Properties

Label 273.2.j.c.172.3
Level $273$
Weight $2$
Character 273.172
Analytic conductor $2.180$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(100,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.3
Root \(0.904928 + 1.56738i\) of defining polynomial
Character \(\chi\) \(=\) 273.172
Dual form 273.2.j.c.100.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.904928 + 1.56738i) q^{2} +1.00000 q^{3} +(-0.637789 - 1.10468i) q^{4} +(1.98776 + 3.44291i) q^{5} +(-0.904928 + 1.56738i) q^{6} +(-2.60384 - 0.469078i) q^{7} -1.31110 q^{8} +1.00000 q^{9} -7.19513 q^{10} -0.286654 q^{11} +(-0.637789 - 1.10468i) q^{12} +(3.60075 + 0.185985i) q^{13} +(3.09151 - 3.65672i) q^{14} +(1.98776 + 3.44291i) q^{15} +(2.46203 - 4.26436i) q^{16} +(2.30091 + 3.98530i) q^{17} +(-0.904928 + 1.56738i) q^{18} -6.96749 q^{19} +(2.53555 - 4.39170i) q^{20} +(-2.60384 - 0.469078i) q^{21} +(0.259402 - 0.449297i) q^{22} +(3.61929 - 6.26879i) q^{23} -1.31110 q^{24} +(-5.40240 + 9.35723i) q^{25} +(-3.54993 + 5.47545i) q^{26} +1.00000 q^{27} +(1.14252 + 3.17559i) q^{28} +(0.421754 + 0.730500i) q^{29} -7.19513 q^{30} +(-0.212854 + 0.368675i) q^{31} +(3.14482 + 5.44698i) q^{32} -0.286654 q^{33} -8.32864 q^{34} +(-3.56082 - 9.89718i) q^{35} +(-0.637789 - 1.10468i) q^{36} +(2.18208 - 3.77948i) q^{37} +(6.30507 - 10.9207i) q^{38} +(3.60075 + 0.185985i) q^{39} +(-2.60615 - 4.51399i) q^{40} +(-0.509885 - 0.883147i) q^{41} +(3.09151 - 3.65672i) q^{42} +(0.585291 - 1.01375i) q^{43} +(0.182825 + 0.316662i) q^{44} +(1.98776 + 3.44291i) q^{45} +(6.55039 + 11.3456i) q^{46} +(2.71264 + 4.69843i) q^{47} +(2.46203 - 4.26436i) q^{48} +(6.55993 + 2.44280i) q^{49} +(-9.77756 - 16.9352i) q^{50} +(2.30091 + 3.98530i) q^{51} +(-2.09107 - 4.09631i) q^{52} +(-0.574226 + 0.994589i) q^{53} +(-0.904928 + 1.56738i) q^{54} +(-0.569801 - 0.986924i) q^{55} +(3.41389 + 0.615007i) q^{56} -6.96749 q^{57} -1.52663 q^{58} +(2.42927 + 4.20762i) q^{59} +(2.53555 - 4.39170i) q^{60} +8.16848 q^{61} +(-0.385236 - 0.667248i) q^{62} +(-2.60384 - 0.469078i) q^{63} -1.53522 q^{64} +(6.51711 + 12.7667i) q^{65} +(0.259402 - 0.449297i) q^{66} +1.57387 q^{67} +(2.93499 - 5.08356i) q^{68} +(3.61929 - 6.26879i) q^{69} +(18.7349 + 3.37507i) q^{70} +(-3.22369 + 5.58359i) q^{71} -1.31110 q^{72} +(8.24845 - 14.2867i) q^{73} +(3.94925 + 6.84031i) q^{74} +(-5.40240 + 9.35723i) q^{75} +(4.44379 + 7.69686i) q^{76} +(0.746401 + 0.134463i) q^{77} +(-3.54993 + 5.47545i) q^{78} +(-3.84412 - 6.65821i) q^{79} +19.5757 q^{80} +1.00000 q^{81} +1.84564 q^{82} +13.3888 q^{83} +(1.14252 + 3.17559i) q^{84} +(-9.14733 + 15.8436i) q^{85} +(1.05929 + 1.83475i) q^{86} +(0.421754 + 0.730500i) q^{87} +0.375832 q^{88} +(1.10786 - 1.91886i) q^{89} -7.19513 q^{90} +(-9.28853 - 2.17331i) q^{91} -9.23336 q^{92} +(-0.212854 + 0.368675i) q^{93} -9.81898 q^{94} +(-13.8497 - 23.9884i) q^{95} +(3.14482 + 5.44698i) q^{96} +(9.52241 - 16.4933i) q^{97} +(-9.76507 + 8.07135i) q^{98} -0.286654 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} - 16 q^{4} - 9 q^{7} - 12 q^{8} + 20 q^{9} + 8 q^{10} + 16 q^{11} - 16 q^{12} - 5 q^{13} - 9 q^{14} - 20 q^{16} - 14 q^{19} + 12 q^{20} - 9 q^{21} - 9 q^{22} - 14 q^{23} - 12 q^{24} - 32 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.904928 + 1.56738i −0.639881 + 1.10831i 0.345578 + 0.938390i \(0.387683\pi\)
−0.985459 + 0.169916i \(0.945650\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.637789 1.10468i −0.318895 0.552342i
\(5\) 1.98776 + 3.44291i 0.888954 + 1.53971i 0.841113 + 0.540859i \(0.181901\pi\)
0.0478412 + 0.998855i \(0.484766\pi\)
\(6\) −0.904928 + 1.56738i −0.369435 + 0.639881i
\(7\) −2.60384 0.469078i −0.984158 0.177295i
\(8\) −1.31110 −0.463543
\(9\) 1.00000 0.333333
\(10\) −7.19513 −2.27530
\(11\) −0.286654 −0.0864295 −0.0432148 0.999066i \(-0.513760\pi\)
−0.0432148 + 0.999066i \(0.513760\pi\)
\(12\) −0.637789 1.10468i −0.184114 0.318895i
\(13\) 3.60075 + 0.185985i 0.998669 + 0.0515830i
\(14\) 3.09151 3.65672i 0.826240 0.977300i
\(15\) 1.98776 + 3.44291i 0.513238 + 0.888954i
\(16\) 2.46203 4.26436i 0.615507 1.06609i
\(17\) 2.30091 + 3.98530i 0.558053 + 0.966577i 0.997659 + 0.0683857i \(0.0217848\pi\)
−0.439606 + 0.898191i \(0.644882\pi\)
\(18\) −0.904928 + 1.56738i −0.213294 + 0.369435i
\(19\) −6.96749 −1.59845 −0.799225 0.601031i \(-0.794757\pi\)
−0.799225 + 0.601031i \(0.794757\pi\)
\(20\) 2.53555 4.39170i 0.566965 0.982013i
\(21\) −2.60384 0.469078i −0.568204 0.102361i
\(22\) 0.259402 0.449297i 0.0553046 0.0957904i
\(23\) 3.61929 6.26879i 0.754673 1.30713i −0.190863 0.981617i \(-0.561129\pi\)
0.945537 0.325516i \(-0.105538\pi\)
\(24\) −1.31110 −0.267627
\(25\) −5.40240 + 9.35723i −1.08048 + 1.87145i
\(26\) −3.54993 + 5.47545i −0.696199 + 1.07382i
\(27\) 1.00000 0.192450
\(28\) 1.14252 + 3.17559i 0.215915 + 0.600130i
\(29\) 0.421754 + 0.730500i 0.0783178 + 0.135650i 0.902524 0.430639i \(-0.141712\pi\)
−0.824206 + 0.566289i \(0.808378\pi\)
\(30\) −7.19513 −1.31364
\(31\) −0.212854 + 0.368675i −0.0382298 + 0.0662159i −0.884507 0.466527i \(-0.845505\pi\)
0.846277 + 0.532742i \(0.178839\pi\)
\(32\) 3.14482 + 5.44698i 0.555930 + 0.962900i
\(33\) −0.286654 −0.0499001
\(34\) −8.32864 −1.42835
\(35\) −3.56082 9.89718i −0.601888 1.67293i
\(36\) −0.637789 1.10468i −0.106298 0.184114i
\(37\) 2.18208 3.77948i 0.358732 0.621342i −0.629017 0.777391i \(-0.716542\pi\)
0.987749 + 0.156049i \(0.0498758\pi\)
\(38\) 6.30507 10.9207i 1.02282 1.77157i
\(39\) 3.60075 + 0.185985i 0.576582 + 0.0297814i
\(40\) −2.60615 4.51399i −0.412069 0.713724i
\(41\) −0.509885 0.883147i −0.0796307 0.137924i 0.823460 0.567374i \(-0.192041\pi\)
−0.903091 + 0.429450i \(0.858707\pi\)
\(42\) 3.09151 3.65672i 0.477030 0.564245i
\(43\) 0.585291 1.01375i 0.0892560 0.154596i −0.817941 0.575302i \(-0.804884\pi\)
0.907197 + 0.420706i \(0.138218\pi\)
\(44\) 0.182825 + 0.316662i 0.0275619 + 0.0477386i
\(45\) 1.98776 + 3.44291i 0.296318 + 0.513238i
\(46\) 6.55039 + 11.3456i 0.965802 + 1.67282i
\(47\) 2.71264 + 4.69843i 0.395680 + 0.685337i 0.993188 0.116526i \(-0.0371758\pi\)
−0.597508 + 0.801863i \(0.703842\pi\)
\(48\) 2.46203 4.26436i 0.355363 0.615507i
\(49\) 6.55993 + 2.44280i 0.937133 + 0.348972i
\(50\) −9.77756 16.9352i −1.38276 2.39500i
\(51\) 2.30091 + 3.98530i 0.322192 + 0.558053i
\(52\) −2.09107 4.09631i −0.289979 0.568056i
\(53\) −0.574226 + 0.994589i −0.0788760 + 0.136617i −0.902765 0.430134i \(-0.858466\pi\)
0.823889 + 0.566751i \(0.191800\pi\)
\(54\) −0.904928 + 1.56738i −0.123145 + 0.213294i
\(55\) −0.569801 0.986924i −0.0768319 0.133077i
\(56\) 3.41389 + 0.615007i 0.456200 + 0.0821838i
\(57\) −6.96749 −0.922866
\(58\) −1.52663 −0.200456
\(59\) 2.42927 + 4.20762i 0.316264 + 0.547785i 0.979705 0.200443i \(-0.0642381\pi\)
−0.663441 + 0.748228i \(0.730905\pi\)
\(60\) 2.53555 4.39170i 0.327338 0.566965i
\(61\) 8.16848 1.04587 0.522933 0.852374i \(-0.324838\pi\)
0.522933 + 0.852374i \(0.324838\pi\)
\(62\) −0.385236 0.667248i −0.0489250 0.0847406i
\(63\) −2.60384 0.469078i −0.328053 0.0590983i
\(64\) −1.53522 −0.191902
\(65\) 6.51711 + 12.7667i 0.808348 + 1.58352i
\(66\) 0.259402 0.449297i 0.0319301 0.0553046i
\(67\) 1.57387 0.192279 0.0961397 0.995368i \(-0.469350\pi\)
0.0961397 + 0.995368i \(0.469350\pi\)
\(68\) 2.93499 5.08356i 0.355920 0.616472i
\(69\) 3.61929 6.26879i 0.435711 0.754673i
