519 0.684956i
\(393\) −6.97748 12.0854i −0.351967 0.609625i
\(394\) −5.02103 8.69668i −0.252956 0.438132i
\(395\) −13.7550 23.8244i −0.692091 1.19874i
\(396\) −0.226522 −0.0113832
\(397\) −15.6013 27.0223i −0.783007 1.35621i −0.930182 0.367098i \(-0.880351\pi\)
0.147175 0.989110i \(-0.452982\pi\)
\(398\) −3.38712 −0.169781
\(399\) 11.1730 16.3587i 0.559351 0.818961i
\(400\) −1.45346 2.51746i −0.0726728 0.125873i
\(401\) −34.2249 −1.70911 −0.854555 0.519360i \(-0.826170\pi\)
−0.854555 + 0.519360i \(0.826170\pi\)
\(402\) 8.35081 + 14.4640i 0.416501 + 0.721400i
\(403\) 19.9861 15.5485i 0.995578 0.774526i
\(404\) −0.513745 + 0.889832i −0.0255598 + 0.0442708i
\(405\) 1.05011 + 1.81885i 0.0521804 + 0.0903791i
\(406\) 9.55876 + 0.724279i 0.474393 + 0.0359453i
\(407\) −0.0159570 + 0.0276383i −0.000790957 + 0.00136998i
\(408\) −6.04394 + 10.4684i −0.299220 + 0.518264i
\(409\) −9.95801 −0.492392 −0.246196 0.969220i \(-0.579181\pi\)
−0.246196 + 0.969220i \(0.579181\pi\)
\(410\) 6.98505 0.344967
\(411\) 0.304544 0.527486i 0.0150221 0.0260190i
\(412\) −2.10430 + 3.64475i −0.103671 + 0.179564i
\(413\) 20.4197 29.8971i 1.00479 1.47114i
\(414\) 4.98372 + 8.63206i 0.244936 + 0.424242i
\(415\) −9.79953 + 16.9733i −0.481040 + 0.833186i
\(416\) −1.98536 14.3413i −0.0973402 0.703141i
\(417\) −4.23753 7.33962i −0.207513 0.359423i
\(418\) −3.77393 −0.184589
\(419\) 0.586220 + 1.01536i 0.0286387 + 0.0496037i 0.879990 0.474993i \(-0.157549\pi\)
−0.851351 + 0.524597i \(0.824216\pi\)
\(420\) −4.12538 0.312585i −0.201298 0.0152526i
\(421\) −10.2374 −0.498938 −0.249469 0.968383i \(-0.580256\pi\)
−0.249469 + 0.968383i \(0.580256\pi\)
\(422\) 3.77172 + 6.53281i 0.183604 + 0.318012i
\(423\) −8.60155 −0.418222
\(424\) −2.28815 3.96318i −0.111122 0.192469i
\(425\) 1.71180 + 2.96492i 0.0830343 + 0.143820i
\(426\) 0.247897 + 0.429371i 0.0120107 + 0.0208031i
\(427\) −29.0895 2.20414i −1.40774 0.106666i
\(428\) 10.5174 0.508379
\(429\) 0.865806 0.673568i 0.0418015 0.0325202i
\(430\) 14.0566 + 24.3467i 0.677869 + 1.17410i
\(431\) −11.8198 + 20.4724i −0.569338 + 0.986122i 0.427293 + 0.904113i \(0.359467\pi\)
−0.996632 + 0.0820095i \(0.973866\pi\)
\(432\) −4.93474 −0.237423
\(433\) −0.246165 + 0.426370i −0.0118299 + 0.0204900i −0.871880 0.489720i \(-0.837099\pi\)
0.860050 + 0.510210i \(0.170432\pi\)
\(434\) 30.6949 + 2.32579i 1.47340 + 0.111641i
\(435\) −2.29665 + 3.97792i −0.110116 + 0.190727i
\(436\) −3.40113 5.89093i −0.162885 0.282124i
\(437\) 22.5247 + 39.0139i 1.07750 + 1.86629i
\(438\) −9.83324 −0.469850
\(439\) −15.0638 −0.718954 −0.359477 0.933154i \(-0.617045\pi\)
−0.359477 + 0.933154i \(0.617045\pi\)
\(440\) −0.664490 1.15093i −0.0316783 0.0548684i
\(441\) −4.37347 + 5.46560i −0.208261 + 0.260266i
\(442\) 4.76046 + 34.3874i 0.226432 + 1.63564i
\(443\) −13.3996 + 23.2088i −0.636635 + 1.10268i 0.349531 + 0.936925i \(0.386341\pi\)
−0.986166 + 0.165760i \(0.946992\pi\)
\(444\) 0.0390504 0.0676372i 0.00185325 0.00320992i
\(445\) 3.25050 5.63003i 0.154088 0.266889i
\(446\) −13.0132 22.5396i −0.616194 1.06728i
\(447\) 6.62649 0.313422
\(448\) −4.80065 + 7.02877i −0.226809 + 0.332078i
\(449\) 2.26268 3.91908i 0.106783 0.184953i −0.807683 0.589618i \(-0.799278\pi\)
0.914465 + 0.404665i \(0.132612\pi\)
\(450\) −0.487947 + 0.845149i −0.0230020 + 0.0398407i
\(451\) −0.610783 −0.0287606
\(452\) 4.16171 7.20829i 0.195750 0.339049i
\(453\) −1.52423 −0.0716144
\(454\) 20.7802 0.975264
\(455\) 16.6974 11.0721i 0.782785 0.519070i
\(456\) −15.5731 −0.729278
\(457\) 34.3540 1.60701 0.803505 0.595298i \(-0.202966\pi\)
0.803505 + 0.595298i \(0.202966\pi\)
\(458\) 17.0939 29.6075i 0.798745 1.38347i
\(459\) 5.81185 0.271274
\(460\) 4.70410 8.14773i 0.219330 0.379890i
\(461\) −0.499436 + 0.865049i −0.0232611 + 0.0402893i −0.877422 0.479720i \(-0.840738\pi\)
0.854161 + 0.520009i \(0.174072\pi\)
\(462\) 1.32972 + 0.100754i 0.0618640 + 0.00468751i
\(463\) 32.5538 1.51290 0.756452 0.654049i \(-0.226931\pi\)
0.756452 + 0.654049i \(0.226931\pi\)
\(464\) −5.39628 9.34664i −0.250516 0.433907i
\(465\) −7.37497 + 12.7738i −0.342006 + 0.592372i
\(466\) −6.64172 + 11.5038i −0.307672 + 0.532903i
