Properties

Label 819.2.n.f.172.8
Level $819$
Weight $2$
Character 819.172
Analytic conductor $6.540$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(100,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.n (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.8
Root \(0.904928 + 1.56738i\) of defining polynomial
Character \(\chi\) \(=\) 819.172
Dual form 819.2.n.f.100.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.904928 - 1.56738i) q^{2} +(-0.637789 - 1.10468i) q^{4} +(-1.98776 - 3.44291i) q^{5} +(-2.60384 - 0.469078i) q^{7} +1.31110 q^{8} -7.19513 q^{10} +0.286654 q^{11} +(3.60075 + 0.185985i) q^{13} +(-3.09151 + 3.65672i) q^{14} +(2.46203 - 4.26436i) q^{16} +(-2.30091 - 3.98530i) q^{17} -6.96749 q^{19} +(-2.53555 + 4.39170i) q^{20} +(0.259402 - 0.449297i) q^{22} +(-3.61929 + 6.26879i) q^{23} +(-5.40240 + 9.35723i) q^{25} +(3.54993 - 5.47545i) q^{26} +(1.14252 + 3.17559i) q^{28} +(-0.421754 - 0.730500i) q^{29} +(-0.212854 + 0.368675i) q^{31} +(-3.14482 - 5.44698i) q^{32} -8.32864 q^{34} +(3.56082 + 9.89718i) q^{35} +(2.18208 - 3.77948i) q^{37} +(-6.30507 + 10.9207i) q^{38} +(-2.60615 - 4.51399i) q^{40} +(0.509885 + 0.883147i) q^{41} +(0.585291 - 1.01375i) q^{43} +(-0.182825 - 0.316662i) q^{44} +(6.55039 + 11.3456i) q^{46} +(-2.71264 - 4.69843i) q^{47} +(6.55993 + 2.44280i) q^{49} +(9.77756 + 16.9352i) q^{50} +(-2.09107 - 4.09631i) q^{52} +(0.574226 - 0.994589i) q^{53} +(-0.569801 - 0.986924i) q^{55} +(-3.41389 - 0.615007i) q^{56} -1.52663 q^{58} +(-2.42927 - 4.20762i) q^{59} +8.16848 q^{61} +(0.385236 + 0.667248i) q^{62} -1.53522 q^{64} +(-6.51711 - 12.7667i) q^{65} +1.57387 q^{67} +(-2.93499 + 5.08356i) q^{68} +(18.7349 + 3.37507i) q^{70} +(3.22369 - 5.58359i) q^{71} +(8.24845 - 14.2867i) q^{73} +(-3.94925 - 6.84031i) q^{74} +(4.44379 + 7.69686i) q^{76} +(-0.746401 - 0.134463i) q^{77} +(-3.84412 - 6.65821i) q^{79} -19.5757 q^{80} +1.84564 q^{82} -13.3888 q^{83} +(-9.14733 + 15.8436i) q^{85} +(-1.05929 - 1.83475i) q^{86} +0.375832 q^{88} +(-1.10786 + 1.91886i) q^{89} +(-9.28853 - 2.17331i) q^{91} +9.23336 q^{92} -9.81898 q^{94} +(13.8497 + 23.9884i) q^{95} +(9.52241 - 16.4933i) q^{97} +(9.76507 - 8.07135i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 16 q^{4} - 9 q^{7} + 12 q^{8} + 8 q^{10} - 16 q^{11} - 5 q^{13} + 9 q^{14} - 20 q^{16} - 14 q^{19} - 12 q^{20} - 9 q^{22} + 14 q^{23} - 32 q^{25} - 4 q^{26} + 13 q^{28} + 9 q^{29} - 9 q^{31} - 17 q^{32}+ \cdots + 79 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.904928 1.56738i 0.639881 1.10831i −0.345578 0.938390i \(-0.612317\pi\)
0.985459 0.169916i \(-0.0543496\pi\)
\(3\) 0 0
\(4\) −0.637789 1.10468i −0.318895 0.552342i
\(5\) −1.98776 3.44291i −0.888954 1.53971i −0.841113 0.540859i \(-0.818099\pi\)
−0.0478412 0.998855i \(-0.515234\pi\)
\(6\) 0 0
\(7\) −2.60384 0.469078i −0.984158 0.177295i
\(8\) 1.31110 0.463543
\(9\) 0 0
\(10\) −7.19513 −2.27530
\(11\) 0.286654 0.0864295 0.0432148 0.999066i \(-0.486240\pi\)
0.0432148 + 0.999066i \(0.486240\pi\)
\(12\) 0 0
\(13\) 3.60075 + 0.185985i 0.998669 + 0.0515830i
\(14\) −3.09151 + 3.65672i −0.826240 + 0.977300i
\(15\) 0 0
\(16\) 2.46203 4.26436i 0.615507 1.06609i
\(17\) −2.30091 3.98530i −0.558053 0.966577i −0.997659 0.0683857i \(-0.978215\pi\)
0.439606 0.898191i \(-0.355118\pi\)
\(18\) 0 0
\(19\) −6.96749 −1.59845 −0.799225 0.601031i \(-0.794757\pi\)
−0.799225 + 0.601031i \(0.794757\pi\)
\(20\) −2.53555 + 4.39170i −0.566965 + 0.982013i
\(21\) 0 0
\(22\) 0.259402 0.449297i 0.0553046 0.0957904i
\(23\) −3.61929 + 6.26879i −0.754673 + 1.30713i 0.190863 + 0.981617i \(0.438871\pi\)
−0.945537 + 0.325516i \(0.894462\pi\)
\(24\) 0 0
\(25\) −5.40240 + 9.35723i −1.08048 + 1.87145i
\(26\) 3.54993 5.47545i 0.696199 1.07382i
\(27\) 0 0
\(28\) 1.14252 + 3.17559i 0.215915 + 0.600130i
\(29\) −0.421754 0.730500i −0.0783178 0.135650i 0.824206 0.566289i \(-0.191622\pi\)
−0.902524 + 0.430639i \(0.858288\pi\)
\(30\) 0 0
\(31\) −0.212854 + 0.368675i −0.0382298 + 0.0662159i −0.884507 0.466527i \(-0.845505\pi\)
0.846277 + 0.532742i \(0.178839\pi\)
\(32\) −3.14482 5.44698i −0.555930 0.962900i
\(33\) 0 0
\(34\) −8.32864 −1.42835
\(35\) 3.56082 + 9.89718i 0.601888 + 1.67293i
\(36\) 0 0
\(37\) 2.18208 3.77948i 0.358732 0.621342i −0.629017 0.777391i \(-0.716542\pi\)
0.987749 + 0.156049i \(0.0498758\pi\)
\(38\) −6.30507 + 10.9207i −1.02282 + 1.77157i
\(39\) 0 0
\(40\) −2.60615 4.51399i −0.412069 0.713724i
\(41\) 0.509885 + 0.883147i 0.0796307 + 0.137924i 0.903091 0.429450i \(-0.141293\pi\)
−0.823460 + 0.567374i \(0.807959\pi\)
\(42\) 0 0
\(43\) 0.585291 1.01375i 0.0892560 0.154596i −0.817941 0.575302i \(-0.804884\pi\)
0.907197 + 0.420706i \(0.138218\pi\)
\(44\) −0.182825 0.316662i −0.0275619 0.0477386i
\(45\) 0 0
\(46\) 6.55039 + 11.3456i 0.965802 + 1.67282i
\(47\) −2.71264 4.69843i −0.395680 0.685337i 0.597508 0.801863i \(-0.296158\pi\)
−0.993188 + 0.116526i \(0.962824\pi\)
\(48\) 0 0
\(49\) 6.55993 + 2.44280i 0.937133 + 0.348972i
\(50\) 9.77756 + 16.9352i 1.38276 + 2.39500i
\(51\) 0 0
\(52\) −2.09107 4.09631i −0.289979 0.568056i
\(53\) 0.574226 0.994589i 0.0788760 0.136617i −0.823889 0.566751i \(-0.808200\pi\)
0.902765 + 0.430134i \(0.141534\pi\)
\(54\) 0 0
\(55\) −0.569801 0.986924i −0.0768319 0.133077i
\(56\) −3.41389 0.615007i −0.456200 0.0821838i
\(57\) 0 0
\(58\) −1.52663 −0.200456
\(59\) −2.42927 4.20762i −0.316264 0.547785i 0.663441 0.748228i \(-0.269095\pi\)
−0.979705 + 0.200443i \(0.935762\pi\)
\(60\) 0 0
\(61\) 8.16848 1.04587 0.522933 0.852374i \(-0.324838\pi\)
0.522933 + 0.852374i \(0.324838\pi\)
\(62\) 0.385236 + 0.667248i 0.0489250 + 0.0847406i
\(63\) 0 0
\(64\) −1.53522 −0.191902
\(65\) −6.51711 12.7667i −0.808348 1.58352i
\(66\) 0 0
\(67\) 1.57387 0.192279 0.0961397 0.995368i \(-0.469350\pi\)
0.0961397 + 0.995368i \(0.469350\pi\)
\(68\) −2.93499 + 5.08356i −0.355920 + 0.616472i
\(69\) 0 0
\(70\) 18.7349 + 3.37507i 2.23925 + 0.403399i