\(70\) 18.7349 + 3.37507i 2.23925 + 0.403399i
\(71\) −3.22369 + 5.58359i −0.382581 + 0.662650i −0.991430 0.130636i \(-0.958298\pi\)
0.608849 + 0.793286i \(0.291631\pi\)
\(72\) −1.31110 −0.154514
\(73\) 8.24845 14.2867i 0.965408 1.67214i 0.256893 0.966440i \(-0.417301\pi\)
0.708515 0.705696i \(-0.249365\pi\)
\(74\) 3.94925 + 6.84031i 0.459092 + 0.795170i
\(75\) −5.40240 + 9.35723i −0.623815 + 1.08048i
\(76\) 4.44379 + 7.69686i 0.509737 + 0.882891i
\(77\) 0.746401 + 0.134463i 0.0850603 + 0.0153235i
\(78\) −3.54993 + 5.47545i −0.401950 + 0.619972i
\(79\) −3.84412 6.65821i −0.432497 0.749107i 0.564590 0.825371i \(-0.309034\pi\)
−0.997088 + 0.0762639i \(0.975701\pi\)
\(80\) 19.5757 2.18863
\(81\) 1.00000 0.111111
\(82\) 1.84564 0.203817
\(83\) 13.3888 1.46961 0.734805 0.678279i \(-0.237274\pi\)
0.734805 + 0.678279i \(0.237274\pi\)
\(84\) 1.14252 + 3.17559i 0.124659 + 0.346485i
\(85\) −9.14733 + 15.8436i −0.992168 + 1.71848i
\(86\) 1.05929 + 1.83475i 0.114226 + 0.197846i
\(87\) 0.421754 + 0.730500i 0.0452168 + 0.0783178i
\(88\) 0.375832 0.0400639
\(89\) 1.10786 1.91886i 0.117433 0.203399i −0.801317 0.598240i \(-0.795867\pi\)
0.918750 + 0.394841i \(0.129200\pi\)
\(90\) −7.19513 −0.758433
\(91\) −9.28853 2.17331i −0.973702 0.227825i
\(92\) −9.23336 −0.962645
\(93\) −0.212854 + 0.368675i −0.0220720 + 0.0382298i
\(94\) −9.81898 −1.01275
\(95\) −13.8497 23.9884i −1.42095 2.46116i
\(96\) 3.14482 + 5.44698i 0.320967 + 0.555930i
\(97\) 9.52241 16.4933i 0.966854 1.67464i 0.262306 0.964985i \(-0.415517\pi\)
0.704549 0.709656i \(-0.251150\pi\)
\(98\) −9.76507 + 8.07135i −0.986421 + 0.815330i
\(99\) −0.286654 −0.0288098
\(100\) 13.7824 1.37824
\(101\) −9.08855 −0.904344 −0.452172 0.891931i \(-0.649351\pi\)
−0.452172 + 0.891931i \(0.649351\pi\)
\(102\) −8.32864 −0.824658
\(103\) 2.34421 + 4.06029i 0.230982 + 0.400072i 0.958097 0.286443i \(-0.0924729\pi\)
−0.727116 + 0.686515i \(0.759140\pi\)
\(104\) −4.72094 0.243845i −0.462926 0.0239109i
\(105\) −3.56082 9.89718i −0.347500 0.965866i
\(106\) −1.03927 1.80006i −0.100943 0.174838i
\(107\) −7.25279 + 12.5622i −0.701154 + 1.21443i 0.266908 + 0.963722i \(0.413998\pi\)
−0.968062 + 0.250712i \(0.919335\pi\)
\(108\) −0.637789 1.10468i −0.0613713 0.106298i
\(109\) 2.09694 3.63200i 0.200850 0.347883i −0.747952 0.663752i \(-0.768963\pi\)
0.948803 + 0.315870i \(0.102296\pi\)
\(110\) 2.06251 0.196653
\(111\) 2.18208 3.77948i 0.207114 0.358732i
\(112\) −8.41104 + 9.94881i −0.794768 + 0.940074i
\(113\) 4.12305 7.14133i 0.387864 0.671800i −0.604298 0.796758i \(-0.706546\pi\)
0.992162 + 0.124958i \(0.0398797\pi\)
\(114\) 6.30507 10.9207i 0.590524 1.02282i
\(115\) 28.7771 2.68348
\(116\) 0.537981 0.931810i 0.0499503 0.0865164i
\(117\) 3.60075 + 0.185985i 0.332890 + 0.0171943i
\(118\) −8.79326 −0.809485
\(119\) −4.12179 11.4564i −0.377843 1.05020i
\(120\) −2.60615 4.51399i −0.237908 0.412069i
\(121\) −10.9178 −0.992530
\(122\) −7.39189 + 12.8031i −0.669230 + 1.15914i
\(123\) −0.509885 0.883147i −0.0459748 0.0796307i
\(124\) 0.543025 0.0487651
\(125\) −23.0771 −2.06408
\(126\) 3.09151 3.65672i 0.275413 0.325767i
\(127\) −3.92173 6.79263i −0.347997 0.602748i 0.637897 0.770122i \(-0.279805\pi\)
−0.985894 + 0.167374i \(0.946471\pi\)
\(128\) −4.90037 + 8.48769i −0.433136 + 0.750213i
\(129\) 0.585291 1.01375i 0.0515320 0.0892560i
\(130\) −25.9079 1.33819i −2.27227 0.117367i
\(131\) −4.04277 7.00228i −0.353218 0.611792i 0.633593 0.773666i \(-0.281579\pi\)
−0.986811 + 0.161874i \(0.948246\pi\)
\(132\) 0.182825 + 0.316662i 0.0159129 + 0.0275619i
\(133\) 18.1422 + 3.26829i 1.57313 + 0.283397i
\(134\) −1.42424 + 2.46686i −0.123036 + 0.213104i
\(135\) 1.98776 + 3.44291i 0.171079 + 0.296318i
\(136\) −3.01672 5.22512i −0.258682 0.448050i
\(137\) −0.754841 1.30742i −0.0644904 0.111701i 0.831977 0.554809i \(-0.187209\pi\)
−0.896468 + 0.443109i \(0.853876\pi\)
\(138\) 6.55039 + 11.3456i 0.557606 + 0.965802i
\(139\) 2.02132 3.50104i 0.171446 0.296954i −0.767479 0.641074i \(-0.778489\pi\)
0.938926 + 0.344120i \(0.111823\pi\)
\(140\) −8.66220 + 10.2459i −0.732089 + 0.865936i
\(141\) 2.71264 + 4.69843i 0.228446 + 0.395680i
\(142\) −5.83441 10.1055i −0.489613 0.848034i
\(143\) −1.03217 0.0533134i −0.0863145 0.00445829i
\(144\) 2.46203 4.26436i 0.205169 0.355363i
\(145\) −1.67670 + 2.90412i −0.139242 + 0.241174i
\(146\) 14.9285 + 25.8569i 1.23549 + 2.13993i
\(147\) 6.55993 + 2.44280i 0.541054 + 0.201479i
\(148\) −5.56683 −0.457591
\(149\) −19.1947 −1.57249 −0.786247 0.617912i \(-0.787979\pi\)
−0.786247 + 0.617912i \(0.787979\pi\)
\(150\) −9.77756 16.9352i −0.798335 1.38276i
\(151\) −9.47334 + 16.4083i −0.770929 + 1.33529i 0.166125 + 0.986105i \(0.446874\pi\)
−0.937054 + 0.349184i \(0.886459\pi\)
\(152\) 9.13506 0.740951
\(153\) 2.30091 + 3.98530i 0.186018 + 0.322192i
\(154\) −0.886194 + 1.04822i −0.0714116 + 0.0844676i
\(155\) −1.69242 −0.135938
\(156\) −2.09107 4.09631i −0.167419 0.327967i
\(157\) −9.31770 + 16.1387i −0.743633 + 1.28801i 0.207197 + 0.978299i \(0.433566\pi\)
−0.950831 + 0.309711i \(0.899768\pi\)
\(158\) 13.9146 1.10699
\(159\) −0.574226 + 0.994589i −0.0455391 + 0.0788760i
\(160\) −12.5023 + 21.6546i −0.988394 + 1.71195i
\(161\) −12.3646 + 14.6252i −0.974465 + 1.15262i
\(162\) −0.904928 + 1.56738i −0.0710979 + 0.123145i
\(163\) 10.7052 0.838500 0.419250 0.907871i \(-0.362293\pi\)
0.419250 + 0.907871i \(0.362293\pi\)
\(164\) −0.650398 + 1.12652i −0.0507876 + 0.0879667i
\(165\) −0.569801 0.986924i −0.0443589 0.0768319i
\(166\) −12.1159 + 20.9853i −0.940375 + 1.62878i
\(167\) 0.0240620 + 0.0416766i 0.00186197 + 0.00322503i 0.866955 0.498387i \(-0.166074\pi\)
−0.865093 + 0.501612i \(0.832741\pi\)
\(168\) 3.41389 + 0.615007i 0.263387 + 0.0474489i
\(169\) 12.9308 + 1.33937i 0.994678 + 0.103029i
\(170\) −16.5554 28.6747i −1.26974 2.19925i
\(171\) −6.96749 −0.532817
\(172\) −1.49317 −0.113853
\(173\) −14.0297 −1.06666 −0.533330 0.845907i \(-0.679060\pi\)
−0.533330 + 0.845907i \(0.679060\pi\)
\(174\) −1.52663 −0.115733
\(175\) 18.4562 21.8306i 1.39516 1.65023i
\(176\) −0.705751 + 1.22240i −0.0531980 + 0.0921416i
\(177\) 2.42927 + 4.20762i 0.182595 + 0.316264i
\(178\) 2.00506 + 3.47287i 0.150286 + 0.260302i
\(179\) 4.69863 0.351192 0.175596 0.984462i \(-0.443815\pi\)
0.175596 + 0.984462i \(0.443815\pi\)
\(180\) 2.53555 4.39170i 0.188988 0.327338i
\(181\) −22.0382 −1.63809 −0.819044 0.573730i \(-0.805496\pi\)
−0.819044 + 0.573730i \(0.805496\pi\)
\(182\) 11.8118 12.5920i 0.875552 0.933379i
\(183\) 8.16848 0.603832
\(184\) −4.74524 + 8.21900i −0.349824 + 0.605913i
\(185\) 17.3498 1.27559
\(186\) −0.385236 0.667248i −0.0282469 0.0489250i
\(187\) −0.659567 1.14240i −0.0482323 0.0835408i
\(188\) 3.46019 5.99322i 0.252360 0.437101i
\(189\) −2.60384 0.469078i −0.189401 0.0341204i
\(190\) 50.1319 3.63695
\(191\) 11.0974 0.802982 0.401491 0.915863i \(-0.368492\pi\)
0.401491 + 0.915863i \(0.368492\pi\)
\(192\) −1.53522 −0.110795
\(193\) −0.486230 −0.0349996 −0.0174998 0.999847i \(-0.505571\pi\)
−0.0174998 + 0.999847i \(0.505571\pi\)
\(194\) 17.2342 + 29.8505i 1.23734 + 2.14314i
\(195\) 6.51711 + 12.7667i 0.466700 + 0.914245i
\(196\) −1.48533 8.80464i −0.106095 0.628903i
\(197\) −8.53814 14.7885i −0.608317 1.05364i −0.991518 0.129971i \(-0.958511\pi\)
0.383200 0.923665i \(-0.374822\pi\)
