Properties

Label 273.2.l.b.256.6
Level $273$
Weight $2$
Character 273.256
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(16,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 256.6
Root \(-0.532778 + 0.922798i\) of defining polynomial
Character \(\chi\) \(=\) 273.256
Dual form 273.2.l.b.16.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.06556 q^{2} +(0.500000 + 0.866025i) q^{3} -0.864591 q^{4} +(1.19023 + 2.06154i) q^{5} +(0.532778 + 0.922798i) q^{6} +(-0.813611 + 2.51755i) q^{7} -3.05238 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.26826 + 2.19668i) q^{10} +(0.333295 + 0.577284i) q^{11} +(-0.432296 - 0.748758i) q^{12} +(2.19926 - 2.85714i) q^{13} +(-0.866948 + 2.68258i) q^{14} +(-1.19023 + 2.06154i) q^{15} -1.52330 q^{16} +1.41579 q^{17} +(-0.532778 + 0.922798i) q^{18} +(1.78135 - 3.08539i) q^{19} +(-1.02906 - 1.78239i) q^{20} +(-2.58706 + 0.554165i) q^{21} +(0.355145 + 0.615128i) q^{22} +5.98253 q^{23} +(-1.52619 - 2.64344i) q^{24} +(-0.333295 + 0.577284i) q^{25} +(2.34343 - 3.04444i) q^{26} -1.00000 q^{27} +(0.703441 - 2.17665i) q^{28} +(0.647747 - 1.12193i) q^{29} +(-1.26826 + 2.19668i) q^{30} +(-3.09078 + 5.35339i) q^{31} +4.48160 q^{32} +(-0.333295 + 0.577284i) q^{33} +1.50861 q^{34} +(-6.15840 + 1.31917i) q^{35} +(0.432296 - 0.748758i) q^{36} -7.89736 q^{37} +(1.89813 - 3.28765i) q^{38} +(3.57399 + 0.476043i) q^{39} +(-3.63304 - 6.29260i) q^{40} +(5.26293 - 9.11566i) q^{41} +(-2.75666 + 0.590493i) q^{42} +(5.22034 + 9.04190i) q^{43} +(-0.288164 - 0.499115i) q^{44} -2.38046 q^{45} +6.37472 q^{46} +(-5.54746 - 9.60848i) q^{47} +(-0.761650 - 1.31922i) q^{48} +(-5.67607 - 4.09661i) q^{49} +(-0.355145 + 0.615128i) q^{50} +(0.707897 + 1.22611i) q^{51} +(-1.90146 + 2.47026i) q^{52} +(3.39224 - 5.87554i) q^{53} -1.06556 q^{54} +(-0.793396 + 1.37420i) q^{55} +(2.48345 - 7.68451i) q^{56} +3.56270 q^{57} +(0.690210 - 1.19548i) q^{58} -5.15282 q^{59} +(1.02906 - 1.78239i) q^{60} +(-2.41878 + 4.18944i) q^{61} +(-3.29340 + 5.70433i) q^{62} +(-1.77345 - 1.96338i) q^{63} +7.82199 q^{64} +(8.50773 + 1.13320i) q^{65} +(-0.355145 + 0.615128i) q^{66} +(-2.78633 - 4.82606i) q^{67} -1.22408 q^{68} +(2.99126 + 5.18102i) q^{69} +(-6.56212 + 1.40565i) q^{70} +(6.01988 + 10.4267i) q^{71} +(1.52619 - 2.64344i) q^{72} +(-4.05962 + 7.03147i) q^{73} -8.41508 q^{74} -0.666590 q^{75} +(-1.54014 + 2.66760i) q^{76} +(-1.72451 + 0.369401i) q^{77} +(3.80828 + 0.507250i) q^{78} +(-2.00333 - 3.46986i) q^{79} +(-1.81308 - 3.14034i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(5.60794 - 9.71324i) q^{82} +8.44505 q^{83} +(2.23675 - 0.479126i) q^{84} +(1.68512 + 2.91872i) q^{85} +(5.56257 + 9.63465i) q^{86} +1.29549 q^{87} +(-1.01734 - 1.76209i) q^{88} +1.82156 q^{89} -2.53651 q^{90} +(5.40364 + 7.86134i) q^{91} -5.17244 q^{92} -6.18156 q^{93} +(-5.91112 - 10.2384i) q^{94} +8.48087 q^{95} +(2.24080 + 3.88118i) q^{96} +(-7.88484 - 13.6569i) q^{97} +(-6.04817 - 4.36516i) q^{98} -0.666590 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{3} + 12 q^{4} + q^{7} + 12 q^{8} - 8 q^{9} - 4 q^{10} - 2 q^{11} + 6 q^{12} + 5 q^{13} - 7 q^{14} + 12 q^{16} + 4 q^{17} - 11 q^{19} - 20 q^{20} - q^{21} + 7 q^{22} - 8 q^{23} + 6 q^{24} + 2 q^{25}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06556 0.753462 0.376731 0.926323i \(-0.377048\pi\)
0.376731 + 0.926323i \(0.377048\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.864591 −0.432296
\(5\) 1.19023 + 2.06154i 0.532287 + 0.921948i 0.999289 + 0.0376922i \(0.0120006\pi\)
−0.467002 + 0.884256i \(0.654666\pi\)
\(6\) 0.532778 + 0.922798i 0.217506 + 0.376731i
\(7\) −0.813611 + 2.51755i −0.307516 + 0.951543i
\(8\) −3.05238 −1.07918
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.26826 + 2.19668i 0.401058 + 0.694653i
\(11\) 0.333295 + 0.577284i 0.100492 + 0.174058i 0.911888 0.410440i \(-0.134625\pi\)
−0.811395 + 0.584498i \(0.801292\pi\)
\(12\) −0.432296 0.748758i −0.124793 0.216148i
\(13\) 2.19926 2.85714i 0.609965 0.792429i
\(14\) −0.866948 + 2.68258i −0.231702 + 0.716951i
\(15\) −1.19023 + 2.06154i −0.307316 + 0.532287i
\(16\) −1.52330 −0.380825
\(17\) 1.41579 0.343381 0.171690 0.985151i \(-0.445077\pi\)
0.171690 + 0.985151i \(0.445077\pi\)
\(18\) −0.532778 + 0.922798i −0.125577 + 0.217506i
\(19\) 1.78135 3.08539i 0.408670 0.707837i −0.586071 0.810260i \(-0.699326\pi\)
0.994741 + 0.102423i \(0.0326595\pi\)
\(20\) −1.02906 1.78239i −0.230105 0.398554i
\(21\) −2.58706 + 0.554165i −0.564544 + 0.120929i
\(22\) 0.355145 + 0.615128i 0.0757171 + 0.131146i
\(23\) 5.98253 1.24744 0.623722 0.781647i \(-0.285620\pi\)
0.623722 + 0.781647i \(0.285620\pi\)
\(24\) −1.52619 2.64344i −0.311532 0.539590i
\(25\) −0.333295 + 0.577284i −0.0666590 + 0.115457i
\(26\) 2.34343 3.04444i 0.459585 0.597065i
\(27\) −1.00000 −0.192450
\(28\) 0.703441 2.17665i 0.132938 0.411348i
\(29\) 0.647747 1.12193i 0.120284 0.208337i −0.799596 0.600538i \(-0.794953\pi\)
0.919879 + 0.392201i \(0.128286\pi\)
\(30\) −1.26826 + 2.19668i −0.231551 + 0.401058i
\(31\) −3.09078 + 5.35339i −0.555120 + 0.961497i 0.442774 + 0.896633i \(0.353994\pi\)
−0.997894 + 0.0648633i \(0.979339\pi\)
\(32\) 4.48160 0.792243
\(33\) −0.333295 + 0.577284i −0.0580192 + 0.100492i
\(34\) 1.50861 0.258724
\(35\) −6.15840 + 1.31917i −1.04096 + 0.222980i
\(36\) 0.432296 0.748758i 0.0720493 0.124793i
\(37\) −7.89736 −1.29832 −0.649159 0.760653i \(-0.724879\pi\)