\(71\) 3.22369 5.58359i 0.382581 0.662650i −0.608849 0.793286i \(-0.708369\pi\)
0.991430 + 0.130636i \(0.0417019\pi\)
\(72\) 0 0
\(73\) 8.24845 14.2867i 0.965408 1.67214i 0.256893 0.966440i \(-0.417301\pi\)
0.708515 0.705696i \(-0.249365\pi\)
\(74\) −3.94925 6.84031i −0.459092 0.795170i
\(75\) 0 0
\(76\) 4.44379 + 7.69686i 0.509737 + 0.882891i
\(77\) −0.746401 0.134463i −0.0850603 0.0153235i
\(78\) 0 0
\(79\) −3.84412 6.65821i −0.432497 0.749107i 0.564590 0.825371i \(-0.309034\pi\)
−0.997088 + 0.0762639i \(0.975701\pi\)
\(80\) −19.5757 −2.18863
\(81\) 0 0
\(82\) 1.84564 0.203817
\(83\) −13.3888 −1.46961 −0.734805 0.678279i \(-0.762726\pi\)
−0.734805 + 0.678279i \(0.762726\pi\)
\(84\) 0 0
\(85\) −9.14733 + 15.8436i −0.992168 + 1.71848i
\(86\) −1.05929 1.83475i −0.114226 0.197846i
\(87\) 0 0
\(88\) 0.375832 0.0400639
\(89\) −1.10786 + 1.91886i −0.117433 + 0.203399i −0.918750 0.394841i \(-0.870800\pi\)
0.801317 + 0.598240i \(0.204133\pi\)
\(90\) 0 0
\(91\) −9.28853 2.17331i −0.973702 0.227825i
\(92\) 9.23336 0.962645
\(93\) 0 0
\(94\) −9.81898 −1.01275
\(95\) 13.8497 + 23.9884i 1.42095 + 2.46116i
\(96\) 0 0
\(97\) 9.52241 16.4933i 0.966854 1.67464i 0.262306 0.964985i \(-0.415517\pi\)
0.704549 0.709656i \(-0.251150\pi\)
\(98\) 9.76507 8.07135i 0.986421 0.815330i
\(99\) 0 0
\(100\) 13.7824 1.37824
\(101\) 9.08855 0.904344 0.452172 0.891931i \(-0.350649\pi\)
0.452172 + 0.891931i \(0.350649\pi\)
\(102\) 0 0
\(103\) 2.34421 + 4.06029i 0.230982 + 0.400072i 0.958097 0.286443i \(-0.0924729\pi\)
−0.727116 + 0.686515i \(0.759140\pi\)
\(104\) 4.72094 + 0.243845i 0.462926 + 0.0239109i
\(105\) 0 0
\(106\) −1.03927 1.80006i −0.100943 0.174838i
\(107\) 7.25279 12.5622i 0.701154 1.21443i −0.266908 0.963722i \(-0.586002\pi\)
0.968062 0.250712i \(-0.0806648\pi\)
\(108\) 0 0
\(109\) 2.09694 3.63200i 0.200850 0.347883i −0.747952 0.663752i \(-0.768963\pi\)
0.948803 + 0.315870i \(0.102296\pi\)
\(110\) −2.06251 −0.196653
\(111\) 0 0
\(112\) −8.41104 + 9.94881i −0.794768 + 0.940074i
\(113\) −4.12305 + 7.14133i −0.387864 + 0.671800i −0.992162 0.124958i \(-0.960120\pi\)
0.604298 + 0.796758i \(0.293454\pi\)
\(114\) 0 0
\(115\) 28.7771 2.68348
\(116\) −0.537981 + 0.931810i −0.0499503 + 0.0865164i
\(117\) 0 0
\(118\) −8.79326 −0.809485
\(119\) 4.12179 + 11.4564i 0.377843 + 1.05020i
\(120\) 0 0
\(121\) −10.9178 −0.992530
\(122\) 7.39189 12.8031i 0.669230 1.15914i
\(123\) 0 0
\(124\) 0.543025 0.0487651
\(125\) 23.0771 2.06408
\(126\) 0 0
\(127\) −3.92173 6.79263i −0.347997 0.602748i 0.637897 0.770122i \(-0.279805\pi\)
−0.985894 + 0.167374i \(0.946471\pi\)
\(128\) 4.90037 8.48769i 0.433136 0.750213i
\(129\) 0 0
\(130\) −25.9079 1.33819i −2.27227 0.117367i
\(131\) 4.04277 + 7.00228i 0.353218 + 0.611792i 0.986811 0.161874i \(-0.0517540\pi\)
−0.633593 + 0.773666i \(0.718421\pi\)
\(132\) 0 0
\(133\) 18.1422 + 3.26829i 1.57313 + 0.283397i
\(134\) 1.42424 2.46686i 0.123036 0.213104i
\(135\) 0 0
\(136\) −3.01672 5.22512i −0.258682 0.448050i
\(137\) 0.754841 + 1.30742i 0.0644904 + 0.111701i 0.896468 0.443109i \(-0.146124\pi\)
−0.831977 + 0.554809i \(0.812791\pi\)
\(138\) 0 0
\(139\) 2.02132 3.50104i 0.171446 0.296954i −0.767479 0.641074i \(-0.778489\pi\)
0.938926 + 0.344120i \(0.111823\pi\)
\(140\) 8.66220 10.2459i 0.732089 0.865936i
\(141\) 0 0
\(142\) −5.83441 10.1055i −0.489613 0.848034i
\(143\) 1.03217 + 0.0533134i 0.0863145 + 0.00445829i
\(144\) 0 0
\(145\) −1.67670 + 2.90412i −0.139242 + 0.241174i
\(146\) −14.9285 25.8569i −1.23549 2.13993i
\(147\) 0 0
\(148\) −5.56683 −0.457591
\(149\) 19.1947 1.57249 0.786247 0.617912i \(-0.212021\pi\)
0.786247 + 0.617912i \(0.212021\pi\)
\(150\) 0 0
\(151\) −9.47334 + 16.4083i −0.770929 + 1.33529i 0.166125 + 0.986105i \(0.446874\pi\)
−0.937054 + 0.349184i \(0.886459\pi\)
\(152\) −9.13506 −0.740951
\(153\) 0 0
\(154\) −0.886194 + 1.04822i −0.0714116 + 0.0844676i
\(155\) 1.69242 0.135938
\(156\) 0 0
\(157\) −9.31770 + 16.1387i −0.743633 + 1.28801i 0.207197 + 0.978299i \(0.433566\pi\)
−0.950831 + 0.309711i \(0.899768\pi\)
\(158\) −13.9146 −1.10699
\(159\) 0 0
\(160\) −12.5023 + 21.6546i −0.988394 + 1.71195i
\(161\) 12.3646 14.6252i 0.974465 1.15262i
\(162\) 0 0
\(163\) 10.7052 0.838500 0.419250 0.907871i \(-0.362293\pi\)
0.419250 + 0.907871i \(0.362293\pi\)
\(164\) 0.650398 1.12652i 0.0507876 0.0879667i
\(165\) 0 0
\(166\) −12.1159 + 20.9853i −0.940375 + 1.62878i
\(167\) −0.0240620 0.0416766i −0.00186197 0.00322503i 0.865093 0.501612i \(-0.167259\pi\)
−0.866955 + 0.498387i \(0.833926\pi\)
\(168\) 0 0
\(169\) 12.9308 + 1.33937i 0.994678 + 0.103029i
\(170\) 16.5554 + 28.6747i 1.26974 + 2.19925i
\(171\) 0 0
\(172\) −1.49317 −0.113853
\(173\) 14.0297 1.06666 0.533330 0.845907i \(-0.320940\pi\)
0.533330 + 0.845907i \(0.320940\pi\)
\(174\) 0 0
\(175\) 18.4562 21.8306i 1.39516 1.65023i
\(176\) 0.705751 1.22240i 0.0531980 0.0921416i
\(177\) 0 0
\(178\) 2.00506 + 3.47287i 0.150286 + 0.260302i
\(179\) −4.69863 −0.351192 −0.175596 0.984462i \(-0.556185\pi\)
−0.175596 + 0.984462i \(0.556185\pi\)
\(180\) 0 0
\(181\) −22.0382 −1.63809 −0.819044 0.573730i \(-0.805496\pi\)
−0.819044 + 0.573730i \(0.805496\pi\)
\(182\) −11.8118 + 12.5920i −0.875552 + 0.933379i
\(183\) 0 0
\(184\) −4.74524 + 8.21900i −0.349824 + 0.605913i
\(185\) −17.3498 −1.27559
\(186\) 0 0
\(187\) −0.659567 1.14240i −0.0482323 0.0835408i
\(188\) −3.46019 + 5.99322i −0.252360 + 0.437101i
\(189\) 0 0
\(190\) 50.1319 3.63695
\(191\) −11.0974 −0.802982 −0.401491 0.915863i \(-0.631508\pi\)
−0.401491 + 0.915863i \(0.631508\pi\)
\(192\) 0 0
\(193\) −0.486230 −0.0349996 −0.0174998 0.999847i \(-0.505571\pi\)
−0.0174998 + 0.999847i \(0.505571\pi\)
\(194\) −17.2342 29.8505i −1.23734 2.14314i
\(195\) 0 0
\(196\) −1.48533 8.80464i −0.106095 0.628903i
\(197\) 8.53814 + 14.7885i 0.608317 + 1.05364i 0.991518 + 0.129971i \(0.0414886\pi\)
−0.383200 + 0.923665i \(0.625178\pi\)
\(198\) 0 0
\(199\) −11.5849 20.0656i −0.821230 1.42241i −0.904766 0.425908i \(-0.859955\pi\)