\(198\) 0.259402 0.449297i 0.0184349 0.0319301i
\(199\) −11.5849 20.0656i −0.821230 1.42241i −0.904766 0.425908i \(-0.859955\pi\)
0.0835360 0.996505i \(-0.473379\pi\)
\(200\) 7.08308 12.2683i 0.500849 0.867497i
\(201\) 1.57387 0.111013
\(202\) 8.22448 14.2452i 0.578673 1.00229i
\(203\) −0.755518 2.09994i −0.0530270 0.147387i
\(204\) 2.93499 5.08356i 0.205491 0.355920i
\(205\) 2.02706 3.51097i 0.141576 0.245217i
\(206\) −8.48536 −0.591203
\(207\) 3.61929 6.26879i 0.251558 0.435711i
\(208\) 9.65826 14.8970i 0.669680 1.03292i
\(209\) 1.99726 0.138153
\(210\) 18.7349 + 3.37507i 1.29283 + 0.232902i
\(211\) 1.40788 + 2.43852i 0.0969224 + 0.167874i 0.910409 0.413709i \(-0.135767\pi\)
−0.813487 + 0.581583i \(0.802433\pi\)
\(212\) 1.46494 0.100613
\(213\) −3.22369 + 5.58359i −0.220883 + 0.382581i
\(214\) −13.1265 22.7358i −0.897310 1.55419i
\(215\) 4.65368 0.317378
\(216\) −1.31110 −0.0892090
\(217\) 0.727175 0.860123i 0.0493639 0.0583890i
\(218\) 3.79515 + 6.57340i 0.257040 + 0.445207i
\(219\) 8.24845 14.2867i 0.557379 0.965408i
\(220\) −0.726825 + 1.25890i −0.0490026 + 0.0848749i
\(221\) 7.54381 + 14.7780i 0.507451 + 0.994076i
\(222\) 3.94925 + 6.84031i 0.265057 + 0.459092i
\(223\) −8.16232 14.1375i −0.546589 0.946720i −0.998505 0.0546597i \(-0.982593\pi\)
0.451916 0.892061i \(-0.350741\pi\)
\(224\) −5.63353 15.6582i −0.376406 1.04621i
\(225\) −5.40240 + 9.35723i −0.360160 + 0.623815i
\(226\) 7.46213 + 12.9248i 0.496373 + 0.859744i
\(227\) 3.10289 + 5.37436i 0.205946 + 0.356709i 0.950434 0.310927i \(-0.100640\pi\)
−0.744488 + 0.667636i \(0.767306\pi\)
\(228\) 4.44379 + 7.69686i 0.294297 + 0.509737i
\(229\) 0.261463 + 0.452867i 0.0172779 + 0.0299263i 0.874535 0.484962i \(-0.161167\pi\)
−0.857257 + 0.514889i \(0.827833\pi\)
\(230\) −26.0412 + 45.1047i −1.71711 + 2.97412i
\(231\) 0.746401 + 0.134463i 0.0491096 + 0.00884703i
\(232\) −0.552962 0.957758i −0.0363037 0.0628799i
\(233\) −6.48273 11.2284i −0.424697 0.735598i 0.571695 0.820466i \(-0.306286\pi\)
−0.996392 + 0.0848689i \(0.972953\pi\)
\(234\) −3.54993 + 5.47545i −0.232066 + 0.357941i
\(235\) −10.7842 + 18.6787i −0.703482 + 1.21847i
\(236\) 3.09872 5.36715i 0.201710 0.349371i
\(237\) −3.84412 6.65821i −0.249702 0.432497i
\(238\) 21.6864 + 3.90678i 1.40572 + 0.253239i
\(239\) −4.79605 −0.310231 −0.155116 0.987896i \(-0.549575\pi\)
−0.155116 + 0.987896i \(0.549575\pi\)
\(240\) 19.5757 1.26361
\(241\) −5.20975 9.02355i −0.335589 0.581258i 0.648008 0.761633i \(-0.275602\pi\)
−0.983598 + 0.180375i \(0.942269\pi\)
\(242\) 9.87985 17.1124i 0.635101 1.10003i
\(243\) 1.00000 0.0641500
\(244\) −5.20977 9.02358i −0.333521 0.577676i
\(245\) 4.62924 + 27.4409i 0.295751 + 1.75314i
\(246\) 1.84564 0.117674
\(247\) −25.0882 1.29585i −1.59632 0.0824529i
\(248\) 0.279073 0.483369i 0.0177212 0.0306940i
\(249\) 13.3888 0.848479
\(250\) 20.8831 36.1706i 1.32077 2.28763i
\(251\) −5.10645 + 8.84463i −0.322316 + 0.558268i −0.980966 0.194182i \(-0.937795\pi\)
0.658649 + 0.752450i \(0.271128\pi\)
\(252\) 1.14252 + 3.17559i 0.0719718 + 0.200043i
\(253\) −1.03748 + 1.79698i −0.0652261 + 0.112975i
\(254\) 14.1955 0.890706
\(255\) −9.14733 + 15.8436i −0.572828 + 0.992168i
\(256\) −10.4042 18.0206i −0.650262 1.12629i
\(257\) 3.18140 5.51035i 0.198450 0.343726i −0.749576 0.661919i \(-0.769742\pi\)
0.948026 + 0.318192i \(0.103076\pi\)
\(258\) 1.05929 + 1.83475i 0.0659486 + 0.114226i
\(259\) −7.45466 + 8.81758i −0.463210 + 0.547898i
\(260\) 9.94666 15.3418i 0.616866 0.951460i
\(261\) 0.421754 + 0.730500i 0.0261059 + 0.0452168i
\(262\) 14.6337 0.904070
\(263\) −17.0135 −1.04910 −0.524550 0.851380i \(-0.675766\pi\)
−0.524550 + 0.851380i \(0.675766\pi\)
\(264\) 0.375832 0.0231309
\(265\) −4.56570 −0.280469
\(266\) −21.5400 + 25.4782i −1.32070 + 1.56217i
\(267\) 1.10786 1.91886i 0.0677997 0.117433i
\(268\) −1.00380 1.73863i −0.0613168 0.106204i
\(269\) 4.53019 + 7.84653i 0.276211 + 0.478411i 0.970440 0.241343i \(-0.0775879\pi\)
−0.694229 + 0.719754i \(0.744255\pi\)
\(270\) −7.19513 −0.437881
\(271\) −1.11398 + 1.92947i −0.0676696 + 0.117207i −0.897875 0.440250i \(-0.854890\pi\)
0.830206 + 0.557457i \(0.188223\pi\)
\(272\) 22.6596 1.37394
\(273\) −9.28853 2.17331i −0.562167 0.131535i
\(274\) 2.73231 0.165065
\(275\) 1.54862 2.68229i 0.0933854 0.161748i
\(276\) −9.23336 −0.555783
\(277\) 3.90377 + 6.76153i 0.234555 + 0.406261i 0.959143 0.282921i \(-0.0913034\pi\)
−0.724588 + 0.689182i \(0.757970\pi\)
\(278\) 3.65830 + 6.33637i 0.219411 + 0.380030i
\(279\) −0.212854 + 0.368675i −0.0127433 + 0.0220720i
\(280\) 4.66858 + 12.9762i 0.279001 + 0.775475i
\(281\) −12.7531 −0.760789 −0.380394 0.924824i \(-0.624212\pi\)
−0.380394 + 0.924824i \(0.624212\pi\)
\(282\) −9.81898 −0.584712
\(283\) 16.3439 0.971542 0.485771 0.874086i \(-0.338539\pi\)
0.485771 + 0.874086i \(0.338539\pi\)
\(284\) 8.22413 0.488012
\(285\) −13.8497 23.9884i −0.820386 1.42095i
\(286\) 1.01760 1.56956i 0.0601721 0.0928101i
\(287\) 0.913393 + 2.53875i 0.0539159 + 0.149857i
\(288\) 3.14482 + 5.44698i 0.185310 + 0.320967i
\(289\) −2.08840 + 3.61721i −0.122847 + 0.212777i
\(290\) −3.03458 5.25604i −0.178196 0.308645i
\(291\) 9.52241 16.4933i 0.558214 0.966854i
\(292\) −21.0431 −1.23145
\(293\) 11.8319 20.4935i 0.691227 1.19724i −0.280209 0.959939i \(-0.590404\pi\)
0.971436 0.237302i \(-0.0762630\pi\)
\(294\) −9.76507 + 8.07135i −0.569511 + 0.470731i
\(295\) −9.65762 + 16.7275i −0.562288 + 0.973912i
\(296\) −2.86093 + 4.95527i −0.166288 + 0.288019i
\(297\) −0.286654 −0.0166334
\(298\) 17.3699 30.0855i 1.00621 1.74280i
\(299\) 14.1980 21.8992i 0.821094 1.26646i
\(300\) 13.7824 0.795725
\(301\) −1.99953 + 2.36510i −0.115251 + 0.136322i
\(302\) −17.1454 29.6967i −0.986605 1.70885i
\(303\) −9.08855 −0.522124
\(304\) −17.1541 + 29.7119i −0.983858 + 1.70409i
\(305\) 16.2370 + 28.1233i 0.929728 + 1.61034i
\(306\) −8.32864 −0.476117
\(307\) 8.99691 0.513481 0.256740 0.966480i \(-0.417351\pi\)
0.256740 + 0.966480i \(0.417351\pi\)
\(308\) −0.327507 0.910296i −0.0186615 0.0518689i
\(309\) 2.34421 + 4.06029i 0.133357 + 0.230982i
\(310\) 1.53151 2.65266i 0.0869842 0.150661i
\(311\) 15.4498 26.7598i 0.876077 1.51741i 0.0204655 0.999791i \(-0.493485\pi\)
0.855611 0.517619i \(-0.173181\pi\)
\(312\) −4.72094 0.243845i −0.267271 0.0138050i
\(313\) 3.74574 + 6.48782i 0.211722 + 0.366713i 0.952254 0.305308i \(-0.0987595\pi\)
−0.740532 + 0.672022i \(0.765426\pi\)
\(314\) −16.8637 29.2088i −0.951673 1.64835i
\(315\) −3.56082 9.89718i −0.200629 0.557643i
\(316\) −4.90348 + 8.49307i −0.275842 + 0.477773i
\(317\) 8.11402 + 14.0539i 0.455729 + 0.789346i 0.998730 0.0503864i \(-0.0160453\pi\)
−0.543001 + 0.839732i \(0.682712\pi\)
\(318\) −1.03927 1.80006i −0.0582792 0.100943i
\(319\) −0.120898 0.209401i −0.00676897 0.0117242i
\(320\) −3.05165 5.28562i −0.170593 0.295475i
\(321\) −7.25279 + 12.5622i −0.404811 + 0.701154i
\(322\) −11.7342 32.6147i −0.653919 1.81755i
\(323\) −16.0316 27.7675i −0.892021 1.54503i
\(324\) −0.637789 1.10468i −0.0354327 0.0613713i
\(325\) −21.1930 + 32.6883i −1.17558 + 1.81322i
\(326\) −9.68748 + 16.7792i −0.536540 + 0.929314i
\(327\) 2.09694 3.63200i 0.115961 0.200850i
\(328\) 0.668510 + 1.15789i 0.0369123 + 0.0639340i
\(329\) −4.85935 13.5064i −0.267904 0.744632i
\(330\) 2.06251 0.113538
\(331\) 5.58434 0.306943 0.153472 0.988153i \(-0.450955\pi\)