−0.649159 + 0.760653i \(0.724879\pi\)
\(38\) 1.89813 3.28765i 0.307917 0.533328i
\(39\) 3.57399 + 0.476043i 0.572296 + 0.0762278i
\(40\) −3.63304 6.29260i −0.574433 0.994948i
\(41\) 5.26293 9.11566i 0.821931 1.42363i −0.0823113 0.996607i \(-0.526230\pi\)
0.904242 0.427020i \(-0.140437\pi\)
\(42\) −2.75666 + 0.590493i −0.425362 + 0.0911151i
\(43\) 5.22034 + 9.04190i 0.796095 + 1.37888i 0.922142 + 0.386853i \(0.126438\pi\)
−0.126047 + 0.992024i \(0.540229\pi\)
\(44\) −0.288164 0.499115i −0.0434424 0.0752444i
\(45\) −2.38046 −0.354858
\(46\) 6.37472 0.939901
\(47\) −5.54746 9.60848i −0.809180 1.40154i −0.913433 0.406990i \(-0.866578\pi\)
0.104253 0.994551i \(-0.466755\pi\)
\(48\) −0.761650 1.31922i −0.109935 0.190412i
\(49\) −5.67607 4.09661i −0.810868 0.585230i
\(50\) −0.355145 + 0.615128i −0.0502250 + 0.0869923i
\(51\) 0.707897 + 1.22611i 0.0991255 + 0.171690i
\(52\) −1.90146 + 2.47026i −0.263685 + 0.342563i
\(53\) 3.39224 5.87554i 0.465961 0.807067i −0.533284 0.845936i \(-0.679042\pi\)
0.999244 + 0.0388691i \(0.0123755\pi\)
\(54\) −1.06556 −0.145004
\(55\) −0.793396 + 1.37420i −0.106981 + 0.185297i
\(56\) 2.48345 7.68451i 0.331865 1.02689i
\(57\) 3.56270 0.471891
\(58\) 0.690210 1.19548i 0.0906291 0.156974i
\(59\) −5.15282 −0.670840 −0.335420 0.942069i \(-0.608878\pi\)
−0.335420 + 0.942069i \(0.608878\pi\)
\(60\) 1.02906 1.78239i 0.132851 0.230105i
\(61\) −2.41878 + 4.18944i −0.309692 + 0.536403i −0.978295 0.207217i \(-0.933559\pi\)
0.668603 + 0.743620i \(0.266893\pi\)
\(62\) −3.29340 + 5.70433i −0.418262 + 0.724451i
\(63\) −1.77345 1.96338i −0.223434 0.247363i
\(64\) 7.82199 0.977749
\(65\) 8.50773 + 1.13320i 1.05525 + 0.140556i
\(66\) −0.355145 + 0.615128i −0.0437153 + 0.0757171i
\(67\) −2.78633 4.82606i −0.340404 0.589597i 0.644104 0.764938i \(-0.277230\pi\)
−0.984508 + 0.175341i \(0.943897\pi\)
\(68\) −1.22408 −0.148442
\(69\) 2.99126 + 5.18102i 0.360106 + 0.623722i
\(70\) −6.56212 + 1.40565i −0.784323 + 0.168007i
\(71\) 6.01988 + 10.4267i 0.714428 + 1.23743i 0.963180 + 0.268858i \(0.0866463\pi\)
−0.248752 + 0.968567i \(0.580020\pi\)
\(72\) 1.52619 2.64344i 0.179863 0.311532i
\(73\) −4.05962 + 7.03147i −0.475143 + 0.822971i −0.999595 0.0284689i \(-0.990937\pi\)
0.524452 + 0.851440i \(0.324270\pi\)
\(74\) −8.41508 −0.978233
\(75\) −0.666590 −0.0769712
\(76\) −1.54014 + 2.66760i −0.176666 + 0.305995i
\(77\) −1.72451 + 0.369401i −0.196526 + 0.0420971i
\(78\) 3.80828 + 0.507250i 0.431203 + 0.0574348i
\(79\) −2.00333 3.46986i −0.225392 0.390390i 0.731045 0.682329i \(-0.239033\pi\)
−0.956437 + 0.291939i \(0.905700\pi\)
\(80\) −1.81308 3.14034i −0.202708 0.351101i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 5.60794 9.71324i 0.619293 1.07265i