0.0835360 0.996505i \(-0.473379\pi\)
\(200\) −7.08308 + 12.2683i −0.500849 + 0.867497i
\(201\) 0 0
\(202\) 8.22448 14.2452i 0.578673 1.00229i
\(203\) 0.755518 + 2.09994i 0.0530270 + 0.147387i
\(204\) 0 0
\(205\) 2.02706 3.51097i 0.141576 0.245217i
\(206\) 8.48536 0.591203
\(207\) 0 0
\(208\) 9.65826 14.8970i 0.669680 1.03292i
\(209\) −1.99726 −0.138153
\(210\) 0 0
\(211\) 1.40788 + 2.43852i 0.0969224 + 0.167874i 0.910409 0.413709i \(-0.135767\pi\)
−0.813487 + 0.581583i \(0.802433\pi\)
\(212\) −1.46494 −0.100613
\(213\) 0 0
\(214\) −13.1265 22.7358i −0.897310 1.55419i
\(215\) −4.65368 −0.317378
\(216\) 0 0
\(217\) 0.727175 0.860123i 0.0493639 0.0583890i
\(218\) −3.79515 6.57340i −0.257040 0.445207i
\(219\) 0 0
\(220\) −0.726825 + 1.25890i −0.0490026 + 0.0848749i
\(221\) −7.54381 14.7780i −0.507451 0.994076i
\(222\) 0 0
\(223\) −8.16232 14.1375i −0.546589 0.946720i −0.998505 0.0546597i \(-0.982593\pi\)
0.451916 0.892061i \(-0.350741\pi\)
\(224\) 5.63353 + 15.6582i 0.376406 + 1.04621i
\(225\) 0 0
\(226\) 7.46213 + 12.9248i 0.496373 + 0.859744i
\(227\) −3.10289 5.37436i −0.205946 0.356709i 0.744488 0.667636i \(-0.232694\pi\)
−0.950434 + 0.310927i \(0.899360\pi\)
\(228\) 0 0
\(229\) 0.261463 + 0.452867i 0.0172779 + 0.0299263i 0.874535 0.484962i \(-0.161167\pi\)
−0.857257 + 0.514889i \(0.827833\pi\)
\(230\) 26.0412 45.1047i 1.71711 2.97412i
\(231\) 0 0
\(232\) −0.552962 0.957758i −0.0363037 0.0628799i
\(233\) 6.48273 + 11.2284i 0.424697 + 0.735598i 0.996392 0.0848689i \(-0.0270471\pi\)
−0.571695 + 0.820466i \(0.693714\pi\)
\(234\) 0 0
\(235\) −10.7842 + 18.6787i −0.703482 + 1.21847i
\(236\) −3.09872 + 5.36715i −0.201710 + 0.349371i
\(237\) 0 0
\(238\) 21.6864 + 3.90678i 1.40572 + 0.253239i
\(239\) 4.79605 0.310231 0.155116 0.987896i \(-0.450425\pi\)
0.155116 + 0.987896i \(0.450425\pi\)
\(240\) 0 0
\(241\) −5.20975 9.02355i −0.335589 0.581258i 0.648008 0.761633i \(-0.275602\pi\)
−0.983598 + 0.180375i \(0.942269\pi\)
\(242\) −9.87985 + 17.1124i −0.635101 + 1.10003i
\(243\) 0 0
\(244\) −5.20977 9.02358i −0.333521 0.577676i
\(245\) −4.62924 27.4409i −0.295751 1.75314i
\(246\) 0 0
\(247\) −25.0882 1.29585i −1.59632 0.0824529i
\(248\) −0.279073 + 0.483369i −0.0177212 + 0.0306940i
\(249\) 0 0
\(250\) 20.8831 36.1706i 1.32077 2.28763i
\(251\) 5.10645 8.84463i 0.322316 0.558268i −0.658649 0.752450i \(-0.728872\pi\)
0.980966 + 0.194182i \(0.0622052\pi\)
\(252\) 0 0
\(253\) −1.03748 + 1.79698i −0.0652261 + 0.112975i
\(254\) −14.1955 −0.890706
\(255\) 0 0
\(256\) −10.4042 18.0206i −0.650262 1.12629i
\(257\) −3.18140 + 5.51035i −0.198450 + 0.343726i −0.948026 0.318192i \(-0.896924\pi\)
0.749576 + 0.661919i \(0.230258\pi\)
\(258\) 0 0
\(259\) −7.45466 + 8.81758i −0.463210 + 0.547898i
\(260\) −9.94666 + 15.3418i −0.616866 + 0.951460i
\(261\) 0 0
\(262\) 14.6337 0.904070
\(263\) 17.0135 1.04910 0.524550 0.851380i \(-0.324234\pi\)
0.524550 + 0.851380i \(0.324234\pi\)
\(264\) 0 0
\(265\) −4.56570 −0.280469
\(266\) 21.5400 25.4782i 1.32070 1.56217i
\(267\) 0 0
\(268\) −1.00380 1.73863i −0.0613168 0.106204i
\(269\) −4.53019 7.84653i −0.276211 0.478411i 0.694229 0.719754i \(-0.255745\pi\)
−0.970440 + 0.241343i \(0.922412\pi\)
\(270\) 0 0
\(271\) −1.11398 + 1.92947i −0.0676696 + 0.117207i −0.897875 0.440250i \(-0.854890\pi\)
0.830206 + 0.557457i \(0.188223\pi\)
\(272\) −22.6596 −1.37394
\(273\) 0 0
\(274\) 2.73231 0.165065
\(275\) −1.54862 + 2.68229i −0.0933854 + 0.161748i
\(276\) 0 0
\(277\) 3.90377 + 6.76153i 0.234555 + 0.406261i 0.959143 0.282921i \(-0.0913034\pi\)
−0.724588 + 0.689182i \(0.757970\pi\)
\(278\) −3.65830 6.33637i −0.219411 0.380030i
\(279\) 0 0
\(280\) 4.66858 + 12.9762i 0.279001 + 0.775475i
\(281\) 12.7531 0.760789 0.380394 0.924824i \(-0.375788\pi\)
0.380394 + 0.924824i \(0.375788\pi\)
\(282\) 0 0
\(283\) 16.3439 0.971542 0.485771 0.874086i \(-0.338539\pi\)
0.485771 + 0.874086i \(0.338539\pi\)
\(284\) −8.22413 −0.488012
\(285\) 0 0
\(286\) 1.01760 1.56956i 0.0601721 0.0928101i
\(287\) −0.913393 2.53875i −0.0539159 0.149857i
\(288\) 0 0
\(289\) −2.08840 + 3.61721i −0.122847 + 0.212777i
\(290\) 3.03458 + 5.25604i 0.178196 + 0.308645i
\(291\) 0 0
\(292\) −21.0431 −1.23145
\(293\) −11.8319 + 20.4935i −0.691227 + 1.19724i 0.280209 + 0.959939i \(0.409596\pi\)
−0.971436 + 0.237302i \(0.923737\pi\)
\(294\) 0 0
\(295\) −9.65762 + 16.7275i −0.562288 + 0.973912i
\(296\) 2.86093 4.95527i 0.166288 0.288019i
\(297\) 0 0
\(298\) 17.3699 30.0855i 1.00621 1.74280i
\(299\) −14.1980 + 21.8992i −0.821094 + 1.26646i
\(300\) 0 0
\(301\) −1.99953 + 2.36510i −0.115251 + 0.136322i
\(302\) 17.1454 + 29.6967i 0.986605 + 1.70885i
\(303\) 0 0
\(304\) −17.1541 + 29.7119i −0.983858 + 1.70409i
\(305\) −16.2370 28.1233i −0.929728 1.61034i
\(306\) 0 0
\(307\) 8.99691 0.513481 0.256740 0.966480i \(-0.417351\pi\)
0.256740 + 0.966480i \(0.417351\pi\)
\(308\) 0.327507 + 0.910296i 0.0186615 + 0.0518689i
\(309\) 0 0
\(310\) 1.53151 2.65266i 0.0869842 0.150661i
\(311\) −15.4498 + 26.7598i −0.876077 + 1.51741i −0.0204655 + 0.999791i \(0.506515\pi\)
−0.855611 + 0.517619i \(0.826819\pi\)
\(312\) 0 0
\(313\) 3.74574 + 6.48782i 0.211722 + 0.366713i 0.952254 0.305308i \(-0.0987595\pi\)
−0.740532 + 0.672022i \(0.765426\pi\)
\(314\) 16.8637 + 29.2088i 0.951673 + 1.64835i
\(315\) 0 0
\(316\) −4.90348 + 8.49307i −0.275842 + 0.477773i
\(317\) −8.11402 14.0539i −0.455729 0.789346i 0.543001 0.839732i \(-0.317288\pi\)
−0.998730 + 0.0503864i \(0.983955\pi\)
\(318\) 0 0
\(319\) −0.120898 0.209401i −0.00676897 0.0117242i
\(320\) 3.05165 + 5.28562i 0.170593 + 0.295475i
\(321\) 0 0
\(322\) −11.7342 32.6147i −0.653919 1.81755i
\(323\) 16.0316 + 27.7675i 0.892021 + 1.54503i
\(324\) 0 0
\(325\) −21.1930 + 32.6883i −1.17558 + 1.81322i
\(326\) 9.68748 16.7792i 0.536540 0.929314i
\(327\) 0 0
\(328\) 0.668510 + 1.15789i 0.0369123 + 0.0639340i
\(329\) 4.85935 + 13.5064i 0.267904 + 0.744632i