0.153472 + 0.988153i \(0.450955\pi\)
\(332\) −8.53922 14.7904i −0.468650 0.811726i
\(333\) 2.18208 3.77948i 0.119577 0.207114i
\(334\) −0.0870976 −0.00476577
\(335\) 3.12849 + 5.41870i 0.170928 + 0.296055i
\(336\) −8.41104 + 9.94881i −0.458860 + 0.542752i
\(337\) −0.504097 −0.0274599 −0.0137299 0.999906i \(-0.504371\pi\)
−0.0137299 + 0.999906i \(0.504371\pi\)
\(338\) −13.8008 + 19.0555i −0.750663 + 1.03648i
\(339\) 4.12305 7.14133i 0.223933 0.387864i
\(340\) 23.3363 1.26559
\(341\) 0.0610156 0.105682i 0.00330418 0.00572301i
\(342\) 6.30507 10.9207i 0.340939 0.590524i
\(343\) −15.9351 9.43778i −0.860416 0.509592i
\(344\) −0.767374 + 1.32913i −0.0413740 + 0.0716619i
\(345\) 28.7771 1.54931
\(346\) 12.6959 21.9899i 0.682535 1.18219i
\(347\) 6.06672 + 10.5079i 0.325678 + 0.564092i 0.981649 0.190694i \(-0.0610740\pi\)
−0.655971 + 0.754786i \(0.727741\pi\)
\(348\) 0.537981 0.931810i 0.0288388 0.0499503i
\(349\) 10.9086 + 18.8943i 0.583924 + 1.01139i 0.995009 + 0.0997893i \(0.0318169\pi\)
−0.411084 + 0.911597i \(0.634850\pi\)
\(350\) 17.5152 + 48.6830i 0.936229 + 2.60222i
\(351\) 3.60075 + 0.185985i 0.192194 + 0.00992715i
\(352\) −0.901476 1.56140i −0.0480488 0.0832230i
\(353\) −12.0879 −0.643375 −0.321688 0.946846i \(-0.604250\pi\)
−0.321688 + 0.946846i \(0.604250\pi\)
\(354\) −8.79326 −0.467356
\(355\) −25.6317 −1.36039
\(356\) −2.82631 −0.149794
\(357\) −4.12179 11.4564i −0.218148 0.606335i
\(358\) −4.25192 + 7.36454i −0.224721 + 0.389228i
\(359\) −7.22027 12.5059i −0.381071 0.660035i 0.610144 0.792290i \(-0.291111\pi\)
−0.991216 + 0.132255i \(0.957778\pi\)
\(360\) −2.60615 4.51399i −0.137356 0.237908i
\(361\) 29.5459 1.55505
\(362\) 19.9430 34.5423i 1.04818 1.81550i
\(363\) −10.9178 −0.573037
\(364\) 3.52331 + 11.6470i 0.184671 + 0.610468i
\(365\) 65.5838 3.43281
\(366\) −7.39189 + 12.8031i −0.386380 + 0.669230i
\(367\) 24.3787 1.27256 0.636280 0.771459i \(-0.280472\pi\)
0.636280 + 0.771459i \(0.280472\pi\)
\(368\) −17.8216 30.8679i −0.929013 1.60910i
\(369\) −0.509885 0.883147i −0.0265436 0.0459748i
\(370\) −15.7004 + 27.1938i −0.816223 + 1.41374i
\(371\) 1.96173 2.32039i 0.101848 0.120469i
\(372\) 0.543025 0.0281545
\(373\) −8.40033 −0.434953 −0.217476 0.976066i \(-0.569782\pi\)
−0.217476 + 0.976066i \(0.569782\pi\)
\(374\) 2.38744 0.123452
\(375\) −23.0771 −1.19170
\(376\) −3.55654 6.16011i −0.183415 0.317684i
\(377\) 1.38277 + 2.70879i 0.0712163 + 0.139510i
\(378\) 3.09151 3.65672i 0.159010 0.188082i
\(379\) −1.82895 3.16783i −0.0939467 0.162720i 0.815222 0.579149i \(-0.196615\pi\)
−0.909169 + 0.416428i \(0.863282\pi\)
\(380\) −17.6664 + 30.5991i −0.906266 + 1.56970i
\(381\) −3.92173 6.79263i −0.200916 0.347997i
\(382\) −10.0424 + 17.3939i −0.513812 + 0.889949i
\(383\) −30.7052 −1.56896 −0.784481 0.620152i \(-0.787071\pi\)
−0.784481 + 0.620152i \(0.787071\pi\)
\(384\) −4.90037 + 8.48769i −0.250071 + 0.433136i
\(385\) 1.02072 + 2.83707i 0.0520209 + 0.144590i
\(386\) 0.440003 0.762108i 0.0223956 0.0387903i
\(387\) 0.585291 1.01375i 0.0297520 0.0515320i
\(388\) −24.2932 −1.23330
\(389\) −9.21889 + 15.9676i −0.467416 + 0.809589i −0.999307 0.0372241i \(-0.988148\pi\)
0.531890 + 0.846813i \(0.321482\pi\)
\(390\) −25.9079 1.33819i −1.31190 0.0677617i
\(391\) 33.3106 1.68459
\(392\) −8.60072 3.20276i −0.434402 0.161764i
\(393\) −4.04277 7.00228i −0.203931 0.353218i
\(394\) 30.9056 1.55700
\(395\) 15.2824 26.4699i 0.768941 1.33184i
\(396\) 0.182825 + 0.316662i 0.00918730 + 0.0159129i
\(397\) −2.26064 −0.113458 −0.0567290 0.998390i \(-0.518067\pi\)
−0.0567290 + 0.998390i \(0.518067\pi\)
\(398\) 41.9339 2.10196
\(399\) 18.1422 + 3.26829i 0.908246 + 0.163619i
\(400\) 26.6017 + 46.0755i 1.33009 + 2.30378i
\(401\) −14.2609 + 24.7005i −0.712153 + 1.23349i 0.251894 + 0.967755i \(0.418947\pi\)
−0.964047 + 0.265731i \(0.914387\pi\)
\(402\) −1.42424 + 2.46686i −0.0710348 + 0.123036i
\(403\) −0.835004 + 1.28792i −0.0415945 + 0.0641558i
\(404\) 5.79658 + 10.0400i 0.288391 + 0.499507i
\(405\) 1.98776 + 3.44291i 0.0987727 + 0.171079i
\(406\) 3.97509 + 0.716108i 0.197281 + 0.0355398i
\(407\) −0.625503 + 1.08340i −0.0310051 + 0.0537023i
\(408\) −3.01672 5.22512i −0.149350 0.258682i
\(409\) −5.42700 9.39983i −0.268348 0.464792i 0.700088 0.714057i \(-0.253144\pi\)
−0.968435 + 0.249265i \(0.919811\pi\)
\(410\) 3.66869 + 6.35436i 0.181184 + 0.313819i
\(411\) −0.754841 1.30742i −0.0372335 0.0644904i
\(412\) 2.99022 5.17921i 0.147318 0.255162i
\(413\) −4.35172 12.0955i −0.214134 0.595179i
\(414\) 6.55039 + 11.3456i 0.321934 + 0.557606i
\(415\) 26.6137 + 46.0963i 1.30642 + 2.26278i
\(416\) 10.3106 + 20.1981i 0.505521 + 0.990294i
\(417\) 2.02132 3.50104i 0.0989846 0.171446i
\(418\) −1.80738 + 3.13047i −0.0884017 + 0.153116i
\(419\) −7.68279 13.3070i −0.375329 0.650089i 0.615047 0.788490i \(-0.289137\pi\)
−0.990376 + 0.138401i \(0.955804\pi\)
\(420\) −8.66220 + 10.2459i −0.422672 + 0.499948i
\(421\) −3.33695 −0.162633 −0.0813166 0.996688i \(-0.525912\pi\)
−0.0813166 + 0.996688i \(0.525912\pi\)
\(422\) −5.09612 −0.248075
\(423\) 2.71264 + 4.69843i 0.131893 + 0.228446i
\(424\) 0.752867 1.30400i 0.0365625 0.0633281i
\(425\) −49.7218 −2.41186
\(426\) −5.83441 10.1055i −0.282678 0.489613i
\(427\) −21.2694 3.83165i −1.02930 0.185427i
\(428\) 18.5030 0.894377
\(429\) −1.03217 0.0533134i −0.0498337 0.00257400i
\(430\) −4.21124 + 7.29408i −0.203084 + 0.351752i
\(431\) −4.26093 −0.205242 −0.102621 0.994721i \(-0.532723\pi\)
−0.102621 + 0.994721i \(0.532723\pi\)
\(432\) 2.46203 4.26436i 0.118454 0.205169i
\(433\) −5.56416 + 9.63741i −0.267396 + 0.463144i −0.968189 0.250221i \(-0.919497\pi\)
0.700792 + 0.713365i \(0.252830\pi\)
\(434\) 0.690100 + 1.91811i 0.0331259 + 0.0920722i
\(435\) −1.67670 + 2.90412i −0.0803914 + 0.139242i
\(436\) −5.34961 −0.256200
\(437\) −25.2173 + 43.6777i −1.20631 + 2.08939i
\(438\) 14.9285 + 25.8569i 0.713312 + 1.23549i
\(439\) −20.5012 + 35.5092i −0.978470 + 1.69476i −0.310497 + 0.950574i \(0.600496\pi\)
−0.667973 + 0.744186i \(0.732838\pi\)
\(440\) 0.747065 + 1.29395i 0.0356149 + 0.0616869i
\(441\) 6.55993 + 2.44280i 0.312378 + 0.116324i
\(442\) −29.9894 1.54900i −1.42645 0.0736785i
\(443\) −7.92693 13.7298i −0.376620 0.652325i 0.613948 0.789346i \(-0.289580\pi\)
−0.990568 + 0.137022i \(0.956247\pi\)
\(444\) −5.56683 −0.264190
\(445\) 8.80862 0.417569
\(446\) 29.5452 1.39901
\(447\) −19.1947 −0.907880
\(448\) 3.99746 + 0.720137i 0.188862 + 0.0340233i
\(449\) −7.54997 + 13.0769i −0.356305 + 0.617139i −0.987340 0.158616i \(-0.949297\pi\)
0.631035 + 0.775754i \(0.282630\pi\)
\(450\) −9.77756 16.9352i −0.460919 0.798335i
\(451\) 0.146161 + 0.253158i 0.00688244 + 0.0119207i
\(452\) −10.5185 −0.494751
\(453\) −9.47334 + 16.4083i −0.445096 + 0.770929i
\(454\) −11.2316 −0.527123
\(455\) −10.9809 36.2995i −0.514792 1.70175i
\(456\) 9.13506 0.427789
\(457\) 0.0139240 0.0241170i 0.000651335 0.00112815i −0.865700 0.500564i \(-0.833126\pi\)
0.866351 + 0.499436i \(0.166459\pi\)
\(458\) −0.946420 −0.0442233
\(459\) 2.30091 + 3.98530i 0.107397 + 0.186018i
\(460\) −18.3537 31.7896i −0.855747 1.48220i
\(461\) 14.0543 24.3428i 0.654575 1.13376i −0.327425 0.944877i \(-0.606181\pi\)
0.982000 0.188880i \(-0.0604859\pi\)
\(462\) −0.886194 + 1.04822i −0.0412295 + 0.0487674i
\(463\) −0.266538 −0.0123871 −0.00619354 0.999981i \(-0.501971\pi\)