\(467\) 12.1056 20.9675i 0.560180 0.970261i −0.437300 0.899316i \(-0.644065\pi\)
0.997480 0.0709451i \(-0.0226015\pi\)
\(468\) −2.11883 + 1.64838i −0.0979429 + 0.0761963i
\(469\) −11.5531 24.0411i −0.533473 1.11012i
\(470\) 14.9640 + 25.9184i 0.690237 + 1.19553i
\(471\) −16.9301 −0.780098
\(472\) −28.4613 −1.31004
\(473\) −1.22913 2.12891i −0.0565154 0.0978875i
\(474\) −10.8501 18.7929i −0.498360 0.863184i
\(475\) −2.20535 + 3.81978i −0.101188 + 0.175263i
\(476\) −6.45711 + 9.45404i −0.295961 + 0.433325i
\(477\) −1.10014 + 1.90550i −0.0503720 + 0.0872468i
\(478\) 1.93559 0.0885319
\(479\) 15.1684 26.2724i 0.693061 1.20042i −0.277769 0.960648i \(-0.589595\pi\)
0.970830 0.239769i \(-0.0770718\pi\)
\(480\) 4.21672 + 7.30357i 0.192466 + 0.333361i
\(481\) 0.0518634 + 0.374638i 0.00236477 + 0.0170820i
\(482\) 1.77620 0.0809037
\(483\) −6.89484 14.3476i −0.313726 0.652839i
\(484\) 4.06056 + 7.03309i 0.184571 + 0.319686i
\(485\) 6.71465 + 11.6301i 0.304896 + 0.528096i
\(486\) 0.828334 + 1.43472i 0.0375740 + 0.0650801i
\(487\) −5.38448 −0.243994 −0.121997 0.992530i \(-0.538930\pi\)
−0.121997 + 0.992530i \(0.538930\pi\)
\(488\) 11.4666 + 19.8608i 0.519069 + 0.899054i
\(489\) 9.64163 0.436009
\(490\) 24.0775 + 3.66983i 1.08771 + 0.165786i
\(491\) −17.4920 30.2970i −0.789401 1.36728i −0.926334 0.376703i \(-0.877058\pi\)
0.136933 0.990580i \(-0.456275\pi\)
\(492\) 1.49473 0.0673875
\(493\) 6.35543 + 11.0079i 0.286234 + 0.495772i
\(494\) −35.3003 + 27.4625i −1.58824 + 1.23559i
\(495\) −0.319487 + 0.553367i −0.0143599 + 0.0248720i
\(496\) −17.3284 30.0137i −0.778070 1.34766i
\(497\) −0.342959 0.713671i −0.0153838 0.0320125i
\(498\) −7.72993 + 13.3886i −0.346386 + 0.599959i
\(499\) −0.527303 + 0.913315i −0.0236053 + 0.0408856i −0.877587 0.479418i \(-0.840848\pi\)
0.853981 + 0.520303i \(0.174181\pi\)
\(500\) 8.73972 0.390852
\(501\) −18.2137 −0.813727
\(502\) 10.4323 18.0693i 0.465617 0.806472i
\(503\) 6.93072 12.0044i 0.309026 0.535248i −0.669124 0.743151i \(-0.733330\pi\)
0.978150 + 0.207903i \(0.0666638\pi\)
\(504\) 5.48708 + 0.415763i 0.244414 + 0.0185195i
\(505\) 1.44917 + 2.51004i 0.0644872 + 0.111695i
\(506\) −1.51625 + 2.62623i −0.0674056 + 0.116750i
\(507\) 3.19704 12.6008i 0.141986 0.559619i
\(508\) −6.26754 10.8557i −0.278077 0.481644i
\(509\) 29.2286 1.29554 0.647768 0.761838i \(-0.275703\pi\)
0.647768 + 0.761838i \(0.275703\pi\)
\(510\) −10.1108 17.5124i −0.447713 0.775462i
\(511\) 15.6591 + 1.18651i 0.692718 + 0.0524881i
\(512\) 0.711748 0.0314551
\(513\) 3.74378 + 6.48442i 0.165292 + 0.286294i
\(514\) 35.2838 1.55630
\(515\) 5.93581 + 10.2811i 0.261563 + 0.453040i
\(516\) 3.00796 + 5.20995i 0.132418 + 0.229355i
\(517\) −1.30847 2.26634i −0.0575465 0.0996735i
\(518\) −0.259315 + 0.379671i −0.0113937 + 0.0166818i
\(519\) 21.5144 0.944376
\(520\) −14.5907 5.93007i −0.639842 0.260051i
\(521\) −4.13001 7.15338i −0.180939 0.313395i 0.761262 0.648445i \(-0.224580\pi\)
−0.942201 + 0.335049i \(0.891247\pi\)
\(522\) −1.81161 + 3.13781i −0.0792922 + 0.137338i
\(523\) −0.456440 −0.0199587 −0.00997937 0.999950i \(-0.503177\pi\)
−0.00997937 + 0.999950i \(0.503177\pi\)
\(524\) −5.19507 + 8.99813i −0.226948 + 0.393085i
\(525\) 0.879018 1.28699i 0.0383635 0.0561690i
\(526\) −18.2469 + 31.6046i −0.795604 + 1.37803i
\(527\) 20.4084 + 35.3484i 0.889005 + 1.53980i
\(528\) −0.750676 1.30021i −0.0326690 0.0565843i
\(529\) 13.1990 0.573869
\(530\) 7.65559 0.332538
\(531\) 6.84210 + 11.8509i 0.296922 + 0.514284i
\(532\) −14.7075 1.11441i −0.637651 0.0483156i
\(533\) −5.71310 + 4.44460i −0.247462 + 0.192517i
\(534\) 2.56401 4.44100i 0.110956 0.192181i
\(535\) 14.8338 25.6928i 0.641320 1.11080i
\(536\) −10.4840 + 18.1589i −0.452841 + 0.784344i
\(537\) 1.36259 + 2.36007i 0.0588000 + 0.101845i
\(538\) −29.5858 −1.27554
\(539\) −2.10537 0.320895i −0.0906848 0.0138219i
\(540\) 0.781858 1.35422i 0.0336458 0.0582763i
\(541\) −10.6399 + 18.4289i −0.457447 + 0.792321i −0.998825 0.0484578i \(-0.984569\pi\)
0.541378 + 0.840779i \(0.317903\pi\)
\(542\) 11.9456 0.513108
\(543\) 3.23585 5.60466i 0.138864 0.240519i
\(544\) 23.3375 1.00059
\(545\) −19.1878 −0.821916
\(546\) 13.1710 8.73377i 0.563667 0.373771i