\(330\) 0 0
\(331\) 5.58434 0.306943 0.153472 0.988153i \(-0.450955\pi\)
0.153472 + 0.988153i \(0.450955\pi\)
\(332\) 8.53922 + 14.7904i 0.468650 + 0.811726i
\(333\) 0 0
\(334\) −0.0870976 −0.00476577
\(335\) −3.12849 5.41870i −0.170928 0.296055i
\(336\) 0 0
\(337\) −0.504097 −0.0274599 −0.0137299 0.999906i \(-0.504371\pi\)
−0.0137299 + 0.999906i \(0.504371\pi\)
\(338\) 13.8008 19.0555i 0.750663 1.03648i
\(339\) 0 0
\(340\) 23.3363 1.26559
\(341\) −0.0610156 + 0.105682i −0.00330418 + 0.00572301i
\(342\) 0 0
\(343\) −15.9351 9.43778i −0.860416 0.509592i
\(344\) 0.767374 1.32913i 0.0413740 0.0716619i
\(345\) 0 0
\(346\) 12.6959 21.9899i 0.682535 1.18219i
\(347\) −6.06672 10.5079i −0.325678 0.564092i 0.655971 0.754786i \(-0.272259\pi\)
−0.981649 + 0.190694i \(0.938926\pi\)
\(348\) 0 0
\(349\) 10.9086 + 18.8943i 0.583924 + 1.01139i 0.995009 + 0.0997893i \(0.0318169\pi\)
−0.411084 + 0.911597i \(0.634850\pi\)
\(350\) −17.5152 48.6830i −0.936229 2.60222i
\(351\) 0 0
\(352\) −0.901476 1.56140i −0.0480488 0.0832230i
\(353\) 12.0879 0.643375 0.321688 0.946846i \(-0.395750\pi\)
0.321688 + 0.946846i \(0.395750\pi\)
\(354\) 0 0
\(355\) −25.6317 −1.36039
\(356\) 2.82631 0.149794
\(357\) 0 0
\(358\) −4.25192 + 7.36454i −0.224721 + 0.389228i
\(359\) 7.22027 + 12.5059i 0.381071 + 0.660035i 0.991216 0.132255i \(-0.0422218\pi\)
−0.610144 + 0.792290i \(0.708889\pi\)
\(360\) 0 0
\(361\) 29.5459 1.55505
\(362\) −19.9430 + 34.5423i −1.04818 + 1.81550i
\(363\) 0 0
\(364\) 3.52331 + 11.6470i 0.184671 + 0.610468i
\(365\) −65.5838 −3.43281
\(366\) 0 0
\(367\) 24.3787 1.27256 0.636280 0.771459i \(-0.280472\pi\)
0.636280 + 0.771459i \(0.280472\pi\)
\(368\) 17.8216 + 30.8679i 0.929013 + 1.60910i
\(369\) 0 0
\(370\) −15.7004 + 27.1938i −0.816223 + 1.41374i
\(371\) −1.96173 + 2.32039i −0.101848 + 0.120469i
\(372\) 0 0
\(373\) −8.40033 −0.434953 −0.217476 0.976066i \(-0.569782\pi\)
−0.217476 + 0.976066i \(0.569782\pi\)
\(374\) −2.38744 −0.123452
\(375\) 0 0
\(376\) −3.55654 6.16011i −0.183415 0.317684i
\(377\) −1.38277 2.70879i −0.0712163 0.139510i
\(378\) 0 0
\(379\) −1.82895 3.16783i −0.0939467 0.162720i 0.815222 0.579149i \(-0.196615\pi\)
−0.909169 + 0.416428i \(0.863282\pi\)
\(380\) 17.6664 30.5991i 0.906266 1.56970i
\(381\) 0 0
\(382\) −10.0424 + 17.3939i −0.513812 + 0.889949i
\(383\) 30.7052 1.56896 0.784481 0.620152i \(-0.212929\pi\)
0.784481 + 0.620152i \(0.212929\pi\)
\(384\) 0 0
\(385\) 1.02072 + 2.83707i 0.0520209 + 0.144590i
\(386\) −0.440003 + 0.762108i −0.0223956 + 0.0387903i
\(387\) 0 0
\(388\) −24.2932 −1.23330
\(389\) 9.21889 15.9676i 0.467416 0.809589i −0.531890 0.846813i \(-0.678518\pi\)
0.999307 + 0.0372241i \(0.0118515\pi\)
\(390\) 0 0
\(391\) 33.3106 1.68459
\(392\) 8.60072 + 3.20276i 0.434402 + 0.161764i
\(393\) 0 0
\(394\) 30.9056 1.55700
\(395\) −15.2824 + 26.4699i −0.768941 + 1.33184i
\(396\) 0 0
\(397\) −2.26064 −0.113458 −0.0567290 0.998390i \(-0.518067\pi\)
−0.0567290 + 0.998390i \(0.518067\pi\)
\(398\) −41.9339 −2.10196
\(399\) 0 0
\(400\) 26.6017 + 46.0755i 1.33009 + 2.30378i
\(401\) 14.2609 24.7005i 0.712153 1.23349i −0.251894 0.967755i \(-0.581053\pi\)
0.964047 0.265731i \(-0.0856132\pi\)
\(402\) 0 0
\(403\) −0.835004 + 1.28792i −0.0415945 + 0.0641558i
\(404\) −5.79658 10.0400i −0.288391 0.499507i
\(405\) 0 0
\(406\) 3.97509 + 0.716108i 0.197281 + 0.0355398i
\(407\) 0.625503 1.08340i 0.0310051 0.0537023i
\(408\) 0 0
\(409\) −5.42700 9.39983i −0.268348 0.464792i 0.700088 0.714057i \(-0.253144\pi\)
−0.968435 + 0.249265i \(0.919811\pi\)
\(410\) −3.66869 6.35436i −0.181184 0.313819i
\(411\) 0 0
\(412\) 2.99022 5.17921i 0.147318 0.255162i
\(413\) 4.35172 + 12.0955i 0.214134 + 0.595179i
\(414\) 0 0
\(415\) 26.6137 + 46.0963i 1.30642 + 2.26278i
\(416\) −10.3106 20.1981i −0.505521 0.990294i
\(417\) 0 0
\(418\) −1.80738 + 3.13047i −0.0884017 + 0.153116i
\(419\) 7.68279 + 13.3070i 0.375329 + 0.650089i 0.990376 0.138401i \(-0.0441964\pi\)
−0.615047 + 0.788490i \(0.710863\pi\)
\(420\) 0 0
\(421\) −3.33695 −0.162633 −0.0813166 0.996688i \(-0.525912\pi\)
−0.0813166 + 0.996688i \(0.525912\pi\)
\(422\) 5.09612 0.248075
\(423\) 0 0
\(424\) 0.752867 1.30400i 0.0365625 0.0633281i
\(425\) 49.7218 2.41186
\(426\) 0 0
\(427\) −21.2694 3.83165i −1.02930 0.185427i
\(428\) −18.5030 −0.894377
\(429\) 0 0
\(430\) −4.21124 + 7.29408i −0.203084 + 0.351752i
\(431\) 4.26093 0.205242 0.102621 0.994721i \(-0.467277\pi\)
0.102621 + 0.994721i \(0.467277\pi\)
\(432\) 0 0
\(433\) −5.56416 + 9.63741i −0.267396 + 0.463144i −0.968189 0.250221i \(-0.919497\pi\)
0.700792 + 0.713365i \(0.252830\pi\)
\(434\) −0.690100 1.91811i −0.0331259 0.0920722i
\(435\) 0 0
\(436\) −5.34961 −0.256200
\(437\) 25.2173 43.6777i 1.20631 2.08939i
\(438\) 0 0
\(439\) −20.5012 + 35.5092i −0.978470 + 1.69476i −0.310497 + 0.950574i \(0.600496\pi\)
−0.667973 + 0.744186i \(0.732838\pi\)
\(440\) −0.747065 1.29395i −0.0356149 0.0616869i
\(441\) 0 0
\(442\) −29.9894 1.54900i −1.42645 0.0736785i
\(443\) 7.92693 + 13.7298i 0.376620 + 0.652325i 0.990568 0.137022i \(-0.0437530\pi\)
−0.613948 + 0.789346i \(0.710420\pi\)
\(444\) 0 0
\(445\) 8.80862 0.417569
\(446\) −29.5452 −1.39901
\(447\) 0 0
\(448\) 3.99746 + 0.720137i 0.188862 + 0.0340233i
\(449\) 7.54997 13.0769i 0.356305 0.617139i −0.631035 0.775754i \(-0.717370\pi\)
0.987340 + 0.158616i \(0.0507030\pi\)
\(450\) 0 0
\(451\) 0.146161 + 0.253158i 0.00688244 + 0.0119207i
\(452\) 10.5185 0.494751
\(453\) 0 0
\(454\) −11.2316 −0.527123
\(455\) 10.9809 + 36.2995i 0.514792 + 1.70175i
\(456\) 0 0
\(457\) 0.0139240 0.0241170i 0.000651335 0.00112815i −0.865700 0.500564i \(-0.833126\pi\)
0.866351 + 0.499436i \(0.166459\pi\)
\(458\) 0.946420 0.0442233
\(459\) 0 0
\(460\) −18.3537 31.7896i −0.855747 1.48220i
\(461\) −14.0543 + 24.3428i −0.654575 + 1.13376i 0.327425 + 0.944877i \(0.393819\pi\)
−0.982000 + 0.188880i \(0.939514\pi\)
\(462\) 0 0
\(463\) −0.266538 −0.0123871 −0.00619354 0.999981i \(-0.501971\pi\)