−0.00619354 + 0.999981i \(0.501971\pi\)
\(464\) 4.15349 0.192821
\(465\) −1.69242 −0.0784839
\(466\) 23.4656 1.08702
\(467\) −18.5400 32.1123i −0.857931 1.48598i −0.873899 0.486107i \(-0.838417\pi\)
0.0159687 0.999872i \(-0.494917\pi\)
\(468\) −2.09107 4.09631i −0.0966595 0.189352i
\(469\) −4.09811 0.738270i −0.189233 0.0340901i
\(470\) −19.5178 33.8058i −0.900289 1.55935i
\(471\) −9.31770 + 16.1387i −0.429337 + 0.743633i
\(472\) −3.18501 5.51660i −0.146602 0.253922i
\(473\) −0.167776 + 0.290597i −0.00771436 + 0.0133617i
\(474\) 13.9146 0.639119
\(475\) 37.6411 65.1964i 1.72709 2.99141i
\(476\) −10.0268 + 11.8600i −0.459579 + 0.543603i
\(477\) −0.574226 + 0.994589i −0.0262920 + 0.0455391i
\(478\) 4.34008 7.51725i 0.198511 0.343831i
\(479\) 28.7986 1.31584 0.657922 0.753086i \(-0.271436\pi\)
0.657922 + 0.753086i \(0.271436\pi\)
\(480\) −12.5023 + 21.6546i −0.570649 + 0.988394i
\(481\) 8.56006 13.2031i 0.390305 0.602011i
\(482\) 18.8578 0.858949
\(483\) −12.3646 + 14.6252i −0.562608 + 0.665468i
\(484\) 6.96327 + 12.0607i 0.316512 + 0.548216i
\(485\) 75.7132 3.43796
\(486\) −0.904928 + 1.56738i −0.0410484 + 0.0710979i
\(487\) 6.86516 + 11.8908i 0.311090 + 0.538824i 0.978599 0.205778i \(-0.0659725\pi\)
−0.667508 + 0.744602i \(0.732639\pi\)
\(488\) −10.7097 −0.484805
\(489\) 10.7052 0.484108
\(490\) −47.1995 17.5763i −2.13226 0.794016i
\(491\) 13.7632 + 23.8386i 0.621126 + 1.07582i 0.989276 + 0.146056i \(0.0466579\pi\)
−0.368150 + 0.929766i \(0.620009\pi\)
\(492\) −0.650398 + 1.12652i −0.0293222 + 0.0507876i
\(493\) −1.94084 + 3.36163i −0.0874110 + 0.151400i
\(494\) 24.7341 38.1501i 1.11284 1.71645i
\(495\) −0.569801 0.986924i −0.0256106 0.0443589i
\(496\) 1.04811 + 1.81537i 0.0470614 + 0.0815127i
\(497\) 11.0131 13.0266i 0.494005 0.584323i
\(498\) −12.1159 + 20.9853i −0.542925 + 0.940375i
\(499\) 1.94567 + 3.37000i 0.0871001 + 0.150862i 0.906284 0.422669i \(-0.138907\pi\)
−0.819184 + 0.573531i \(0.805573\pi\)
\(500\) 14.7183 + 25.4929i 0.658224 + 1.14008i
\(501\) 0.0240620 + 0.0416766i 0.00107501 + 0.00186197i
\(502\) −9.24194 16.0075i −0.412488 0.714450i
\(503\) −1.87991 + 3.25610i −0.0838212 + 0.145183i −0.904888 0.425649i \(-0.860046\pi\)
0.821067 + 0.570832i \(0.193379\pi\)
\(504\) 3.41389 + 0.615007i 0.152067 + 0.0273946i
\(505\) −18.0659 31.2910i −0.803921 1.39243i
\(506\) −1.87770 3.25227i −0.0834738 0.144581i
\(507\) 12.9308 + 1.33937i 0.574278 + 0.0594836i
\(508\) −5.00247 + 8.66453i −0.221949 + 0.384426i
\(509\) 19.2740 33.3836i 0.854307 1.47970i −0.0229793 0.999736i \(-0.507315\pi\)
0.877286 0.479967i \(-0.159351\pi\)
\(510\) −16.5554 28.6747i −0.733084 1.26974i
\(511\) −28.1792 + 33.3312i −1.24657 + 1.47448i
\(512\) 18.0587 0.798088
\(513\) −6.96749 −0.307622
\(514\) 5.75788 + 9.97294i 0.253969 + 0.439888i
\(515\) −9.31946 + 16.1418i −0.410664 + 0.711291i
\(516\) −1.49317 −0.0657331
\(517\) −0.777591 1.34683i −0.0341984 0.0592334i
\(518\) −7.07458 19.6636i −0.310839 0.863967i
\(519\) −14.0297 −0.615837
\(520\) −8.54457 16.7385i −0.374704 0.734030i
\(521\) −6.92277 + 11.9906i −0.303292 + 0.525318i −0.976880 0.213790i \(-0.931419\pi\)
0.673587 + 0.739108i \(0.264753\pi\)
\(522\) −1.52663 −0.0668188
\(523\) −10.0335 + 17.3786i −0.438736 + 0.759913i −0.997592 0.0693515i \(-0.977907\pi\)
0.558856 + 0.829265i \(0.311240\pi\)
\(524\) −5.15687 + 8.93196i −0.225279 + 0.390194i
\(525\) 18.4562 21.8306i 0.805496 0.952763i
\(526\) 15.3960 26.6667i 0.671299 1.16272i
\(527\) −1.95904 −0.0853370
\(528\) −0.705751 + 1.22240i −0.0307139 + 0.0531980i
\(529\) −14.6985 25.4585i −0.639063 1.10689i
\(530\) 4.13163 7.15619i 0.179467 0.310845i
\(531\) 2.42927 + 4.20762i 0.105421 + 0.182595i
\(532\) −7.96047 22.1259i −0.345130 0.959278i
\(533\) −1.67172 3.27482i −0.0724101 0.141848i
\(534\) 2.00506 + 3.47287i 0.0867674 + 0.150286i
\(535\) −57.6673 −2.49318
\(536\) −2.06351 −0.0891298
\(537\) 4.69863 0.202761
\(538\) −16.3980 −0.706968
\(539\) −1.88043 0.700240i −0.0809960 0.0301615i
\(540\) 2.53555 4.39170i 0.109113 0.188988i
\(541\) −18.9415 32.8076i −0.814357 1.41051i −0.909788 0.415072i \(-0.863756\pi\)
0.0954310 0.995436i \(-0.469577\pi\)
\(542\) −2.01615 3.49207i −0.0866009 0.149997i
\(543\) −22.0382 −0.945751
\(544\) −14.4719 + 25.0661i −0.620478 + 1.07470i
\(545\) 16.6728 0.714186
\(546\) 11.8118 12.5920i 0.505500 0.538887i
\(547\) 29.3783 1.25613 0.628063 0.778162i \(-0.283848\pi\)
0.628063 + 0.778162i \(0.283848\pi\)
\(548\) −0.962858 + 1.66772i −0.0411313 + 0.0712415i
\(549\) 8.16848 0.348622
\(550\) 2.80278 + 4.85456i 0.119511 + 0.206999i
\(551\) −2.93857 5.08975i −0.125187 0.216831i
\(552\) −4.74524 + 8.21900i −0.201971 + 0.349824i
\(553\) 6.88624 + 19.1401i 0.292833 + 0.813919i
\(554\) −14.1305 −0.600349
\(555\) 17.3498 0.736460
\(556\) −5.15671 −0.218693
\(557\) 1.02608 0.0434763 0.0217381 0.999764i \(-0.493080\pi\)
0.0217381 + 0.999764i \(0.493080\pi\)
\(558\) −0.385236 0.667248i −0.0163083 0.0282469i
\(559\) 2.29603 3.54142i 0.0971117 0.149786i
\(560\) −50.9720 9.18253i −2.15396 0.388033i
\(561\) −0.659567 1.14240i −0.0278469 0.0482323i
\(562\) 11.5407 19.9890i 0.486814 0.843187i
\(563\) 18.1124 + 31.3716i 0.763348 + 1.32216i 0.941116 + 0.338085i \(0.109779\pi\)
−0.177768 + 0.984072i \(0.556888\pi\)
\(564\) 3.46019 5.99322i 0.145700 0.252360i
\(565\) 32.7826 1.37917
\(566\) −14.7900 + 25.6171i −0.621671 + 1.07677i
\(567\) −2.60384 0.469078i −0.109351 0.0196994i
\(568\) 4.22657 7.32064i 0.177343 0.307167i
\(569\) −1.41835 + 2.45666i −0.0594605 + 0.102989i −0.894223 0.447621i \(-0.852271\pi\)
0.834763 + 0.550610i \(0.185605\pi\)
\(570\) 50.1319 2.09980
\(571\) 2.29825 3.98069i 0.0961789 0.166587i −0.813921 0.580975i \(-0.802671\pi\)
0.910100 + 0.414389i \(0.136005\pi\)
\(572\) 0.599413 + 1.17422i 0.0250627 + 0.0490968i
\(573\) 11.0974 0.463602
\(574\) −4.80574 0.865748i −0.200588 0.0361356i
\(575\) 39.1057 + 67.7330i 1.63082 + 2.82466i
\(576\) −1.53522 −0.0639675
\(577\) 8.75176 15.1585i 0.364341 0.631056i −0.624329 0.781161i \(-0.714628\pi\)
0.988670 + 0.150105i \(0.0479611\pi\)
\(578\) −3.77970 6.54662i −0.157215 0.272304i
\(579\) −0.486230 −0.0202070
\(580\) 4.27751 0.177614
\(581\) −34.8622 6.28038i −1.44633 0.260554i
\(582\) 17.2342 + 29.8505i 0.714380 + 1.23734i
\(583\) 0.164604 0.285103i 0.00681722 0.0118078i
\(584\) −10.8145 + 18.7313i −0.447509 + 0.775108i
\(585\) 6.51711 + 12.7667i 0.269449 + 0.527840i
\(586\) 21.4140 + 37.0902i 0.884606 + 1.53218i
\(587\) −0.671155 1.16247i −0.0277015 0.0479805i 0.851842 0.523798i \(-0.175485\pi\)
−0.879544 + 0.475818i \(0.842152\pi\)
\(588\) −1.48533 8.80464i −0.0612539 0.363097i
\(589\) 1.48306 2.56874i 0.0611084 0.105843i
\(590\) −17.4789 30.2743i −0.719595 1.24638i
\(591\) −8.53814 14.7885i −0.351212 0.608317i
\(592\) −10.7447 18.6104i −0.441604 0.764881i
\(593\) 22.0843 + 38.2512i 0.906895 + 1.57079i 0.818353 + 0.574716i \(0.194888\pi\)
0.0885427 + 0.996072i \(0.471779\pi\)
\(594\) 0.259402 0.449297i 0.0106434 0.0184349i
\(595\) 31.2501 36.9635i 1.28113 1.51535i
\(596\) 12.2422 + 21.2041i 0.501460 + 0.868554i
\(597\) −11.5849 20.0656i −0.474138 0.821230i
\(598\) 21.4762 + 42.0710i 0.878227 + 1.72041i
\(599\) 8.46583 14.6632i 0.345904 0.599124i −0.639613 0.768697i \(-0.720905\pi\)
0.985518 + 0.169573i \(0.0542388\pi\)