\(547\) −43.8895 −1.87658 −0.938290 0.345849i \(-0.887591\pi\)
−0.938290 + 0.345849i \(0.887591\pi\)
\(548\) −0.453496 −0.0193724
\(549\) 5.51315 9.54905i 0.235295 0.407544i
\(550\) −0.296907 −0.0126602
\(551\) −8.18786 + 14.1818i −0.348815 + 0.604165i
\(552\) −6.25682 + 10.8371i −0.266308 + 0.461259i
\(553\) 15.0108 + 31.2362i 0.638322 + 1.32830i
\(554\) 7.26077 0.308480
\(555\) −0.110153 0.190791i −0.00467575 0.00809863i
\(556\) −3.15505 + 5.46470i −0.133804 + 0.231755i
\(557\) 18.2941 31.6863i 0.775145 1.34259i −0.159568 0.987187i \(-0.551010\pi\)
0.934713 0.355404i \(-0.115657\pi\)
\(558\) −5.81742 + 10.0761i −0.246271 + 0.426554i
\(559\) −26.9888 10.9691i −1.14151 0.463942i
\(560\) −11.8770 24.7150i −0.501894 1.04440i
\(561\) 0.884102 + 1.53131i 0.0373268 + 0.0646519i
\(562\) 0.785724 0.0331438
\(563\) −43.2809 −1.82407 −0.912036 0.410110i \(-0.865490\pi\)
−0.912036 + 0.410110i \(0.865490\pi\)
\(564\) 3.20214 + 5.54626i 0.134834 + 0.233540i
\(565\) −11.7393 20.3331i −0.493877 0.855421i
\(566\) −0.933471 + 1.61682i −0.0392367 + 0.0679600i
\(567\) −1.14598 2.38469i −0.0481265 0.100147i
\(568\) −0.311223 + 0.539054i −0.0130586 + 0.0226182i
\(569\) −15.5204 −0.650650 −0.325325 0.945602i \(-0.605474\pi\)
−0.325325 + 0.945602i \(0.605474\pi\)
\(570\) 13.0260 22.5617i 0.545599 0.945005i
\(571\) 5.62473 + 9.74231i 0.235387 + 0.407703i 0.959385 0.282099i \(-0.0910308\pi\)
−0.723998 + 0.689802i \(0.757697\pi\)
\(572\) −0.756632 0.307518i −0.0316364 0.0128580i
\(573\) 12.7429 0.532341
\(574\) −8.77426 0.664836i −0.366230 0.0277497i
\(575\) 1.77209 + 3.06935i 0.0739012 + 0.128001i
\(576\) −1.60857 2.78612i −0.0670237 0.116088i
\(577\) 13.0442 + 22.5933i 0.543038 + 0.940570i 0.998728 + 0.0504308i \(0.0160594\pi\)
−0.455689 + 0.890139i \(0.650607\pi\)
\(578\) −27.7950 −1.15612
\(579\) 0.326052 + 0.564739i 0.0135503 + 0.0234698i
\(580\) 3.41994 0.142005
\(581\) 13.9252 20.3882i 0.577714 0.845847i
\(582\) 5.29656 + 9.17390i 0.219549 + 0.380271i
\(583\) −0.669416 −0.0277244
\(584\) −6.17258 10.6912i −0.255423 0.442406i
\(585\) 1.03840 + 7.50092i 0.0429325 + 0.310125i
\(586\) −10.6645 + 18.4715i −0.440547 + 0.763049i
\(587\) −20.9471 36.2815i −0.864581 1.49750i −0.867463 0.497502i \(-0.834251\pi\)
0.00288215 0.999996i \(-0.499083\pi\)
\(588\) 5.15234 + 0.785306i 0.212479 + 0.0323855i
\(589\) −26.2927 + 45.5403i −1.08337 + 1.87646i
\(590\) 23.8062 41.2336i 0.980086 1.69756i
\(591\) −6.06160 −0.249341
\(592\) 0.517639 0.0212748
\(593\) 0.0938527 0.162558i 0.00385407 0.00667544i −0.864092 0.503334i \(-0.832107\pi\)
0.867946 + 0.496659i \(0.165440\pi\)
\(594\) −0.252013 + 0.436500i −0.0103402 + 0.0179098i
\(595\) 13.9880 + 29.1079i 0.573452 + 1.19331i
\(596\) −2.46687 4.27275i −0.101047 0.175018i
\(597\) −1.02227 + 1.77062i −0.0418386 + 0.0724666i
\(598\) 4.92814 + 35.5986i 0.201526 + 1.45574i
\(599\) 11.9802 + 20.7503i 0.489498 + 0.847835i 0.999927 0.0120845i \(-0.00384672\pi\)
−0.510429 + 0.859920i \(0.670513\pi\)
\(600\) −1.22519 −0.0500181
\(601\) −11.4417 19.8176i −0.466717 0.808377i 0.532561 0.846392i \(-0.321230\pi\)
−0.999277 + 0.0380151i \(0.987896\pi\)
\(602\) −15.3398 31.9210i −0.625206 1.30100i
\(603\) 10.0815 0.410549
\(604\) 0.567430 + 0.982818i 0.0230884 + 0.0399903i
\(605\) 22.9080 0.931344
\(606\) 1.14311 + 1.97993i 0.0464359 + 0.0804293i
\(607\) −0.987158 1.70981i −0.0400675 0.0693990i 0.845296 0.534298i \(-0.179424\pi\)
−0.885364 + 0.464899i \(0.846091\pi\)
\(608\) 15.0332 + 26.0382i 0.609675 + 1.05599i
\(609\) 3.26355 4.77826i 0.132246 0.193625i
\(610\) −38.3646 −1.55334
\(611\) −28.7310 11.6771i −1.16233 0.472407i
\(612\) −2.16360 3.74747i −0.0874585 0.151483i
\(613\) −1.57631 + 2.73025i −0.0636667 + 0.110274i −0.896102 0.443849i \(-0.853613\pi\)
0.832435 + 0.554123i \(0.186946\pi\)
\(614\) 13.2786 0.535880
\(615\) 2.10816 3.65144i 0.0850093 0.147240i
\(616\) 0.725152 + 1.50898i 0.0292172 + 0.0607987i
\(617\) −6.03895 + 10.4598i −0.243119 + 0.421094i −0.961601 0.274451i \(-0.911504\pi\)
0.718482 + 0.695545i \(0.244837\pi\)
\(618\) 4.68220 + 8.10981i 0.188346 + 0.326224i
\(619\) −20.4442 35.4104i −0.821722 1.42327i −0.904399 0.426689i \(-0.859680\pi\)