−0.00619354 + 0.999981i \(0.501971\pi\)
\(464\) −4.15349 −0.192821
\(465\) 0 0
\(466\) 23.4656 1.08702
\(467\) 18.5400 + 32.1123i 0.857931 + 1.48598i 0.873899 + 0.486107i \(0.161583\pi\)
−0.0159687 + 0.999872i \(0.505083\pi\)
\(468\) 0 0
\(469\) −4.09811 0.738270i −0.189233 0.0340901i
\(470\) 19.5178 + 33.8058i 0.900289 + 1.55935i
\(471\) 0 0
\(472\) −3.18501 5.51660i −0.146602 0.253922i
\(473\) 0.167776 0.290597i 0.00771436 0.0133617i
\(474\) 0 0
\(475\) 37.6411 65.1964i 1.72709 2.99141i
\(476\) 10.0268 11.8600i 0.459579 0.543603i
\(477\) 0 0
\(478\) 4.34008 7.51725i 0.198511 0.343831i
\(479\) −28.7986 −1.31584 −0.657922 0.753086i \(-0.728564\pi\)
−0.657922 + 0.753086i \(0.728564\pi\)
\(480\) 0 0
\(481\) 8.56006 13.2031i 0.390305 0.602011i
\(482\) −18.8578 −0.858949
\(483\) 0 0
\(484\) 6.96327 + 12.0607i 0.316512 + 0.548216i
\(485\) −75.7132 −3.43796
\(486\) 0 0
\(487\) 6.86516 + 11.8908i 0.311090 + 0.538824i 0.978599 0.205778i \(-0.0659725\pi\)
−0.667508 + 0.744602i \(0.732639\pi\)
\(488\) 10.7097 0.484805
\(489\) 0 0
\(490\) −47.1995 17.5763i −2.13226 0.794016i
\(491\) −13.7632 23.8386i −0.621126 1.07582i −0.989276 0.146056i \(-0.953342\pi\)
0.368150 0.929766i \(-0.379991\pi\)
\(492\) 0 0
\(493\) −1.94084 + 3.36163i −0.0874110 + 0.151400i
\(494\) −24.7341 + 38.1501i −1.11284 + 1.71645i
\(495\) 0 0
\(496\) 1.04811 + 1.81537i 0.0470614 + 0.0815127i
\(497\) −11.0131 + 13.0266i −0.494005 + 0.584323i
\(498\) 0 0
\(499\) 1.94567 + 3.37000i 0.0871001 + 0.150862i 0.906284 0.422669i \(-0.138907\pi\)
−0.819184 + 0.573531i \(0.805573\pi\)
\(500\) −14.7183 25.4929i −0.658224 1.14008i
\(501\) 0 0
\(502\) −9.24194 16.0075i −0.412488 0.714450i
\(503\) 1.87991 3.25610i 0.0838212 0.145183i −0.821067 0.570832i \(-0.806621\pi\)
0.904888 + 0.425649i \(0.139954\pi\)
\(504\) 0 0
\(505\) −18.0659 31.2910i −0.803921 1.39243i
\(506\) 1.87770 + 3.25227i 0.0834738 + 0.144581i
\(507\) 0 0
\(508\) −5.00247 + 8.66453i −0.221949 + 0.384426i
\(509\) −19.2740 + 33.3836i −0.854307 + 1.47970i 0.0229793 + 0.999736i \(0.492685\pi\)
−0.877286 + 0.479967i \(0.840649\pi\)
\(510\) 0 0
\(511\) −28.1792 + 33.3312i −1.24657 + 1.47448i
\(512\) −18.0587 −0.798088
\(513\) 0 0
\(514\) 5.75788 + 9.97294i 0.253969 + 0.439888i
\(515\) 9.31946 16.1418i 0.410664 0.711291i
\(516\) 0 0
\(517\) −0.777591 1.34683i −0.0341984 0.0592334i
\(518\) 7.07458 + 19.6636i 0.310839 + 0.863967i
\(519\) 0 0
\(520\) −8.54457 16.7385i −0.374704 0.734030i
\(521\) 6.92277 11.9906i 0.303292 0.525318i −0.673587 0.739108i \(-0.735247\pi\)
0.976880 + 0.213790i \(0.0685808\pi\)
\(522\) 0 0
\(523\) −10.0335 + 17.3786i −0.438736 + 0.759913i −0.997592 0.0693515i \(-0.977907\pi\)
0.558856 + 0.829265i \(0.311240\pi\)
\(524\) 5.15687 8.93196i 0.225279 0.390194i
\(525\) 0 0
\(526\) 15.3960 26.6667i 0.671299 1.16272i
\(527\) 1.95904 0.0853370
\(528\) 0 0
\(529\) −14.6985 25.4585i −0.639063 1.10689i
\(530\) −4.13163 + 7.15619i −0.179467 + 0.310845i
\(531\) 0 0
\(532\) −7.96047 22.1259i −0.345130 0.959278i
\(533\) 1.67172 + 3.27482i 0.0724101 + 0.141848i
\(534\) 0 0
\(535\) −57.6673 −2.49318
\(536\) 2.06351 0.0891298
\(537\) 0 0
\(538\) −16.3980 −0.706968
\(539\) 1.88043 + 0.700240i 0.0809960 + 0.0301615i
\(540\) 0 0
\(541\) −18.9415 32.8076i −0.814357 1.41051i −0.909788 0.415072i \(-0.863756\pi\)
0.0954310 0.995436i \(-0.469577\pi\)
\(542\) 2.01615 + 3.49207i 0.0866009 + 0.149997i
\(543\) 0 0
\(544\) −14.4719 + 25.0661i −0.620478 + 1.07470i
\(545\) −16.6728 −0.714186
\(546\) 0 0
\(547\) 29.3783 1.25613 0.628063 0.778162i \(-0.283848\pi\)
0.628063 + 0.778162i \(0.283848\pi\)
\(548\) 0.962858 1.66772i 0.0411313 0.0712415i
\(549\) 0 0
\(550\) 2.80278 + 4.85456i 0.119511 + 0.206999i
\(551\) 2.93857 + 5.08975i 0.125187 + 0.216831i
\(552\) 0 0
\(553\) 6.88624 + 19.1401i 0.292833 + 0.813919i
\(554\) 14.1305 0.600349
\(555\) 0 0
\(556\) −5.15671 −0.218693
\(557\) −1.02608 −0.0434763 −0.0217381 0.999764i \(-0.506920\pi\)
−0.0217381 + 0.999764i \(0.506920\pi\)
\(558\) 0 0
\(559\) 2.29603 3.54142i 0.0971117 0.149786i
\(560\) 50.9720 + 9.18253i 2.15396 + 0.388033i
\(561\) 0 0
\(562\) 11.5407 19.9890i 0.486814 0.843187i
\(563\) −18.1124 31.3716i −0.763348 1.32216i −0.941116 0.338085i \(-0.890221\pi\)
0.177768 0.984072i \(-0.443112\pi\)
\(564\) 0 0
\(565\) 32.7826 1.37917
\(566\) 14.7900 25.6171i 0.621671 1.07677i
\(567\) 0 0
\(568\) 4.22657 7.32064i 0.177343 0.307167i
\(569\) 1.41835 2.45666i 0.0594605 0.102989i −0.834763 0.550610i \(-0.814395\pi\)
0.894223 + 0.447621i \(0.147729\pi\)
\(570\) 0 0
\(571\) 2.29825 3.98069i 0.0961789 0.166587i −0.813921 0.580975i \(-0.802671\pi\)
0.910100 + 0.414389i \(0.136005\pi\)
\(572\) −0.599413 1.17422i −0.0250627 0.0490968i
\(573\) 0 0
\(574\) −4.80574 0.865748i −0.200588 0.0361356i
\(575\) −39.1057 67.7330i −1.63082 2.82466i
\(576\) 0 0
\(577\) 8.75176 15.1585i 0.364341 0.631056i −0.624329 0.781161i \(-0.714628\pi\)
0.988670 + 0.150105i \(0.0479611\pi\)
\(578\) 3.77970 + 6.54662i 0.157215 + 0.272304i
\(579\) 0 0
\(580\) 4.27751 0.177614
\(581\) 34.8622 + 6.28038i 1.44633 + 0.260554i
\(582\) 0 0
\(583\) 0.164604 0.285103i 0.00681722 0.0118078i
\(584\) 10.8145 18.7313i 0.447509 0.775108i
\(585\) 0 0
\(586\) 21.4140 + 37.0902i 0.884606 + 1.53218i
\(587\) 0.671155 + 1.16247i 0.0277015 + 0.0479805i 0.879544 0.475818i \(-0.157848\pi\)
−0.851842 + 0.523798i \(0.824515\pi\)
\(588\) 0 0
\(589\) 1.48306 2.56874i 0.0611084 0.105843i
\(590\) 17.4789 + 30.2743i 0.719595 + 1.24638i
\(591\) 0 0
\(592\) −10.7447 18.6104i −0.441604 0.764881i
\(593\) −22.0843 38.2512i −0.906895 1.57079i −0.818353 0.574716i \(-0.805112\pi\)
−0.0885427 0.996072i \(-0.528221\pi\)
\(594\) 0 0
\(595\) 31.2501 36.9635i 1.28113 1.51535i
\(596\) −12.2422 21.2041i −0.501460 0.868554i
\(597\) 0 0
\(598\) 21.4762 + 42.0710i 0.878227 + 1.72041i
\(599\) −8.46583 + 14.6632i −0.345904 + 0.599124i −0.985518 0.169573i \(-0.945761\pi\)