\(600\) 7.08308 12.2683i 0.289166 0.500849i
\(601\) 7.56311 + 13.0997i 0.308506 + 0.534348i 0.978036 0.208437i \(-0.0668378\pi\)
−0.669530 + 0.742785i \(0.733504\pi\)
\(602\) −1.89758 5.27427i −0.0773398 0.214963i
\(603\) 1.57387 0.0640931
\(604\) 24.1680 0.983381
\(605\) −21.7021 37.5891i −0.882314 1.52821i
\(606\) 8.22448 14.2452i 0.334097 0.578673i
\(607\) 47.7239 1.93705 0.968527 0.248910i \(-0.0800722\pi\)
0.968527 + 0.248910i \(0.0800722\pi\)
\(608\) −21.9115 37.9518i −0.888628 1.53915i
\(609\) −0.755518 2.09994i −0.0306151 0.0850938i
\(610\) −58.7733 −2.37966
\(611\) 8.89371 + 17.4224i 0.359801 + 0.704835i
\(612\) 2.93499 5.08356i 0.118640 0.205491i
\(613\) 23.9708 0.968173 0.484086 0.875020i \(-0.339152\pi\)
0.484086 + 0.875020i \(0.339152\pi\)
\(614\) −8.14155 + 14.1016i −0.328566 + 0.569094i
\(615\) 2.02706 3.51097i 0.0817390 0.141576i
\(616\) −0.978606 0.176295i −0.0394292 0.00710311i
\(617\) −1.41810 + 2.45623i −0.0570907 + 0.0988839i −0.893158 0.449743i \(-0.851516\pi\)
0.836068 + 0.548626i \(0.184849\pi\)
\(618\) −8.48536 −0.341331
\(619\) 0.658494 1.14055i 0.0264671 0.0458424i −0.852488 0.522746i \(-0.824908\pi\)
0.878956 + 0.476904i \(0.158241\pi\)
\(620\) 1.07940 + 1.86958i 0.0433499 + 0.0750843i
\(621\) 3.61929 6.26879i 0.145237 0.251558i
\(622\) 27.9619 + 48.4314i 1.12117 + 1.94192i
\(623\) −3.78477 + 4.47674i −0.151634 + 0.179357i
\(624\) 9.65826 14.8970i 0.386640 0.596357i
\(625\) −18.8598 32.6662i −0.754393 1.30665i
\(626\) −13.5585 −0.541907
\(627\) 1.99726 0.0797629
\(628\) 23.7709 0.948562
\(629\) 20.0831 0.800766
\(630\) 18.7349 + 3.37507i 0.746418 + 0.134466i
\(631\) −11.5676 + 20.0356i −0.460497 + 0.797604i −0.998986 0.0450286i \(-0.985662\pi\)
0.538489 + 0.842633i \(0.318995\pi\)
\(632\) 5.04002 + 8.72957i 0.200481 + 0.347244i
\(633\) 1.40788 + 2.43852i 0.0559582 + 0.0969224i
\(634\) −29.3704 −1.16645
\(635\) 15.5909 27.0043i 0.618707 1.07163i
\(636\) 1.46494 0.0580887
\(637\) 23.1664 + 10.0160i 0.917885 + 0.396848i
\(638\) 0.437615 0.0173253
\(639\) −3.22369 + 5.58359i −0.127527 + 0.220883i
\(640\) −38.9631 −1.54015
\(641\) 18.3262 + 31.7420i 0.723843 + 1.25373i 0.959448 + 0.281884i \(0.0909594\pi\)
−0.235605 + 0.971849i \(0.575707\pi\)
\(642\) −13.1265 22.7358i −0.518062 0.897310i
\(643\) −1.86917 + 3.23749i −0.0737127 + 0.127674i −0.900526 0.434803i \(-0.856818\pi\)
0.826813 + 0.562477i \(0.190151\pi\)
\(644\) 24.0422 + 4.33117i 0.947394 + 0.170672i
\(645\) 4.65368 0.183238
\(646\) 58.0297 2.28315
\(647\) −1.52619 −0.0600006 −0.0300003 0.999550i \(-0.509551\pi\)
−0.0300003 + 0.999550i \(0.509551\pi\)
\(648\) −1.31110 −0.0515048
\(649\) −0.696361 1.20613i −0.0273345 0.0473448i
\(650\) −32.0569 62.7981i −1.25737 2.46314i
\(651\) 0.727175 0.860123i 0.0285002 0.0337109i
\(652\) −6.82769 11.8259i −0.267393 0.463138i
\(653\) −4.47546 + 7.75172i −0.175138 + 0.303348i −0.940209 0.340598i \(-0.889371\pi\)
0.765071 + 0.643946i \(0.222704\pi\)
\(654\) 3.79515 + 6.57340i 0.148402 + 0.257040i
\(655\) 16.0721 27.8377i 0.627990 1.08771i
\(656\) −5.02141 −0.196053
\(657\) 8.24845 14.2867i 0.321803 0.557379i
\(658\) 25.5670 + 4.60587i 0.996707 + 0.179555i
\(659\) 4.30599 7.45819i 0.167737 0.290530i −0.769887 0.638181i \(-0.779687\pi\)
0.937624 + 0.347651i \(0.113021\pi\)
\(660\) −0.726825 + 1.25890i −0.0282916 + 0.0490026i
\(661\) −40.0783 −1.55887 −0.779433 0.626486i \(-0.784493\pi\)
−0.779433 + 0.626486i \(0.784493\pi\)
\(662\) −5.05343 + 8.75279i −0.196407 + 0.340187i
\(663\) 7.54381 + 14.7780i 0.292977 + 0.573930i
\(664\) −17.5540 −0.681228
\(665\) 24.8100 + 68.9585i 0.962089 + 2.67409i
\(666\) 3.94925 + 6.84031i 0.153031 + 0.265057i
\(667\) 6.10580 0.236417
\(668\) 0.0306930 0.0531618i 0.00118755 0.00205689i
\(669\) −8.16232 14.1375i −0.315573 0.546589i
\(670\) −11.3242 −0.437493
\(671\) −2.34153 −0.0903938
\(672\) −5.63353 15.6582i −0.217318 0.604029i
\(673\) −22.0131 38.1277i −0.848541 1.46972i −0.882510 0.470294i \(-0.844148\pi\)
0.0339689 0.999423i \(-0.489185\pi\)
\(674\) 0.456171 0.790112i 0.0175711 0.0304340i
\(675\) −5.40240 + 9.35723i −0.207938 + 0.360160i
\(676\) −6.76755 15.1387i −0.260291 0.582258i
\(677\) −12.0556 20.8809i −0.463334 0.802518i 0.535791 0.844351i \(-0.320014\pi\)
−0.999125 + 0.0418328i \(0.986680\pi\)
\(678\) 7.46213 + 12.9248i 0.286581 + 0.496373i
\(679\) −32.5314 + 38.4791i −1.24844 + 1.47669i
\(680\) 11.9931 20.7726i 0.459913 0.796592i
\(681\) 3.10289 + 5.37436i 0.118903 + 0.205946i
\(682\) 0.110430 + 0.191270i 0.00422856 + 0.00732409i
\(683\) 9.29276 + 16.0955i 0.355578 + 0.615878i 0.987217 0.159384i \(-0.0509508\pi\)
−0.631639 + 0.775263i \(0.717618\pi\)
\(684\) 4.44379 + 7.69686i 0.169912 + 0.294297i
\(685\) 3.00089 5.19769i 0.114658 0.198594i
\(686\) 29.2127 16.4359i 1.11535 0.627526i
\(687\) 0.261463 + 0.452867i 0.00997543 + 0.0172779i
\(688\) −2.88201 4.99178i −0.109875 0.190310i
\(689\) −2.25262 + 3.47447i −0.0858182 + 0.132367i
\(690\) −26.0412 + 45.1047i −0.991372 + 1.71711i
\(691\) 11.3187 19.6045i 0.430583 0.745792i −0.566340 0.824171i \(-0.691641\pi\)
0.996924 + 0.0783796i \(0.0249746\pi\)
\(692\) 8.94801 + 15.4984i 0.340152 + 0.589161i
\(693\) 0.746401 + 0.134463i 0.0283534 + 0.00510783i
\(694\) −21.9598 −0.833581
\(695\) 16.0716 0.609632
\(696\) −0.552962 0.957758i −0.0209600 0.0363037i
\(697\) 2.34640 4.06409i 0.0888763 0.153938i
\(698\) −39.4860 −1.49457
\(699\) −6.48273 11.2284i −0.245199 0.424697i
\(700\) −35.8870 6.46500i −1.35640 0.244354i
\(701\) 50.1432 1.89388 0.946941 0.321407i \(-0.104156\pi\)
0.946941 + 0.321407i \(0.104156\pi\)
\(702\) −3.54993 + 5.47545i −0.133983 + 0.206657i
\(703\) −15.2036 + 26.3335i −0.573416 + 0.993185i
\(704\) 0.440077 0.0165860
\(705\) −10.7842 + 18.6787i −0.406156 + 0.703482i
\(706\) 10.9387 18.9464i 0.411683 0.713056i
\(707\) 23.6651 + 4.26324i 0.890018 + 0.160336i
\(708\) 3.09872 5.36715i 0.116457 0.201710i
\(709\) −29.7112 −1.11583 −0.557913 0.829899i \(-0.688398\pi\)
−0.557913 + 0.829899i \(0.688398\pi\)
\(710\) 23.1948 40.1746i 0.870487 1.50773i
\(711\) −3.84412 6.65821i −0.144166 0.249702i
\(712\) −1.45251 + 2.51582i −0.0544351 + 0.0942843i
\(713\) 1.54076 + 2.66868i 0.0577020 + 0.0999428i
\(714\) 21.6864 + 3.90678i 0.811594 + 0.146208i
\(715\) −1.86816 3.65964i −0.0698651 0.136863i
\(716\) −2.99673 5.19049i −0.111993 0.193978i
\(717\) −4.79605 −0.179112
\(718\) 26.1353 0.975361
\(719\) −29.8693 −1.11394 −0.556968 0.830534i \(-0.688035\pi\)
−0.556968 + 0.830534i \(0.688035\pi\)
\(720\) 19.5757 0.729544
\(721\) −4.19934 11.6719i −0.156392 0.434686i
\(722\) −26.7369 + 46.3096i −0.995044 + 1.72347i
\(723\) −5.20975 9.02355i −0.193753 0.335589i
\(724\) 14.0557 + 24.3453i 0.522378 + 0.904785i
\(725\) −9.11394 −0.338483
\(726\) 9.87985 17.1124i 0.366676 0.635101i
\(727\) 36.0210 1.33594 0.667972 0.744186i \(-0.267163\pi\)
0.667972 + 0.744186i \(0.267163\pi\)
\(728\) 12.1782 + 2.84942i 0.451353 + 0.105607i
\(729\) 1.00000 0.0370370
\(730\) −59.3486 + 102.795i −2.19659 + 3.80461i
\(731\) 5.38681 0.199238
\(732\) −5.20977 9.02358i −0.192559 0.333521i
\(733\) 8.97642 + 15.5476i 0.331552 + 0.574265i 0.982816 0.184586i \(-0.0590945\pi\)
−0.651265 + 0.758851i \(0.725761\pi\)
\(734\) −22.0610 + 38.2108i −0.814286 + 1.41038i
\(735\) 4.62924 + 27.4409i 0.170752 + 1.01217i
\(736\) 45.5280 1.67818
\(737\) −0.451158 −0.0166186