0.0826762 0.996576i \(-0.473653\pi\)
\(620\) 10.9820 0.441049
\(621\) 6.01656 0.241436
\(622\) 2.61230 + 4.52464i 0.104744 + 0.181422i
\(623\) −4.61897 + 6.76276i −0.185055 + 0.270944i
\(624\) −16.4831 6.69922i −0.659852 0.268184i
\(625\) 10.8538 18.7994i 0.434153 0.751975i
\(626\) −0.438340 + 0.759227i −0.0175196 + 0.0303448i
\(627\) −1.13901 + 1.97283i −0.0454877 + 0.0787871i
\(628\) 6.30264 + 10.9165i 0.251503 + 0.435615i
\(629\) −0.609645 −0.0243081
\(630\) −5.19196 + 7.60169i −0.206852 + 0.302859i
\(631\) 17.6950 30.6486i 0.704427 1.22010i −0.262471 0.964940i \(-0.584537\pi\)
0.966898 0.255163i \(-0.0821293\pi\)
\(632\) 13.6217 23.5935i 0.541843 0.938500i
\(633\) 4.55338 0.180980
\(634\) 3.62858 6.28488i 0.144109 0.249604i
\(635\) −35.3590 −1.40318
\(636\) 1.63822 0.0649595
\(637\) −22.0282 + 12.3190i −0.872790 + 0.488096i
\(638\) −1.10233 −0.0436418
\(639\) 0.299272 0.0118390
\(640\) −14.0302 + 24.3011i −0.554594 + 0.960585i
\(641\) 27.8876 1.10149 0.550747 0.834673i \(-0.314343\pi\)
0.550747 + 0.834673i \(0.314343\pi\)
\(642\) 11.7010 20.2667i 0.461801 0.799862i
\(643\) −3.37661 + 5.84847i −0.133161 + 0.230641i −0.924893 0.380227i \(-0.875846\pi\)
0.791733 + 0.610868i \(0.209179\pi\)
\(644\) −6.68454 + 9.78703i −0.263408 + 0.385663i
\(645\) 16.9697 0.668182
\(646\) −36.0463 62.4340i −1.41822 2.45643i
\(647\) −23.0343 + 39.8967i −0.905574 + 1.56850i −0.0854282 + 0.996344i \(0.527226\pi\)
−0.820145 + 0.572155i \(0.806107\pi\)
\(648\) −1.03993 + 1.80122i −0.0408524 + 0.0707585i
\(649\) −2.08165 + 3.60552i −0.0817118 + 0.141529i
\(650\) −2.77719 + 2.16056i −0.108930 + 0.0847441i
\(651\) 10.4799 15.3439i 0.410738 0.601373i
\(652\) −3.58933 6.21690i −0.140569 0.243473i
\(653\) 35.8803 1.40410 0.702052 0.712126i \(-0.252267\pi\)
0.702052 + 0.712126i \(0.252267\pi\)
\(654\) −15.1355 −0.591844
\(655\) 14.6543 + 25.3819i 0.572589 + 0.991753i
\(656\) 4.95340 + 8.57955i 0.193398 + 0.334975i
\(657\) −2.96778 + 5.14034i −0.115784 + 0.200544i
\(658\) −16.3301 33.9816i −0.636613 1.32474i
\(659\) −17.2510 + 29.8796i −0.672004 + 1.16395i 0.305331 + 0.952246i \(0.401233\pi\)
−0.977335 + 0.211699i \(0.932100\pi\)
\(660\) 0.475747 0.0185184
\(661\) 20.2784 35.1233i 0.788740 1.36614i −0.137999 0.990432i \(-0.544067\pi\)
0.926739 0.375706i \(-0.122600\pi\)
\(662\) −22.3113 38.6444i −0.867155 1.50196i
\(663\) 19.4128 + 7.88995i 0.753932 + 0.306420i
\(664\) −19.4091 −0.753219
\(665\) −23.4658 + 34.3570i −0.909966 + 1.33231i
\(666\) −0.0868896 0.150497i −0.00336690 0.00583165i
\(667\) 6.57928 + 11.3956i 0.254751 + 0.441241i
\(668\) 6.78048 + 11.7441i 0.262345 + 0.454395i
\(669\) −15.7101 −0.607388
\(670\) −17.5385 30.3777i −0.677573 1.17359i
\(671\) 3.35465 0.129505
\(672\) −4.60167 9.57572i −0.177513 0.369391i
\(673\) −11.5572 20.0177i −0.445498 0.771625i 0.552589 0.833454i \(-0.313640\pi\)
−0.998087 + 0.0618288i \(0.980307\pi\)
\(674\) −34.5176 −1.32957
\(675\) 0.294535 + 0.510150i 0.0113367 + 0.0196357i
\(676\) −9.31511 + 2.62949i −0.358274 + 0.101134i
\(677\) 8.56573 14.8363i 0.329208 0.570205i −0.653147 0.757231i \(-0.726552\pi\)
0.982355 + 0.187026i \(0.0598850\pi\)
\(678\) −9.26006 16.0389i −0.355631 0.615970i
\(679\) −7.32764 15.2482i −0.281209 0.585174i
\(680\) 12.6936 21.9860i 0.486778 0.843124i
\(681\) 6.27169 10.8629i 0.240332 0.416267i
\(682\) −3.53979 −0.135546
\(683\) −44.1844 −1.69067 −0.845335 0.534237i \(-0.820599\pi\)
−0.845335 + 0.534237i \(0.820599\pi\)
\(684\) 2.78743 4.82796i 0.106580 0.184602i
\(685\) −0.639610 + 1.10784i −0.0244382 + 0.0423283i
\(686\) −29.8956 6.90155i −1.14142 0.263502i
\(687\) −10.3182 17.8717i −0.393665 0.681849i
\(688\) −19.9363 + 34.5307i −0.760064 + 1.31647i
\(689\) −6.26154 + 4.87127i −0.238546 + 0.185580i
\(690\) −10.4669 18.1292i −0.398469 0.690168i
\(691\) −10.0517 −0.382384 −0.191192 0.981553i \(-0.561235\pi\)
−0.191192 + 0.981553i \(0.561235\pi\)
\(692\) −8.00924 13.8724i −0.304466 0.527350i
\(693\) 0.453992 0.664702i 0.0172457 0.0252500i
\(694\) 22.0972 0.838800
\(695\) 8.89976 + 15.4148i 0.337587 + 0.584718i
\(696\) −4.54879 −0.172421
\(697\) −5.83383 10.1045i −0.220972 0.382735i
\(698\) 17.0010 + 29.4466i 0.643498 + 1.11457i