0.639613 + 0.768697i \(0.279095\pi\)
\(600\) 0 0
\(601\) 7.56311 + 13.0997i 0.308506 + 0.534348i 0.978036 0.208437i \(-0.0668378\pi\)
−0.669530 + 0.742785i \(0.733504\pi\)
\(602\) 1.89758 + 5.27427i 0.0773398 + 0.214963i
\(603\) 0 0
\(604\) 24.1680 0.983381
\(605\) 21.7021 + 37.5891i 0.882314 + 1.52821i
\(606\) 0 0
\(607\) 47.7239 1.93705 0.968527 0.248910i \(-0.0800722\pi\)
0.968527 + 0.248910i \(0.0800722\pi\)
\(608\) 21.9115 + 37.9518i 0.888628 + 1.53915i
\(609\) 0 0
\(610\) −58.7733 −2.37966
\(611\) −8.89371 17.4224i −0.359801 0.704835i
\(612\) 0 0
\(613\) 23.9708 0.968173 0.484086 0.875020i \(-0.339152\pi\)
0.484086 + 0.875020i \(0.339152\pi\)
\(614\) 8.14155 14.1016i 0.328566 0.569094i
\(615\) 0 0
\(616\) −0.978606 0.176295i −0.0394292 0.00710311i
\(617\) 1.41810 2.45623i 0.0570907 0.0988839i −0.836068 0.548626i \(-0.815151\pi\)
0.893158 + 0.449743i \(0.148484\pi\)
\(618\) 0 0
\(619\) 0.658494 1.14055i 0.0264671 0.0458424i −0.852488 0.522746i \(-0.824908\pi\)
0.878956 + 0.476904i \(0.158241\pi\)
\(620\) −1.07940 1.86958i −0.0433499 0.0750843i
\(621\) 0 0
\(622\) 27.9619 + 48.4314i 1.12117 + 1.94192i
\(623\) 3.78477 4.47674i 0.151634 0.179357i
\(624\) 0 0
\(625\) −18.8598 32.6662i −0.754393 1.30665i
\(626\) 13.5585 0.541907
\(627\) 0 0
\(628\) 23.7709 0.948562
\(629\) −20.0831 −0.800766
\(630\) 0 0
\(631\) −11.5676 + 20.0356i −0.460497 + 0.797604i −0.998986 0.0450286i \(-0.985662\pi\)
0.538489 + 0.842633i \(0.318995\pi\)
\(632\) −5.04002 8.72957i −0.200481 0.347244i
\(633\) 0 0
\(634\) −29.3704 −1.16645
\(635\) −15.5909 + 27.0043i −0.618707 + 1.07163i
\(636\) 0 0
\(637\) 23.1664 + 10.0160i 0.917885 + 0.396848i
\(638\) −0.437615 −0.0173253
\(639\) 0 0
\(640\) −38.9631 −1.54015
\(641\) −18.3262 31.7420i −0.723843 1.25373i −0.959448 0.281884i \(-0.909041\pi\)
0.235605 0.971849i \(-0.424293\pi\)
\(642\) 0 0
\(643\) −1.86917 + 3.23749i −0.0737127 + 0.127674i −0.900526 0.434803i \(-0.856818\pi\)
0.826813 + 0.562477i \(0.190151\pi\)
\(644\) −24.0422 4.33117i −0.947394 0.170672i
\(645\) 0 0
\(646\) 58.0297 2.28315
\(647\) 1.52619 0.0600006 0.0300003 0.999550i \(-0.490449\pi\)
0.0300003 + 0.999550i \(0.490449\pi\)
\(648\) 0 0
\(649\) −0.696361 1.20613i −0.0273345 0.0473448i
\(650\) 32.0569 + 62.7981i 1.25737 + 2.46314i
\(651\) 0 0
\(652\) −6.82769 11.8259i −0.267393 0.463138i
\(653\) 4.47546 7.75172i 0.175138 0.303348i −0.765071 0.643946i \(-0.777296\pi\)
0.940209 + 0.340598i \(0.110629\pi\)
\(654\) 0 0
\(655\) 16.0721 27.8377i 0.627990 1.08771i
\(656\) 5.02141 0.196053
\(657\) 0 0
\(658\) 25.5670 + 4.60587i 0.996707 + 0.179555i
\(659\) −4.30599 + 7.45819i −0.167737 + 0.290530i −0.937624 0.347651i \(-0.886979\pi\)
0.769887 + 0.638181i \(0.220313\pi\)
\(660\) 0 0
\(661\) −40.0783 −1.55887 −0.779433 0.626486i \(-0.784493\pi\)
−0.779433 + 0.626486i \(0.784493\pi\)
\(662\) 5.05343 8.75279i 0.196407 0.340187i
\(663\) 0 0
\(664\) −17.5540 −0.681228
\(665\) −24.8100 68.9585i −0.962089 2.67409i
\(666\) 0 0
\(667\) 6.10580 0.236417
\(668\) −0.0306930 + 0.0531618i −0.00118755 + 0.00205689i
\(669\) 0 0
\(670\) −11.3242 −0.437493
\(671\) 2.34153 0.0903938
\(672\) 0 0
\(673\) −22.0131 38.1277i −0.848541 1.46972i −0.882510 0.470294i \(-0.844148\pi\)
0.0339689 0.999423i \(-0.489185\pi\)
\(674\) −0.456171 + 0.790112i −0.0175711 + 0.0304340i
\(675\) 0 0
\(676\) −6.76755 15.1387i −0.260291 0.582258i
\(677\) 12.0556 + 20.8809i 0.463334 + 0.802518i 0.999125 0.0418328i \(-0.0133197\pi\)
−0.535791 + 0.844351i \(0.679986\pi\)
\(678\) 0 0
\(679\) −32.5314 + 38.4791i −1.24844 + 1.47669i
\(680\) −11.9931 + 20.7726i −0.459913 + 0.796592i
\(681\) 0 0
\(682\) 0.110430 + 0.191270i 0.00422856 + 0.00732409i
\(683\) −9.29276 16.0955i −0.355578 0.615878i 0.631639 0.775263i \(-0.282382\pi\)
−0.987217 + 0.159384i \(0.949049\pi\)
\(684\) 0 0
\(685\) 3.00089 5.19769i 0.114658 0.198594i
\(686\) −29.2127 + 16.4359i −1.11535 + 0.627526i
\(687\) 0 0
\(688\) −2.88201 4.99178i −0.109875 0.190310i
\(689\) 2.25262 3.47447i 0.0858182 0.132367i
\(690\) 0 0
\(691\) 11.3187 19.6045i 0.430583 0.745792i −0.566340 0.824171i \(-0.691641\pi\)
0.996924 + 0.0783796i \(0.0249746\pi\)
\(692\) −8.94801 15.4984i −0.340152 0.589161i
\(693\) 0 0
\(694\) −21.9598 −0.833581
\(695\) −16.0716 −0.609632
\(696\) 0 0
\(697\) 2.34640 4.06409i 0.0888763 0.153938i
\(698\) 39.4860 1.49457
\(699\) 0 0
\(700\) −35.8870 6.46500i −1.35640 0.244354i
\(701\) −50.1432 −1.89388 −0.946941 0.321407i \(-0.895844\pi\)
−0.946941 + 0.321407i \(0.895844\pi\)
\(702\) 0 0
\(703\) −15.2036 + 26.3335i −0.573416 + 0.993185i
\(704\) −0.440077 −0.0165860
\(705\) 0 0
\(706\) 10.9387 18.9464i 0.411683 0.713056i
\(707\) −23.6651 4.26324i −0.890018 0.160336i
\(708\) 0 0
\(709\) −29.7112 −1.11583 −0.557913 0.829899i \(-0.688398\pi\)
−0.557913 + 0.829899i \(0.688398\pi\)
\(710\) −23.1948 + 40.1746i −0.870487 + 1.50773i
\(711\) 0 0
\(712\) −1.45251 + 2.51582i −0.0544351 + 0.0942843i
\(713\) −1.54076 2.66868i −0.0577020 0.0999428i
\(714\) 0 0
\(715\) −1.86816 3.65964i −0.0698651 0.136863i
\(716\) 2.99673 + 5.19049i 0.111993 + 0.193978i
\(717\) 0 0
\(718\) 26.1353 0.975361
\(719\) 29.8693 1.11394 0.556968 0.830534i \(-0.311965\pi\)
0.556968 + 0.830534i \(0.311965\pi\)
\(720\) 0 0
\(721\) −4.19934 11.6719i −0.156392 0.434686i
\(722\) 26.7369 46.3096i 0.995044 1.72347i
\(723\) 0 0
\(724\) 14.0557 + 24.3453i 0.522378 + 0.904785i
\(725\) 9.11394 0.338483
\(726\) 0 0
\(727\) 36.0210 1.33594 0.667972 0.744186i \(-0.267163\pi\)
0.667972 + 0.744186i \(0.267163\pi\)
\(728\) −12.1782 2.84942i −0.451353 0.105607i
\(729\) 0 0
\(730\) −59.3486 + 102.795i −2.19659 + 3.80461i
\(731\) −5.38681 −0.199238
\(732\) 0 0
\(733\) 8.97642 + 15.5476i 0.331552 + 0.574265i 0.982816 0.184586i \(-0.0590945\pi\)
−0.651265 + 0.758851i \(0.725761\pi\)
\(734\) 22.0610 38.2108i 0.814286 1.41038i
\(735\) 0 0
\(736\) 45.5280 1.67818
\(737\) 0.451158 0.0166186
\(738\) 0 0
\(739\) 44.4938 1.63673 0.818366 0.574698i \(-0.194880\pi\)