\(738\) 1.84564 0.0679388
\(739\) 44.4938 1.63673 0.818366 0.574698i \(-0.194880\pi\)
0.818366 + 0.574698i \(0.194880\pi\)
\(740\) −11.0655 19.1661i −0.406777 0.704559i
\(741\) −25.0882 1.29585i −0.921637 0.0476042i
\(742\) 1.86171 + 5.17457i 0.0683456 + 0.189964i
\(743\) −10.7390 18.6004i −0.393975 0.682384i 0.598995 0.800753i \(-0.295567\pi\)
−0.992970 + 0.118368i \(0.962234\pi\)
\(744\) 0.279073 0.483369i 0.0102313 0.0177212i
\(745\) −38.1546 66.0857i −1.39788 2.42119i
\(746\) 7.60169 13.1665i 0.278318 0.482061i
\(747\) 13.3888 0.489870
\(748\) −0.841329 + 1.45722i −0.0307620 + 0.0532814i
\(749\) 24.7777 29.3078i 0.905359 1.07088i
\(750\) 20.8831 36.1706i 0.762544 1.32077i
\(751\) −1.60018 + 2.77159i −0.0583913 + 0.101137i −0.893743 0.448579i \(-0.851930\pi\)
0.835352 + 0.549715i \(0.185264\pi\)
\(752\) 26.7144 0.974174
\(753\) −5.10645 + 8.84463i −0.186089 + 0.322316i
\(754\) −5.49701 0.283930i −0.200189 0.0103401i
\(755\) −75.3230 −2.74128
\(756\) 1.14252 + 3.17559i 0.0415529 + 0.115495i
\(757\) −12.8640 22.2811i −0.467550 0.809821i 0.531762 0.846894i \(-0.321530\pi\)
−0.999313 + 0.0370727i \(0.988197\pi\)
\(758\) 6.62026 0.240459
\(759\) −1.03748 + 1.79698i −0.0376583 + 0.0652261i
\(760\) 18.1583 + 31.4512i 0.658672 + 1.14085i
\(761\) 28.7496 1.04217 0.521087 0.853504i \(-0.325527\pi\)
0.521087 + 0.853504i \(0.325527\pi\)
\(762\) 14.1955 0.514249
\(763\) −7.16377 + 8.47351i −0.259346 + 0.306762i
\(764\) −7.07782 12.2591i −0.256066 0.443520i
\(765\) −9.14733 + 15.8436i −0.330723 + 0.572828i
\(766\) 27.7860 48.1268i 1.00395 1.73889i
\(767\) 7.96464 + 15.6024i 0.287587 + 0.563370i
\(768\) −10.4042 18.0206i −0.375429 0.650262i
\(769\) 8.98213 + 15.5575i 0.323904 + 0.561018i 0.981290 0.192536i \(-0.0616712\pi\)
−0.657386 + 0.753554i \(0.728338\pi\)
\(770\) −5.37045 0.967480i −0.193538 0.0348656i
\(771\) 3.18140 5.51035i 0.114575 0.198450i
\(772\) 0.310112 + 0.537131i 0.0111612 + 0.0193318i
\(773\) −19.8326 34.3511i −0.713329 1.23552i −0.963601 0.267346i \(-0.913853\pi\)
0.250272 0.968176i \(-0.419480\pi\)
\(774\) 1.05929 + 1.83475i 0.0380755 + 0.0659486i
\(775\) −2.29985 3.98345i −0.0826130 0.143090i
\(776\) −12.4848 + 21.6243i −0.448179 + 0.776269i
\(777\) −7.45466 + 8.81758i −0.267434 + 0.316329i
\(778\) −16.6849 28.8990i −0.598182 1.03608i
\(779\) 3.55262 + 6.15331i 0.127286 + 0.220465i
\(780\) 9.94666 15.3418i 0.356148 0.549326i
\(781\) 0.924084 1.60056i 0.0330663 0.0572725i
\(782\) −30.1437 + 52.2105i −1.07794 + 1.86704i
\(783\) 0.421754 + 0.730500i 0.0150723 + 0.0261059i
\(784\) 26.5677 21.9596i 0.948848 0.784273i
\(785\) −74.0855 −2.64422
\(786\) 14.6337 0.521965
\(787\) 19.7833 + 34.2657i 0.705199 + 1.22144i 0.966620 + 0.256215i \(0.0824756\pi\)
−0.261421 + 0.965225i \(0.584191\pi\)
\(788\) −10.8911 + 18.8639i −0.387978 + 0.671998i
\(789\) −17.0135 −0.605698
\(790\) 27.6589 + 47.9067i 0.984061 + 1.70444i
\(791\) −14.0856 + 16.6608i −0.500826 + 0.592391i
\(792\) 0.375832 0.0133546
\(793\) 29.4127 + 1.51922i 1.04447 + 0.0539489i
\(794\) 2.04571 3.54328i 0.0725996 0.125746i
\(795\) −4.56570 −0.161929
\(796\) −14.7774 + 25.5952i −0.523772 + 0.907199i
\(797\) −9.72309 + 16.8409i −0.344409 + 0.596535i −0.985246 0.171142i \(-0.945254\pi\)
0.640837 + 0.767677i \(0.278588\pi\)
\(798\) −21.5400 + 25.4782i −0.762509 + 0.901917i
\(799\) −12.4831 + 21.6214i −0.441621 + 0.764909i
\(800\) −67.9582 −2.40269
\(801\) 1.10786 1.91886i 0.0391442 0.0677997i
\(802\) −25.8101 44.7044i −0.911386 1.57857i
\(803\) −2.36445 + 4.09535i −0.0834398 + 0.144522i
\(804\) −1.00380 1.73863i −0.0354013 0.0613168i
\(805\) −74.9309 13.4987i −2.64097 0.475767i
\(806\) −1.26304 2.47424i −0.0444887 0.0871515i
\(807\) 4.53019 + 7.84653i 0.159470 + 0.276211i
\(808\) 11.9160 0.419203
\(809\) −17.3084 −0.608531 −0.304265 0.952587i \(-0.598411\pi\)
−0.304265 + 0.952587i \(0.598411\pi\)
\(810\) −7.19513 −0.252811
\(811\) −2.62646 −0.0922275 −0.0461138 0.998936i \(-0.514684\pi\)
−0.0461138 + 0.998936i \(0.514684\pi\)
\(812\) −1.83791 + 2.17393i −0.0644978 + 0.0762899i
\(813\) −1.11398 + 1.92947i −0.0390690 + 0.0676696i
\(814\) −1.13207 1.96080i −0.0396791 0.0687262i
\(815\) 21.2795 + 36.8572i 0.745388 + 1.29105i
\(816\) 22.6596 0.793246
\(817\) −4.07801 + 7.06331i −0.142671 + 0.247114i
\(818\) 19.6442 0.686842
\(819\) −9.28853 2.17331i −0.324567 0.0759415i
\(820\) −5.17135 −0.180591
\(821\) 16.1977 28.0553i 0.565305 0.979137i −0.431716 0.902009i \(-0.642092\pi\)
0.997021 0.0771274i \(-0.0245748\pi\)
\(822\) 2.73231 0.0953001
\(823\) 20.5081 + 35.5210i 0.714866 + 1.23818i 0.963011 + 0.269461i \(0.0868457\pi\)
−0.248145 + 0.968723i \(0.579821\pi\)
\(824\) −3.07349 5.32344i −0.107070 0.185451i
\(825\) 1.54862 2.68229i 0.0539161 0.0933854i
\(826\) 22.8962 + 4.12472i 0.796661 + 0.143517i
\(827\) −44.2260 −1.53789 −0.768944 0.639316i \(-0.779218\pi\)
−0.768944 + 0.639316i \(0.779218\pi\)
\(828\) −9.23336 −0.320882
\(829\) −5.49562 −0.190871 −0.0954354 0.995436i \(-0.530424\pi\)
−0.0954354 + 0.995436i \(0.530424\pi\)
\(830\) −96.3339 −3.34380
\(831\) 3.90377 + 6.76153i 0.135420 + 0.234555i
\(832\) −5.52794 0.285528i −0.191647 0.00989890i
\(833\) 5.35853 + 31.7640i 0.185662 + 1.10056i
\(834\) 3.65830 + 6.33637i 0.126677 + 0.219411i
\(835\) −0.0956591 + 0.165686i −0.00331042 + 0.00573382i
\(836\) −1.27383 2.20634i −0.0440564 0.0763079i
\(837\) −0.212854 + 0.368675i −0.00735732 + 0.0127433i
\(838\) 27.8095 0.960663
\(839\) −21.4269 + 37.1125i −0.739739 + 1.28127i 0.212873 + 0.977080i \(0.431718\pi\)
−0.952612 + 0.304186i \(0.901615\pi\)
\(840\) 4.66858 + 12.9762i 0.161081 + 0.447721i
\(841\) 14.1442 24.4986i 0.487733 0.844778i
\(842\) 3.01970 5.23028i 0.104066 0.180247i
\(843\) −12.7531 −0.439242
\(844\) 1.79586 3.11052i 0.0618160 0.107069i
\(845\) 21.0921 + 47.1819i 0.725589 + 1.62311i
\(846\) −9.81898 −0.337584
\(847\) 28.4282 + 5.12131i 0.976806 + 0.175970i
\(848\) 2.82752 + 4.89741i 0.0970975 + 0.168178i
\(849\) 16.3439 0.560920
\(850\) 44.9946 77.9330i 1.54330 2.67308i
\(851\) −15.7952 27.3580i −0.541451 0.937821i
\(852\) 8.22413 0.281754
\(853\) −46.0876 −1.57801 −0.789004 0.614388i \(-0.789403\pi\)
−0.789004 + 0.614388i \(0.789403\pi\)
\(854\) 25.2529 29.8699i 0.864137 1.02213i
\(855\) −13.8497 23.9884i −0.473650 0.820386i
\(856\) 9.50913 16.4703i 0.325015 0.562943i
\(857\) 3.33662 5.77919i 0.113977 0.197413i −0.803394 0.595448i \(-0.796974\pi\)
0.917370 + 0.398035i \(0.130308\pi\)
\(858\) 1.01760 1.56956i 0.0347404 0.0535839i
\(859\) 8.20940 + 14.2191i 0.280101 + 0.485149i 0.971409 0.237411i \(-0.0762987\pi\)
−0.691308 + 0.722560i \(0.742965\pi\)
\(860\) −2.96806 5.14084i −0.101210 0.175301i
\(861\) 0.913393 + 2.53875i 0.0311284 + 0.0865203i
\(862\) 3.85584 6.67851i 0.131330 0.227471i
\(863\) 4.92500 + 8.53035i 0.167649 + 0.290377i 0.937593 0.347735i \(-0.113049\pi\)
−0.769944 + 0.638112i \(0.779716\pi\)
\(864\) 3.14482 + 5.44698i 0.106989 + 0.185310i
\(865\) −27.8878 48.3030i −0.948213 1.64235i
\(866\) −10.0703 17.4423i −0.342204 0.592714i
\(867\) −2.08840 + 3.61721i −0.0709256 + 0.122847i
\(868\) −1.41395 0.254721i −0.0479925 0.00864579i
\(869\) 1.10193 + 1.90861i 0.0373805 + 0.0647450i
\(870\) −3.03458 5.25604i −0.102882 0.178196i
\(871\) 5.66713 + 0.292717i 0.192023 + 0.00991834i
\(872\) −2.74929 + 4.76191i −0.0931027 + 0.161259i