\(699\) 4.00908 + 6.94394i 0.151637 + 0.262644i
\(700\) −1.15709 0.0876739i −0.0437338 0.00331376i
\(701\) 11.0843 0.418647 0.209323 0.977846i \(-0.432874\pi\)
0.209323 + 0.977846i \(0.432874\pi\)
\(702\) 0.819095 + 5.91677i 0.0309148 + 0.223314i
\(703\) −0.392711 0.680195i −0.0148114 0.0256540i
\(704\) 0.489393 0.847653i 0.0184447 0.0319471i
\(705\) 18.0652 0.680373
\(706\) −5.34039 + 9.24982i −0.200988 + 0.348122i
\(707\) −1.58147 3.29091i −0.0594772 0.123767i
\(708\) 5.09428 8.82355i 0.191455 0.331609i
\(709\) 0.717572 + 1.24287i 0.0269490 + 0.0466770i 0.879185 0.476480i \(-0.158087\pi\)
−0.852236 + 0.523157i \(0.824754\pi\)
\(710\) −0.520639 0.901773i −0.0195392 0.0338430i
\(711\) −13.0987 −0.491238
\(712\) 6.43799 0.241274
\(713\) 21.1273 + 36.5935i 0.791222 + 1.37044i
\(714\) 11.0338 + 22.9605i 0.412931 + 0.859276i
\(715\) −1.81838 + 1.41464i −0.0680037 + 0.0529046i
\(716\) 1.01451 1.75719i 0.0379141 0.0656692i
\(717\) 0.584182 1.01183i 0.0218167 0.0377876i
\(718\) 7.26529 12.5839i 0.271138 0.469625i
\(719\) 18.1353 + 31.4113i 0.676333 + 1.17144i 0.976077 + 0.217423i \(0.0697651\pi\)
−0.299745 + 0.954019i \(0.596902\pi\)
\(720\) 10.3641 0.386246
\(721\) −6.47770 13.4796i −0.241242 0.502006i
\(722\) 30.7010 53.1757i 1.14257 1.97899i
\(723\) 0.536076 0.928511i 0.0199369 0.0345317i
\(724\) −4.81849 −0.179078
\(725\) −0.644165 + 1.11573i −0.0239237 + 0.0414371i
\(726\) 18.0700 0.670641
\(727\) 45.0943 1.67245 0.836227 0.548384i \(-0.184757\pi\)
0.836227 + 0.548384i \(0.184757\pi\)
\(728\) 17.7636 + 8.83779i 0.658363 + 0.327550i
\(729\) 1.00000 0.0370370
\(730\) 20.6520 0.764364
\(731\) 23.4798 40.6682i 0.868432 1.50417i
\(732\) −8.20961 −0.303436
\(733\) −9.09554 + 15.7539i −0.335952 + 0.581885i −0.983667 0.179997i \(-0.942391\pi\)
0.647716 + 0.761882i \(0.275725\pi\)
\(734\) 10.0888 17.4743i 0.372385 0.644989i
\(735\) 9.18526 11.4790i 0.338803 0.423408i
\(736\) 24.1595 0.890531
\(737\) 1.53360 + 2.65627i 0.0564907 + 0.0978448i
\(738\) 1.66293 2.88028i 0.0612134 0.106025i
\(739\) 12.9521 22.4337i 0.476451 0.825237i −0.523185 0.852219i \(-0.675256\pi\)
0.999636 + 0.0269820i \(0.00858969\pi\)
\(740\) −0.0820144 + 0.142053i −0.00301491 + 0.00522198i
\(741\) 3.70203 + 26.7418i 0.135997 + 0.982383i
\(742\) −9.61656 0.728658i −0.353035 0.0267499i
\(743\) −22.0599 38.2089i −0.809301 1.40175i −0.913349 0.407177i \(-0.866513\pi\)
0.104049 0.994572i \(-0.466820\pi\)
\(744\) −14.6070 −0.535518
\(745\) −13.9171 −0.509883
\(746\) 25.3450 + 43.8988i 0.927946 + 1.60725i
\(747\) 4.66595 + 8.08166i 0.170718 + 0.295693i
\(748\) 0.658257 1.14013i 0.0240683 0.0416874i
\(749\) −21.0789 + 30.8621i −0.770204 + 1.12768i
\(750\) 9.72322 16.8411i 0.355042 0.614950i
\(751\) −4.12069 −0.150366 −0.0751831 0.997170i \(-0.523954\pi\)
−0.0751831 + 0.997170i \(0.523954\pi\)
\(752\) −21.2232 + 36.7597i −0.773932 + 1.34049i
\(753\) −6.29717 10.9070i −0.229482 0.397474i
\(754\) −10.3109 + 8.02157i −0.375502 + 0.292128i
\(755\) 3.20121 0.116504
\(756\) −1.11102 + 1.62668i −0.0404076 + 0.0591618i
\(757\) 20.4854 + 35.4818i 0.744556 + 1.28961i 0.950402 + 0.311024i \(0.100672\pi\)
−0.205846 + 0.978584i \(0.565995\pi\)
\(758\) 4.20922 + 7.29059i 0.152886 + 0.264806i
\(759\) 0.915242 + 1.58525i 0.0332212 + 0.0575408i
\(760\) 32.7070 1.18641
\(761\) −22.1974 38.4470i −0.804654 1.39370i −0.916524 0.399979i \(-0.869017\pi\)
0.111870 0.993723i \(-0.464316\pi\)
\(762\) −27.8914 −1.01040
\(763\) 24.1027 + 1.82629i 0.872578 + 0.0661162i
\(764\) −4.74385 8.21658i −0.171626 0.297266i
\(765\) −12.2062 −0.441315
\(766\) −20.4002 35.3342i −0.737090 1.27668i
\(767\) 6.76579 + 48.8730i 0.244299 + 1.76470i
\(768\) −7.85001 + 13.5966i −0.283263 + 0.490626i
\(769\) 6.60276 + 11.4363i 0.238101 + 0.412404i 0.960169 0.279418i \(-0.0901416\pi\)
−0.722068 + 0.691822i \(0.756808\pi\)
\(770\) −2.79270 0.211606i −0.100642 0.00762575i
\(771\) 10.6490 18.4446i 0.383515 0.664268i
\(772\) 0.242762 0.420476i 0.00873719 0.0151333i
\(773\) −17.3697 −0.624744 −0.312372 0.949960i \(-0.601123\pi\)
−0.312372 + 0.949960i \(0.601123\pi\)
\(774\) 13.3858 0.481144
\(775\) −2.06853 + 3.58280i −0.0743038 + 0.128698i