0.818366 + 0.574698i \(0.194880\pi\)
\(740\) 11.0655 + 19.1661i 0.406777 + 0.704559i
\(741\) 0 0
\(742\) 1.86171 + 5.17457i 0.0683456 + 0.189964i
\(743\) 10.7390 + 18.6004i 0.393975 + 0.682384i 0.992970 0.118368i \(-0.0377664\pi\)
−0.598995 + 0.800753i \(0.704433\pi\)
\(744\) 0 0
\(745\) −38.1546 66.0857i −1.39788 2.42119i
\(746\) −7.60169 + 13.1665i −0.278318 + 0.482061i
\(747\) 0 0
\(748\) −0.841329 + 1.45722i −0.0307620 + 0.0532814i
\(749\) −24.7777 + 29.3078i −0.905359 + 1.07088i
\(750\) 0 0
\(751\) −1.60018 + 2.77159i −0.0583913 + 0.101137i −0.893743 0.448579i \(-0.851930\pi\)
0.835352 + 0.549715i \(0.185264\pi\)
\(752\) −26.7144 −0.974174
\(753\) 0 0
\(754\) −5.49701 0.283930i −0.200189 0.0103401i
\(755\) 75.3230 2.74128
\(756\) 0 0
\(757\) −12.8640 22.2811i −0.467550 0.809821i 0.531762 0.846894i \(-0.321530\pi\)
−0.999313 + 0.0370727i \(0.988197\pi\)
\(758\) −6.62026 −0.240459
\(759\) 0 0
\(760\) 18.1583 + 31.4512i 0.658672 + 1.14085i
\(761\) −28.7496 −1.04217 −0.521087 0.853504i \(-0.674473\pi\)
−0.521087 + 0.853504i \(0.674473\pi\)
\(762\) 0 0
\(763\) −7.16377 + 8.47351i −0.259346 + 0.306762i
\(764\) 7.07782 + 12.2591i 0.256066 + 0.443520i
\(765\) 0 0
\(766\) 27.7860 48.1268i 1.00395 1.73889i
\(767\) −7.96464 15.6024i −0.287587 0.563370i
\(768\) 0 0
\(769\) 8.98213 + 15.5575i 0.323904 + 0.561018i 0.981290 0.192536i \(-0.0616712\pi\)
−0.657386 + 0.753554i \(0.728338\pi\)
\(770\) 5.37045 + 0.967480i 0.193538 + 0.0348656i
\(771\) 0 0
\(772\) 0.310112 + 0.537131i 0.0111612 + 0.0193318i
\(773\) 19.8326 + 34.3511i 0.713329 + 1.23552i 0.963601 + 0.267346i \(0.0861468\pi\)
−0.250272 + 0.968176i \(0.580520\pi\)
\(774\) 0 0
\(775\) −2.29985 3.98345i −0.0826130 0.143090i
\(776\) 12.4848 21.6243i 0.448179 0.776269i
\(777\) 0 0
\(778\) −16.6849 28.8990i −0.598182 1.03608i
\(779\) −3.55262 6.15331i −0.127286 0.220465i
\(780\) 0 0
\(781\) 0.924084 1.60056i 0.0330663 0.0572725i
\(782\) 30.1437 52.2105i 1.07794 1.86704i
\(783\) 0 0
\(784\) 26.5677 21.9596i 0.948848 0.784273i
\(785\) 74.0855 2.64422
\(786\) 0 0
\(787\) 19.7833 + 34.2657i 0.705199 + 1.22144i 0.966620 + 0.256215i \(0.0824756\pi\)
−0.261421 + 0.965225i \(0.584191\pi\)
\(788\) 10.8911 18.8639i 0.387978 0.671998i
\(789\) 0 0
\(790\) 27.6589 + 47.9067i 0.984061 + 1.70444i
\(791\) 14.0856 16.6608i 0.500826 0.592391i
\(792\) 0 0
\(793\) 29.4127 + 1.51922i 1.04447 + 0.0539489i
\(794\) −2.04571 + 3.54328i −0.0725996 + 0.125746i
\(795\) 0 0
\(796\) −14.7774 + 25.5952i −0.523772 + 0.907199i
\(797\) 9.72309 16.8409i 0.344409 0.596535i −0.640837 0.767677i \(-0.721412\pi\)
0.985246 + 0.171142i \(0.0547458\pi\)
\(798\) 0 0
\(799\) −12.4831 + 21.6214i −0.441621 + 0.764909i
\(800\) 67.9582 2.40269
\(801\) 0 0
\(802\) −25.8101 44.7044i −0.911386 1.57857i
\(803\) 2.36445 4.09535i 0.0834398 0.144522i
\(804\) 0 0
\(805\) −74.9309 13.4987i −2.64097 0.475767i
\(806\) 1.26304 + 2.47424i 0.0444887 + 0.0871515i
\(807\) 0 0
\(808\) 11.9160 0.419203
\(809\) 17.3084 0.608531 0.304265 0.952587i \(-0.401589\pi\)
0.304265 + 0.952587i \(0.401589\pi\)
\(810\) 0 0
\(811\) −2.62646 −0.0922275 −0.0461138 0.998936i \(-0.514684\pi\)
−0.0461138 + 0.998936i \(0.514684\pi\)
\(812\) 1.83791 2.17393i 0.0644978 0.0762899i
\(813\) 0 0
\(814\) −1.13207 1.96080i −0.0396791 0.0687262i
\(815\) −21.2795 36.8572i −0.745388 1.29105i
\(816\) 0 0
\(817\) −4.07801 + 7.06331i −0.142671 + 0.247114i
\(818\) −19.6442 −0.686842
\(819\) 0 0
\(820\) −5.17135 −0.180591
\(821\) −16.1977 + 28.0553i −0.565305 + 0.979137i 0.431716 + 0.902009i \(0.357908\pi\)
−0.997021 + 0.0771274i \(0.975425\pi\)
\(822\) 0 0
\(823\) 20.5081 + 35.5210i 0.714866 + 1.23818i 0.963011 + 0.269461i \(0.0868457\pi\)
−0.248145 + 0.968723i \(0.579821\pi\)
\(824\) 3.07349 + 5.32344i 0.107070 + 0.185451i
\(825\) 0 0
\(826\) 22.8962 + 4.12472i 0.796661 + 0.143517i
\(827\) 44.2260 1.53789 0.768944 0.639316i \(-0.220782\pi\)
0.768944 + 0.639316i \(0.220782\pi\)
\(828\) 0 0
\(829\) −5.49562 −0.190871 −0.0954354 0.995436i \(-0.530424\pi\)
−0.0954354 + 0.995436i \(0.530424\pi\)
\(830\) 96.3339 3.34380
\(831\) 0 0
\(832\) −5.52794 0.285528i −0.191647 0.00989890i
\(833\) −5.35853 31.7640i −0.185662 1.10056i
\(834\) 0 0
\(835\) −0.0956591 + 0.165686i −0.00331042 + 0.00573382i
\(836\) 1.27383 + 2.20634i 0.0440564 + 0.0763079i
\(837\) 0 0
\(838\) 27.8095 0.960663
\(839\) 21.4269 37.1125i 0.739739 1.28127i −0.212873 0.977080i \(-0.568282\pi\)
0.952612 0.304186i \(-0.0983846\pi\)
\(840\) 0 0
\(841\) 14.1442 24.4986i 0.487733 0.844778i
\(842\) −3.01970 + 5.23028i −0.104066 + 0.180247i
\(843\) 0 0
\(844\) 1.79586 3.11052i 0.0618160 0.107069i
\(845\) −21.0921 47.1819i −0.725589 1.62311i
\(846\) 0 0
\(847\) 28.4282 + 5.12131i 0.976806 + 0.175970i
\(848\) −2.82752 4.89741i −0.0970975 0.168178i
\(849\) 0 0
\(850\) 44.9946 77.9330i 1.54330 2.67308i
\(851\) 15.7952 + 27.3580i 0.541451 + 0.937821i
\(852\) 0 0
\(853\) −46.0876 −1.57801 −0.789004 0.614388i \(-0.789403\pi\)
−0.789004 + 0.614388i \(0.789403\pi\)
\(854\) −25.2529 + 29.8699i −0.864137 + 1.02213i
\(855\) 0 0
\(856\) 9.50913 16.4703i 0.325015 0.562943i
\(857\) −3.33662 + 5.77919i −0.113977 + 0.197413i −0.917370 0.398035i \(-0.869692\pi\)
0.803394 + 0.595448i \(0.203026\pi\)
\(858\) 0 0
\(859\) 8.20940 + 14.2191i 0.280101 + 0.485149i 0.971409 0.237411i \(-0.0762987\pi\)
−0.691308 + 0.722560i \(0.742965\pi\)
\(860\) 2.96806 + 5.14084i 0.101210 + 0.175301i
\(861\) 0 0
\(862\) 3.85584 6.67851i 0.131330 0.227471i
\(863\) −4.92500 8.53035i −0.167649 0.290377i 0.769944 0.638112i \(-0.220284\pi\)
−0.937593 + 0.347735i \(0.886951\pi\)
\(864\) 0 0
\(865\) −27.8878 48.3030i −0.948213 1.64235i
\(866\) 10.0703 + 17.4423i 0.342204 + 0.592714i
\(867\) 0 0
\(868\) −1.41395 0.254721i −0.0479925 0.00864579i
\(869\) −1.10193 1.90861i −0.0373805 0.0647450i
\(870\) 0 0
\(871\) 5.66713 + 0.292717i 0.192023 + 0.00991834i
\(872\) 2.74929 4.76191i 0.0931027 0.161259i