\(873\) 9.52241 16.4933i 0.322285 0.558214i
\(874\) −45.6397 79.0503i −1.54379 2.67392i
\(875\) 60.0890 + 10.8250i 2.03138 + 0.365951i
\(876\) −21.0431 −0.710980
\(877\) 6.04112 0.203994 0.101997 0.994785i \(-0.467477\pi\)
0.101997 + 0.994785i \(0.467477\pi\)
\(878\) −37.1043 64.2665i −1.25221 2.16889i
\(879\) 11.8319 20.4935i 0.399080 0.691227i
\(880\) −5.61146 −0.189162
\(881\) 15.5861 + 26.9959i 0.525109 + 0.909516i 0.999572 + 0.0292404i \(0.00930885\pi\)
−0.474463 + 0.880275i \(0.657358\pi\)
\(882\) −9.76507 + 8.07135i −0.328807 + 0.271777i
\(883\) −18.2205 −0.613169 −0.306584 0.951844i \(-0.599186\pi\)
−0.306584 + 0.951844i \(0.599186\pi\)
\(884\) 11.5136 17.7588i 0.387246 0.597292i
\(885\) −9.65762 + 16.7275i −0.324637 + 0.562288i
\(886\) 28.6932 0.963967
\(887\) −3.70842 + 6.42317i −0.124517 + 0.215669i −0.921544 0.388274i \(-0.873071\pi\)
0.797027 + 0.603943i \(0.206405\pi\)
\(888\) −2.86093 + 4.95527i −0.0960064 + 0.166288i
\(889\) 7.02526 + 19.5265i 0.235620 + 0.654898i
\(890\) −7.97117 + 13.8065i −0.267194 + 0.462794i
\(891\) −0.286654 −0.00960328
\(892\) −10.4117 + 18.0336i −0.348609 + 0.603808i
\(893\) −18.9003 32.7363i −0.632474 1.09548i
\(894\) 17.3699 30.0855i 0.580935 1.00621i
\(895\) 9.33975 + 16.1769i 0.312194 + 0.540735i
\(896\) 16.7412 19.8019i 0.559283 0.661535i
\(897\) 14.1980 21.8992i 0.474059 0.731193i
\(898\) −13.6644 23.6674i −0.455986 0.789790i
\(899\) −0.359089 −0.0119763
\(900\) 13.7824 0.459412
\(901\) −5.28498 −0.176068
\(902\) −0.529060 −0.0176158
\(903\) −1.99953 + 2.36510i −0.0665402 + 0.0787056i
\(904\) −5.40573 + 9.36299i −0.179792 + 0.311409i
\(905\) −43.8068 75.8756i −1.45619 2.52219i
\(906\) −17.1454 29.6967i −0.569617 0.986605i
\(907\) −17.4144 −0.578234 −0.289117 0.957294i \(-0.593362\pi\)
−0.289117 + 0.957294i \(0.593362\pi\)
\(908\) 3.95797 6.85541i 0.131350 0.227505i
\(909\) −9.08855 −0.301448
\(910\) 66.8321 + 15.6372i 2.21546 + 0.518369i
\(911\) −40.5753 −1.34432 −0.672159 0.740407i \(-0.734633\pi\)
−0.672159 + 0.740407i \(0.734633\pi\)
\(912\) −17.1541 + 29.7119i −0.568031 + 0.983858i
\(913\) −3.83795 −0.127018
\(914\) 0.0252004 + 0.0436483i 0.000833554 + 0.00144376i
\(915\) 16.2370 + 28.1233i 0.536779 + 0.929728i
\(916\) 0.333516 0.577667i 0.0110197 0.0190867i
\(917\) 7.24209 + 20.1292i 0.239155 + 0.664724i
\(918\) −8.32864 −0.274886
\(919\) −48.5466 −1.60140 −0.800702 0.599062i \(-0.795540\pi\)
−0.800702 + 0.599062i \(0.795540\pi\)
\(920\) −37.7297 −1.24391
\(921\) 8.99691 0.296458
\(922\) 25.4363 + 44.0570i 0.837700 + 1.45094i
\(923\) −12.6462 + 19.5056i −0.416253 + 0.642033i
\(924\) −0.327507 0.910296i −0.0107742 0.0299465i
\(925\) 23.5770 + 40.8365i 0.775206 + 1.34270i
\(926\) 0.241198 0.417767i 0.00792625 0.0137287i
\(927\) 2.34421 + 4.06029i 0.0769939 + 0.133357i
\(928\) −2.65268 + 4.59458i −0.0870785 + 0.150824i
\(929\) −8.13928 −0.267041 −0.133521 0.991046i \(-0.542628\pi\)
−0.133521 + 0.991046i \(0.542628\pi\)
\(930\) 1.53151 2.65266i 0.0502203 0.0869842i
\(931\) −45.7062 17.0202i −1.49796 0.557815i
\(932\) −8.26922 + 14.3227i −0.270867 + 0.469156i
\(933\) 15.4498 26.7598i 0.505803 0.876077i
\(934\) 67.1096 2.19589
\(935\) 2.62212 4.54165i 0.0857526 0.148528i
\(936\) −4.72094 0.243845i −0.154309 0.00797032i
\(937\) 30.6536 1.00141 0.500705 0.865618i \(-0.333074\pi\)
0.500705 + 0.865618i \(0.333074\pi\)
\(938\) 4.86565 5.75522i 0.158869 0.187915i
\(939\) 3.74574 + 6.48782i 0.122238 + 0.211722i
\(940\) 27.5121 0.897347
\(941\) 4.34815 7.53122i 0.141746 0.245511i −0.786408 0.617707i \(-0.788062\pi\)
0.928154 + 0.372196i \(0.121395\pi\)
\(942\) −16.8637 29.2088i −0.549449 0.951673i
\(943\) −7.38168 −0.240381
\(944\) 23.9237 0.778651
\(945\) −3.56082 9.89718i −0.115833 0.321955i
\(946\) −0.303651 0.525938i −0.00987254 0.0170997i
\(947\) 5.73610 9.93522i 0.186398 0.322851i −0.757649 0.652663i \(-0.773652\pi\)
0.944047 + 0.329812i \(0.106985\pi\)
\(948\) −4.90348 + 8.49307i −0.159258 + 0.275842i
\(949\) 32.3577 49.9089i 1.05038 1.62011i
\(950\) 68.1250 + 117.996i 2.21027 + 3.82830i
\(951\) 8.11402 + 14.0539i 0.263115 + 0.455729i
\(952\) 5.40407 + 15.0204i 0.175147 + 0.486815i
\(953\) −23.1731 + 40.1370i −0.750650 + 1.30016i 0.196859 + 0.980432i \(0.436926\pi\)
−0.947508 + 0.319731i \(0.896407\pi\)
\(954\) −1.03927 1.80006i −0.0336475 0.0582792i
\(955\) 22.0590 + 38.2074i 0.713814 + 1.23636i
\(956\) 3.05887 + 5.29812i 0.0989310 + 0.171353i
\(957\) −0.120898 0.209401i −0.00390807 0.00676897i
\(958\) −26.0607 + 45.1384i −0.841983 + 1.45836i
\(959\) 1.35220 + 3.75839i 0.0436648 + 0.121365i
\(960\) −3.05165 5.28562i −0.0984916 0.170593i
\(961\) 15.4094 + 26.6898i 0.497077 + 0.860963i
\(962\) 12.9481 + 25.3648i 0.417463 + 0.817793i
\(963\) −7.25279 + 12.5622i −0.233718 + 0.404811i
\(964\) −6.64544 + 11.5102i −0.214035 + 0.370720i
\(965\) −0.966511 1.67405i −0.0311131 0.0538894i
\(966\) −11.7342 32.6147i −0.377541 1.04936i
\(967\) 8.71419 0.280229 0.140115 0.990135i \(-0.455253\pi\)
0.140115 + 0.990135i \(0.455253\pi\)
\(968\) 14.3144 0.460081
\(969\) −16.0316 27.7675i −0.515008 0.892021i
\(970\) −68.5149 + 118.671i −2.19988 + 3.81031i
\(971\) 40.0563 1.28547 0.642733 0.766090i \(-0.277800\pi\)
0.642733 + 0.766090i \(0.277800\pi\)
\(972\) −0.637789 1.10468i −0.0204571 0.0354327i
\(973\) −6.90545 + 8.16797i −0.221379 + 0.261853i
\(974\) −24.8499 −0.796243
\(975\) −21.1930 + 32.6883i −0.678719 + 1.04686i
\(976\) 20.1110 34.8333i 0.643738 1.11499i
\(977\) −42.3067 −1.35351 −0.676755 0.736208i \(-0.736614\pi\)
−0.676755 + 0.736208i \(0.736614\pi\)
\(978\) −9.68748 + 16.7792i −0.309771 + 0.536540i
\(979\) −0.317572 + 0.550050i −0.0101496 + 0.0175797i
\(980\) 27.3611 22.6154i 0.874017 0.722422i
\(981\) 2.09694 3.63200i 0.0669500 0.115961i
\(982\) −49.8189 −1.58979
\(983\) 2.44395 4.23305i 0.0779501 0.135013i −0.824415 0.565985i \(-0.808496\pi\)
0.902365 + 0.430972i \(0.141829\pi\)
\(984\) 0.668510 + 1.15789i 0.0213113 + 0.0369123i
\(985\) 33.9436 58.7920i 1.08153 1.87327i
\(986\) −3.51264 6.08407i −0.111865 0.193756i
\(987\) −4.85935 13.5064i −0.154675 0.429913i
\(988\) 14.5695 + 28.5410i 0.463517 + 0.908009i
\(989\) −4.23667 7.33813i −0.134718 0.233339i
\(990\) 2.06251 0.0655510
\(991\) −18.5959 −0.590718 −0.295359 0.955386i \(-0.595439\pi\)
−0.295359 + 0.955386i \(0.595439\pi\)
\(992\) −2.67755 −0.0850124
\(993\) 5.58434 0.177214
\(994\) 10.4516 + 29.0498i 0.331504 + 0.921405i
\(995\) 46.0560 79.7713i 1.46007 2.52892i
\(996\) −8.53922 14.7904i −0.270575 0.468650i
\(997\) 12.8181 + 22.2017i 0.405954 + 0.703133i 0.994432 0.105380i \(-0.0336059\pi\)
−0.588478 + 0.808513i \(0.700273\pi\)
\(998\) −7.04276 −0.222935
\(999\) 2.18208 3.77948i 0.0690380 0.119577i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.j.c.172.3 yes 20
3.2 odd 2 819.2.n.f.172.8 20
7.2 even 3 273.2.l.c.16.8 yes 20
13.9 even 3 273.2.l.c.256.8 yes 20
21.2 odd 6 819.2.s.f.289.3 20
39.35 odd 6 819.2.s.f.802.3 20
91.9 even 3 inner 273.2.j.c.100.3 20
273.191 odd 6 819.2.n.f.100.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.3 20 91.9 even 3 inner
273.2.j.c.172.3 yes 20 1.1 even 1 trivial
273.2.l.c.16.8 yes 20 7.2 even 3
273.2.l.c.256.8 yes 20 13.9 even 3
819.2.n.f.100.8 20 273.191 odd 6
819.2.n.f.172.8 20 3.2 odd 2
819.2.s.f.289.3 20 21.2 odd 6
819.2.s.f.802.3 20 39.35 odd 6