\(776\) −6.64957 + 11.5174i −0.238706 + 0.413450i
\(777\) 0.120209 + 0.250146i 0.00431249 + 0.00897394i
\(778\) 15.3572 + 26.5994i 0.550581 + 0.953634i
\(779\) 7.51587 13.0179i 0.269284 0.466414i
\(780\) 4.45001 3.46196i 0.159336 0.123958i
\(781\) 0.0455254 + 0.0788523i 0.00162903 + 0.00282156i
\(782\) −57.9293 −2.07155
\(783\) 1.09353 + 1.89405i 0.0390795 + 0.0676877i
\(784\) 12.5669 + 32.1762i 0.448816 + 1.14915i
\(785\) 35.5569 1.26908
\(786\) 11.5594 + 20.0214i 0.412309 + 0.714140i
\(787\) −4.14961 −0.147917 −0.0739587 0.997261i \(-0.523563\pi\)
−0.0739587 + 0.997261i \(0.523563\pi\)
\(788\) 2.25658 + 3.90851i 0.0803872 + 0.139235i
\(789\) 11.0142 + 19.0772i 0.392117 + 0.679167i
\(790\) 22.7875 + 39.4692i 0.810744 + 1.40425i
\(791\) 12.8110 + 26.6588i 0.455508 + 0.947876i
\(792\) −0.632780 −0.0224849
\(793\) 31.3785 24.4114i 1.11428 0.866875i
\(794\) 25.8462 + 44.7669i 0.917247 + 1.58872i
\(795\) 2.31054 4.00197i 0.0819464 0.141935i
\(796\) 1.52226 0.0539549
\(797\) −10.4435 + 18.0887i −0.369928 + 0.640735i −0.989554 0.144163i \(-0.953951\pi\)
0.619626 + 0.784897i \(0.287284\pi\)
\(798\) −18.5100 + 27.1010i −0.655247 + 0.959365i
\(799\) 24.9955 43.2934i 0.884277 1.53161i
\(800\) 1.18271 + 2.04851i 0.0418150 + 0.0724257i
\(801\) −1.54769 2.68068i −0.0546850 0.0947172i
\(802\) 56.6993 2.00212
\(803\) −1.80584 −0.0637266
\(804\) −3.75307 6.50050i −0.132360 0.229255i
\(805\) 14.4807 + 30.1332i 0.510377 + 1.06205i
\(806\) −33.1103 + 25.7587i −1.16626 + 0.907312i
\(807\) −8.92932 + 15.4660i −0.314327 + 0.544430i
\(808\) −1.43512 + 2.48571i −0.0504875 + 0.0874469i
\(809\) −1.79235 + 3.10445i −0.0630158 + 0.109147i −0.895812 0.444433i \(-0.853405\pi\)
0.832796 + 0.553580i \(0.186739\pi\)
\(810\) −1.73968 3.01322i −0.0611263 0.105874i
\(811\) 47.0892 1.65353 0.826763 0.562551i \(-0.190180\pi\)
0.826763 + 0.562551i \(0.190180\pi\)
\(812\) −4.29595 0.325509i −0.150758 0.0114231i
\(813\) 3.60531 6.24459i 0.126444 0.219007i
\(814\) 0.0264354 0.0457874i 0.000926559 0.00160485i
\(815\) −20.2496 −0.709311
\(816\) 14.3400 24.8376i 0.502001 0.869491i
\(817\) 60.4993 2.11660
\(818\) 16.4971 0.576808
\(819\) −0.590446 9.52110i −0.0206319 0.332694i
\(820\) −3.13926 −0.109628
\(821\) −11.3648 −0.396634 −0.198317 0.980138i \(-0.563548\pi\)
−0.198317 + 0.980138i \(0.563548\pi\)
\(822\) −0.504529 + 0.873869i −0.0175975 + 0.0304797i
\(823\) 10.1317 0.353169 0.176584 0.984286i \(-0.443495\pi\)
0.176584 + 0.984286i \(0.443495\pi\)
\(824\) −5.87828 + 10.1815i −0.204779 + 0.354688i
\(825\) −0.0896097 + 0.155208i −0.00311981 + 0.00540367i
\(826\) −33.8287 + 49.5296i −1.17705 + 1.72335i
\(827\) −47.6358 −1.65646 −0.828230 0.560388i \(-0.810652\pi\)
−0.828230 + 0.560388i \(0.810652\pi\)
\(828\) −2.23981 3.87946i −0.0778388 0.134821i
\(829\) −9.88328 + 17.1183i −0.343260 + 0.594545i −0.985036 0.172348i \(-0.944865\pi\)
0.641776 + 0.766892i \(0.278198\pi\)
\(830\) 16.2346 28.1191i 0.563510 0.976028i
\(831\) 2.19138 3.79558i 0.0760180 0.131667i
\(832\) −1.59063 11.4900i −0.0551451 0.398343i
\(833\) −14.8005 37.8952i −0.512807 1.31299i
\(834\) 7.02018 + 12.1593i 0.243089 + 0.421043i
\(835\) 38.2528 1.32379
\(836\) 1.69610 0.0586608
\(837\) 3.51152 + 6.08213i 0.121376 + 0.210229i
\(838\) −0.971172 1.68212i −0.0335486 0.0581079i
\(839\) −3.47420 + 6.01748i −0.119943 + 0.207747i −0.919745 0.392517i \(-0.871604\pi\)
0.799802 + 0.600264i \(0.204938\pi\)
\(840\) −11.5241 0.873193i −0.397619 0.0301280i
\(841\) 12.1084 20.9723i 0.417531 0.723184i
\(842\) 16.9599 0.584477
\(843\) 0.237140 0.410738i 0.00816753 0.0141466i
\(844\) −1.69511 2.93601i −0.0583479 0.101062i
\(845\) −6.71449 + 26.4644i −0.230986 + 0.910402i
\(846\) 14.2499 0.489922
\(847\) −28.7759 2.18038i −0.988751 0.0749188i
\(848\) 5.42891 + 9.40315i 0.186430 + 0.322906i
\(849\) 0.563463 + 0.975947i 0.0193380 + 0.0334944i
\(850\) −2.83588 4.91188i −0.0972698 0.168476i
\(851\) −0.631118 −0.0216344
\(852\) −0.111411 0.192970i −0.00381689 0.00661104i
\(853\) 40.0909 1.37269 0.686343 0.727278i \(-0.259215\pi\)
0.686343 + 0.727278i \(0.259215\pi\)
\(854\) 48.1916 + 3.65153i 1.64908 + 0.124953i
\(855\) −7.86277 13.6187i −0.268901 0.465750i