\(873\) 0 0
\(874\) −45.6397 79.0503i −1.54379 2.67392i
\(875\) −60.0890 10.8250i −2.03138 0.365951i
\(876\) 0 0
\(877\) 6.04112 0.203994 0.101997 0.994785i \(-0.467477\pi\)
0.101997 + 0.994785i \(0.467477\pi\)
\(878\) 37.1043 + 64.2665i 1.25221 + 2.16889i
\(879\) 0 0
\(880\) −5.61146 −0.189162
\(881\) −15.5861 26.9959i −0.525109 0.909516i −0.999572 0.0292404i \(-0.990691\pi\)
0.474463 0.880275i \(-0.342642\pi\)
\(882\) 0 0
\(883\) −18.2205 −0.613169 −0.306584 0.951844i \(-0.599186\pi\)
−0.306584 + 0.951844i \(0.599186\pi\)
\(884\) −11.5136 + 17.7588i −0.387246 + 0.597292i
\(885\) 0 0
\(886\) 28.6932 0.963967
\(887\) 3.70842 6.42317i 0.124517 0.215669i −0.797027 0.603943i \(-0.793595\pi\)
0.921544 + 0.388274i \(0.126929\pi\)
\(888\) 0 0
\(889\) 7.02526 + 19.5265i 0.235620 + 0.654898i
\(890\) 7.97117 13.8065i 0.267194 0.462794i
\(891\) 0 0
\(892\) −10.4117 + 18.0336i −0.348609 + 0.603808i
\(893\) 18.9003 + 32.7363i 0.632474 + 1.09548i
\(894\) 0 0
\(895\) 9.33975 + 16.1769i 0.312194 + 0.540735i
\(896\) −16.7412 + 19.8019i −0.559283 + 0.661535i
\(897\) 0 0
\(898\) −13.6644 23.6674i −0.455986 0.789790i
\(899\) 0.359089 0.0119763
\(900\) 0 0
\(901\) −5.28498 −0.176068
\(902\) 0.529060 0.0176158
\(903\) 0 0
\(904\) −5.40573 + 9.36299i −0.179792 + 0.311409i
\(905\) 43.8068 + 75.8756i 1.45619 + 2.52219i
\(906\) 0 0
\(907\) −17.4144 −0.578234 −0.289117 0.957294i \(-0.593362\pi\)
−0.289117 + 0.957294i \(0.593362\pi\)
\(908\) −3.95797 + 6.85541i −0.131350 + 0.227505i
\(909\) 0 0
\(910\) 66.8321 + 15.6372i 2.21546 + 0.518369i
\(911\) 40.5753 1.34432 0.672159 0.740407i \(-0.265367\pi\)
0.672159 + 0.740407i \(0.265367\pi\)
\(912\) 0 0
\(913\) −3.83795 −0.127018
\(914\) −0.0252004 0.0436483i −0.000833554 0.00144376i
\(915\) 0 0
\(916\) 0.333516 0.577667i 0.0110197 0.0190867i
\(917\) −7.24209 20.1292i −0.239155 0.664724i
\(918\) 0 0
\(919\) −48.5466 −1.60140 −0.800702 0.599062i \(-0.795540\pi\)
−0.800702 + 0.599062i \(0.795540\pi\)
\(920\) 37.7297 1.24391
\(921\) 0 0
\(922\) 25.4363 + 44.0570i 0.837700 + 1.45094i
\(923\) 12.6462 19.5056i 0.416253 0.642033i
\(924\) 0 0
\(925\) 23.5770 + 40.8365i 0.775206 + 1.34270i
\(926\) −0.241198 + 0.417767i −0.00792625 + 0.0137287i
\(927\) 0 0
\(928\) −2.65268 + 4.59458i −0.0870785 + 0.150824i
\(929\) 8.13928 0.267041 0.133521 0.991046i \(-0.457372\pi\)
0.133521 + 0.991046i \(0.457372\pi\)
\(930\) 0 0
\(931\) −45.7062 17.0202i −1.49796 0.557815i
\(932\) 8.26922 14.3227i 0.270867 0.469156i
\(933\) 0 0
\(934\) 67.1096 2.19589
\(935\) −2.62212 + 4.54165i −0.0857526 + 0.148528i
\(936\) 0 0
\(937\) 30.6536 1.00141 0.500705 0.865618i \(-0.333074\pi\)
0.500705 + 0.865618i \(0.333074\pi\)
\(938\) −4.86565 + 5.75522i −0.158869 + 0.187915i
\(939\) 0 0
\(940\) 27.5121 0.897347
\(941\) −4.34815 + 7.53122i −0.141746 + 0.245511i −0.928154 0.372196i \(-0.878605\pi\)
0.786408 + 0.617707i \(0.211938\pi\)
\(942\) 0 0
\(943\) −7.38168 −0.240381
\(944\) −23.9237 −0.778651
\(945\) 0 0
\(946\) −0.303651 0.525938i −0.00987254 0.0170997i
\(947\) −5.73610 + 9.93522i −0.186398 + 0.322851i −0.944047 0.329812i \(-0.893015\pi\)
0.757649 + 0.652663i \(0.226348\pi\)
\(948\) 0 0
\(949\) 32.3577 49.9089i 1.05038 1.62011i
\(950\) −68.1250 117.996i −2.21027 3.82830i
\(951\) 0 0
\(952\) 5.40407 + 15.0204i 0.175147 + 0.486815i
\(953\) 23.1731 40.1370i 0.750650 1.30016i −0.196859 0.980432i \(-0.563074\pi\)
0.947508 0.319731i \(-0.103593\pi\)
\(954\) 0 0
\(955\) 22.0590 + 38.2074i 0.713814 + 1.23636i
\(956\) −3.05887 5.29812i −0.0989310 0.171353i
\(957\) 0 0
\(958\) −26.0607 + 45.1384i −0.841983 + 1.45836i
\(959\) −1.35220 3.75839i −0.0436648 0.121365i
\(960\) 0 0
\(961\) 15.4094 + 26.6898i 0.497077 + 0.860963i
\(962\) −12.9481 25.3648i −0.417463 0.817793i
\(963\) 0 0
\(964\) −6.64544 + 11.5102i −0.214035 + 0.370720i
\(965\) 0.966511 + 1.67405i 0.0311131 + 0.0538894i
\(966\) 0 0
\(967\) 8.71419 0.280229 0.140115 0.990135i \(-0.455253\pi\)
0.140115 + 0.990135i \(0.455253\pi\)
\(968\) −14.3144 −0.460081
\(969\) 0 0
\(970\) −68.5149 + 118.671i −2.19988 + 3.81031i
\(971\) −40.0563 −1.28547 −0.642733 0.766090i \(-0.722200\pi\)
−0.642733 + 0.766090i \(0.722200\pi\)
\(972\) 0 0
\(973\) −6.90545 + 8.16797i −0.221379 + 0.261853i
\(974\) 24.8499 0.796243
\(975\) 0 0
\(976\) 20.1110 34.8333i 0.643738 1.11499i
\(977\) 42.3067 1.35351 0.676755 0.736208i \(-0.263386\pi\)
0.676755 + 0.736208i \(0.263386\pi\)
\(978\) 0 0
\(979\) −0.317572 + 0.550050i −0.0101496 + 0.0175797i
\(980\) −27.3611 + 22.6154i −0.874017 + 0.722422i
\(981\) 0 0
\(982\) −49.8189 −1.58979
\(983\) −2.44395 + 4.23305i −0.0779501 + 0.135013i −0.902365 0.430972i \(-0.858171\pi\)
0.824415 + 0.565985i \(0.191504\pi\)
\(984\) 0 0
\(985\) 33.9436 58.7920i 1.08153 1.87327i
\(986\) 3.51264 + 6.08407i 0.111865 + 0.193756i
\(987\) 0 0
\(988\) 14.5695 + 28.5410i 0.463517 + 0.908009i
\(989\) 4.23667 + 7.33813i 0.134718 + 0.233339i
\(990\) 0 0
\(991\) −18.5959 −0.590718 −0.295359 0.955386i \(-0.595439\pi\)
−0.295359 + 0.955386i \(0.595439\pi\)
\(992\) 2.67755 0.0850124
\(993\) 0 0
\(994\) 10.4516 + 29.0498i 0.331504 + 0.921405i
\(995\) −46.0560 + 79.7713i −1.46007 + 2.52892i
\(996\) 0 0
\(997\) 12.8181 + 22.2017i 0.405954 + 0.703133i 0.994432 0.105380i \(-0.0336059\pi\)
−0.588478 + 0.808513i \(0.700273\pi\)
\(998\) 7.04276 0.222935
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.n.f.172.8 20
3.2 odd 2 273.2.j.c.172.3 yes 20
7.2 even 3 819.2.s.f.289.3 20
13.9 even 3 819.2.s.f.802.3 20
21.2 odd 6 273.2.l.c.16.8 yes 20
39.35 odd 6 273.2.l.c.256.8 yes 20
91.9 even 3 inner 819.2.n.f.100.8 20
273.191 odd 6 273.2.j.c.100.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.3 20 273.191 odd 6
273.2.j.c.172.3 yes 20 3.2 odd 2
273.2.l.c.16.8 yes 20 21.2 odd 6
273.2.l.c.256.8 yes 20 39.35 odd 6
819.2.n.f.100.8 20 91.9 even 3 inner
819.2.n.f.172.8 20 1.1 even 1 trivial
819.2.s.f.289.3 20 7.2 even 3
819.2.s.f.802.3 20 13.9 even 3