\(856\) 29.3800 1.00419
\(857\) 2.09069 + 3.62118i 0.0714166 + 0.123697i 0.899522 0.436875i \(-0.143915\pi\)
−0.828106 + 0.560572i \(0.810581\pi\)
\(858\) −1.43435 + 1.11588i −0.0489680 + 0.0380954i
\(859\) −2.22930 + 3.86127i −0.0760629 + 0.131745i −0.901548 0.432679i \(-0.857568\pi\)
0.825485 + 0.564424i \(0.190902\pi\)
\(860\) −6.31739 10.9420i −0.215421 0.373121i
\(861\) −2.99571 + 4.38610i −0.102093 + 0.149478i
\(862\) 19.5814 33.9160i 0.666946 1.15518i
\(863\) −6.39008 + 11.0680i −0.217521 + 0.376757i −0.954049 0.299649i \(-0.903130\pi\)
0.736528 + 0.676407i \(0.236464\pi\)
\(864\) 4.01550 0.136610
\(865\) −45.1849 −1.53633
\(866\) 0.407813 0.706353i 0.0138581 0.0240029i
\(867\) −8.38883 + 14.5299i −0.284899 + 0.493460i
\(868\) −13.7951 1.04527i −0.468235 0.0354787i
\(869\) −1.99257 3.45124i −0.0675934 0.117075i
\(870\) 3.80479 6.59009i 0.128994 0.223425i
\(871\) 33.6742 + 13.6862i 1.14101 + 0.463739i
\(872\) −9.50092 16.4561i −0.321742 0.557273i
\(873\) 6.39423 0.216412
\(874\) −37.3159 64.6330i −1.26223 2.18625i
\(875\) −17.5160 + 25.6457i −0.592149 + 0.866982i
\(876\) 4.41931 0.149314
\(877\) −23.0715 39.9611i −0.779070 1.34939i −0.932478 0.361226i \(-0.882358\pi\)
0.153408 0.988163i \(-0.450975\pi\)
\(878\) 24.9557 0.842213
\(879\) 6.43732 + 11.1498i 0.217125 + 0.376072i
\(880\) 1.57659 + 2.73073i 0.0531467 + 0.0920527i
\(881\) 6.60175 + 11.4346i 0.222419 + 0.385240i 0.955542 0.294855i \(-0.0952715\pi\)
−0.733123 + 0.680096i \(0.761938\pi\)
\(882\) 7.24539 9.05468i 0.243965 0.304887i
\(883\) −23.5256 −0.791701 −0.395850 0.918315i \(-0.629550\pi\)
−0.395850 + 0.918315i \(0.629550\pi\)
\(884\) −2.13947 15.4546i −0.0719583 0.519794i
\(885\) −14.3699 24.8895i −0.483040 0.836650i
\(886\) 22.1987 38.4493i 0.745781 1.29173i
\(887\) −37.8712 −1.27159 −0.635796 0.771857i \(-0.719328\pi\)
−0.635796 + 0.771857i \(0.719328\pi\)
\(888\) 0.109086 0.188942i 0.00366068 0.00634048i
\(889\) 44.4161 + 3.36546i 1.48967 + 0.112874i
\(890\) −5.38499 + 9.32708i −0.180505 + 0.312644i
\(891\) 0.152120 + 0.263480i 0.00509623 + 0.00882693i
\(892\) 5.84847 + 10.1298i 0.195821 + 0.339172i
\(893\) 64.4046 2.15522
\(894\) −10.9779 −0.367156
\(895\) −2.86174 4.95667i −0.0956573 0.165683i
\(896\) 19.9370 29.1904i 0.666050 0.975182i
\(897\) 20.0966 + 8.16785i 0.671006 + 0.272717i
\(898\) −3.74851 + 6.49261i −0.125089 + 0.216661i
\(899\) −7.67989 + 13.3020i −0.256139 + 0.443645i
\(900\) 0.219296 0.379831i 0.00730986 0.0126610i
\(901\) −6.39386 11.0745i −0.213010 0.368945i
\(902\) 1.01186 0.0336914
\(903\) −21.3165 1.61518i −0.709368 0.0537497i
\(904\) 11.6256 20.1361i 0.386660 0.669715i
\(905\) −6.79600 + 11.7710i −0.225907 + 0.391282i
\(906\) 2.52514 0.0838920
\(907\) 22.6965 39.3115i 0.753625 1.30532i −0.192430 0.981311i \(-0.561637\pi\)
0.946055 0.324006i \(-0.105030\pi\)
\(908\) −9.33915 −0.309931
\(909\) 1.38002 0.0457723
\(910\) −27.6620 + 18.3429i −0.916986 + 0.608060i
\(911\) −45.3167 −1.50141 −0.750704 0.660638i \(-0.770286\pi\)
−0.750704 + 0.660638i \(0.770286\pi\)
\(912\) 36.9492 1.22351
\(913\) −1.41957 + 2.45877i −0.0469810 + 0.0813735i
\(914\) −56.9131 −1.88252
\(915\) −11.5788 + 20.0551i −0.382784 + 0.663002i
\(916\) −7.68243 + 13.3064i −0.253835 + 0.439655i
\(917\) −15.9921 33.2782i −0.528105 1.09894i
\(918\) −9.62831 −0.317782
\(919\) 18.7944 + 32.5528i 0.619970 + 1.07382i 0.989491 + 0.144596i \(0.0461884\pi\)
−0.369521 + 0.929222i \(0.620478\pi\)
\(920\) 13.1407 22.7604i 0.433236 0.750387i
\(921\) 4.00762 6.94140i 0.132056 0.228727i
\(922\) 0.827400 1.43310i 0.0272490 0.0471966i
\(923\) 0.999633 + 0.406280i 0.0329033 + 0.0133729i
\(924\) −0.597608 0.0452815i −0.0196599 0.00148965i
\(925\) −0.0308958 0.0535131i −0.00101585 0.00175950i
\(926\) −53.9308 −1.77228
\(927\) 5.65255 0.185654
\(928\) 4.39106 + 7.60555i 0.144144 + 0.249664i
\(929\) 7.89908 + 13.6816i 0.259160 + 0.448879i 0.966017 0.258478i \(-0.0832208\pi\)
−0.706857 + 0.707357i \(0.749887\pi\)
\(930\) 12.2179 21.1620i 0.400640 0.693928i
\(931\) 32.7466 40.9240i 1.07323 1.34123i
\(932\) 2.98496 5.17010i 0.0977755 0.169352i
\(933\) 3.15369 0.103247
\(934\) −20.0550 + 34.7362i −0.656218 + 1.13660i
\(935\) −1.85681 3.21609i −0.0607242 0.105177i
\(936\) −5.91886 + 4.60468i −0.193464 + 0.150509i
\(937\) 3.77902 0.123455 0.0617276 0.998093i \(-0.480339\pi\)
0.0617276 + 0.998093i \(0.480339\pi\)
\(938\) 19.1397 + 39.8282i 0.624932 + 1.30044i
\(939\) 0.264591 + 0.458285i 0.00863461 + 0.0149556i
\(940\) −6.72519 11.6484i −0.219352 0.379928i
\(941\) 5.19282 + 8.99424i 0.169281 + 0.293204i 0.938167 0.346182i \(-0.112522\pi\)
−0.768886 + 0.639386i \(0.779189\pi\)
\(942\) 28.0475 0.913838
\(943\) −6.03931 10.4604i −0.196667 0.340637i
\(944\) 67.5281 2.19785
\(945\) 2.40681 + 5.00837i 0.0782934 + 0.162922i
\(946\) 2.03626 + 3.52690i 0.0662045 + 0.114669i
\(947\) −3.03890 −0.0987511 −0.0493755 0.998780i \(-0.515723\pi\)
−0.0493755 + 0.998780i \(0.515723\pi\)
\(948\) 4.87629 + 8.44599i 0.158375 + 0.274313i
\(949\) −16.8913 + 13.1409i −0.548316 + 0.426571i
\(950\) 3.65353 6.32810i 0.118536 0.205311i
\(951\) −2.19029 3.79369i −0.0710249 0.123019i
\(952\) −18.0377 + 26.4095i −0.584604 + 0.855936i
\(953\) 1.70817 2.95863i 0.0553329 0.0958394i −0.837032 0.547154i \(-0.815711\pi\)
0.892365 + 0.451314i \(0.149045\pi\)
\(954\) 1.82257 3.15678i 0.0590078 0.102205i
\(955\) −26.7629 −0.866026
\(956\) −0.869904 −0.0281347
\(957\) −0.332696 + 0.576247i −0.0107545 + 0.0186274i
\(958\) −25.1290 + 43.5247i −0.811880 + 1.40622i
\(959\) 0.908889 1.33073i 0.0293496 0.0429715i
\(960\) 3.37835 + 5.85148i 0.109036 + 0.188856i
\(961\) −9.16152 + 15.8682i −0.295533 + 0.511878i
\(962\) −0.0859205 0.620651i −0.00277019 0.0200106i
\(963\) −7.06296 12.2334i −0.227601 0.394216i
\(964\) −0.798269 −0.0257105
\(965\) −0.684782 1.18608i −0.0220439 0.0381812i
\(966\) 11.4225 + 23.7692i 0.367512 + 0.764763i
\(967\) 2.27084 0.0730254 0.0365127 0.999333i \(-0.488375\pi\)
0.0365127 + 0.999333i \(0.488375\pi\)
\(968\) 11.3430 + 19.6467i 0.364578 + 0.631468i
\(969\) −43.5166 −1.39795
\(970\) −11.1239 19.2672i −0.357168 0.618633i
\(971\) 11.0364 + 19.1155i 0.354174 + 0.613447i 0.986976 0.160866i \(-0.0514288\pi\)
−0.632802 + 0.774313i \(0.718095\pi\)
\(972\) −0.372274 0.644798i −0.0119407 0.0206819i
\(973\) −9.71223 20.2104i −0.311360 0.647915i
\(974\) 8.92030 0.285825
\(975\) 0.291250 + 2.10386i 0.00932747 + 0.0673774i
\(976\) −27.2060 47.1221i −0.870842 1.50834i
\(977\) 2.14878 3.72180i 0.0687457 0.119071i −0.829604 0.558353i \(-0.811434\pi\)
0.898349 + 0.439282i \(0.144767\pi\)
\(978\) −15.9730 −0.510759
\(979\) 0.470871 0.815573i 0.0150491 0.0260658i
\(980\) −10.8210 1.64932i −0.345666 0.0526855i
\(981\) −4.56805 + 7.91209i −0.145846 + 0.252613i
\(982\) 28.9784 + 50.1920i 0.924737 + 1.60169i
\(983\) −1.81793 3.14875i −0.0579831 0.100430i 0.835577 0.549374i \(-0.185134\pi\)
−0.893560 + 0.448944i \(0.851800\pi\)
\(984\) 4.17546 0.133109
\(985\) 12.7307 0.405634
\(986\) −10.5288 18.2365i −0.335306 0.580768i
\(987\) −22.6925 1.71944i −0.722311 0.0547303i
\(988\) 15.8649 12.3423i 0.504728 0.392662i
\(989\) 24.3068 42.1006i 0.772912 1.33872i
\(990\) 0.529283 0.916746i 0.0168217 0.0291361i
\(991\) −1.07100 + 1.85503i −0.0340214 + 0.0589269i −0.882535 0.470247i \(-0.844165\pi\)
0.848513 + 0.529174i \(0.177498\pi\)
\(992\) 14.1005 + 24.4228i 0.447691 + 0.775424i
\(993\) −26.9352 −0.854762
\(994\) 0.568169 + 1.18232i 0.0180212 + 0.0375008i
\(995\) 2.14699 3.71869i 0.0680641 0.117890i
\(996\) 3.47403 6.01719i 0.110079 0.190662i
\(997\) −22.1051 −0.700077 −0.350038 0.936735i \(-0.613831\pi\)
−0.350038 + 0.936735i \(0.613831\pi\)
\(998\) 0.873566 1.51306i 0.0276522 0.0478951i
\(999\) −0.104897 −0.00331879
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.l.c.16.3 yes 20
3.2 odd 2 819.2.s.f.289.8 20
7.4 even 3 273.2.j.c.172.8 yes 20
13.9 even 3 273.2.j.c.100.8 20
21.11 odd 6 819.2.n.f.172.3 20
39.35 odd 6 819.2.n.f.100.3 20
91.74 even 3 inner 273.2.l.c.256.3 yes 20
273.74 odd 6 819.2.s.f.802.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.8 20 13.9 even 3
273.2.j.c.172.8 yes 20 7.4 even 3
273.2.l.c.16.3 yes 20 1.1 even 1 trivial
273.2.l.c.256.3 yes 20 91.74 even 3 inner
819.2.n.f.100.3 20 39.35 odd 6
819.2.n.f.172.3 20 21.11 odd 6
819.2.s.f.289.8 20 3.2 odd 2
819.2.s.f.802.8 20 273.74 odd 6