\(83\) 8.44505 0.926965 0.463483 0.886106i \(-0.346600\pi\)
0.463483 + 0.886106i \(0.346600\pi\)
\(84\) 2.23675 0.479126i 0.244050 0.0522770i
\(85\) 1.68512 + 2.91872i 0.182777 + 0.316579i
\(86\) 5.56257 + 9.63465i 0.599827 + 1.03893i
\(87\) 1.29549 0.138892
\(88\) −1.01734 1.76209i −0.108449 0.187840i
\(89\) 1.82156 0.193085 0.0965423 0.995329i \(-0.469222\pi\)
0.0965423 + 0.995329i \(0.469222\pi\)
\(90\) −2.53651 −0.267372
\(91\) 5.40364 + 7.86134i 0.566456 + 0.824092i
\(92\) −5.17244 −0.539264
\(93\) −6.18156 −0.640998
\(94\) −5.91112 10.2384i −0.609686 1.05601i
\(95\) 8.48087 0.870118
\(96\) 2.24080 + 3.88118i 0.228701 + 0.396121i
\(97\) −7.88484 13.6569i −0.800584 1.38665i −0.919232 0.393716i \(-0.871189\pi\)
0.118648 0.992936i \(-0.462144\pi\)
\(98\) −6.04817 4.36516i −0.610958 0.440948i
\(99\) −0.666590 −0.0669949
\(100\) 0.288164 0.499115i 0.0288164 0.0499115i
\(101\) −4.48529 7.76875i −0.446303 0.773020i 0.551839 0.833951i \(-0.313926\pi\)
−0.998142 + 0.0609311i \(0.980593\pi\)
\(102\) 0.754304 + 1.30649i 0.0746872 + 0.129362i
\(103\) −1.58796 2.75042i −0.156466 0.271007i 0.777126 0.629345i \(-0.216677\pi\)
−0.933592 + 0.358338i \(0.883344\pi\)
\(104\) −6.71298 + 8.72109i −0.658261 + 0.855173i
\(105\) −4.22163 4.67375i −0.411989 0.456111i
\(106\) 3.61462 6.26071i 0.351083 0.608094i
\(107\) −5.00535 −0.483886 −0.241943 0.970290i \(-0.577785\pi\)
−0.241943 + 0.970290i \(0.577785\pi\)
\(108\) 0.864591 0.0831953
\(109\) −8.29305 + 14.3640i −0.794330 + 1.37582i 0.128934 + 0.991653i \(0.458844\pi\)
−0.923264 + 0.384167i \(0.874489\pi\)
\(110\) −0.845407 + 1.46429i −0.0806064 + 0.139614i
\(111\) −3.94868 6.83932i −0.374792 0.649159i
\(112\) 1.23937 3.83497i 0.117110 0.362371i
\(113\) 3.57465 + 6.19148i 0.336275 + 0.582446i 0.983729 0.179659i \(-0.0574994\pi\)
−0.647454 + 0.762105i \(0.724166\pi\)
\(114\) 3.79625 0.355552
\(115\) 7.12058 + 12.3332i 0.663998 + 1.15008i
\(116\) −0.560037 + 0.970012i −0.0519981 + 0.0900633i
\(117\) 1.37473 + 3.33318i 0.127094 + 0.308153i
\(118\) −5.49062 −0.505453
\(119\) −1.15191 + 3.56433i −0.105595 + 0.326741i
\(120\) 3.63304 6.29260i 0.331649 0.574433i
\(121\) 5.27783 9.14147i 0.479803 0.831042i
\(122\) −2.57734 + 4.46408i −0.233341 + 0.404159i
\(123\) 10.5259 0.949084
\(124\) 2.67226 4.62849i 0.239976 0.415651i
\(125\) 10.3155 0.922647
\(126\) −1.88971 2.09209i −0.168349 0.186378i
\(127\) −5.70435 + 9.88023i −0.506179 + 0.876728i 0.493795 + 0.869578i \(0.335609\pi\)
−0.999974 + 0.00715012i \(0.997724\pi\)
\(128\) −0.628436 −0.0555464
\(129\) −5.22034 + 9.04190i −0.459626 + 0.796095i
\(130\) 9.06546 + 1.20749i 0.795094 + 0.105904i
\(131\) −4.30754 7.46087i −0.376351 0.651860i 0.614177 0.789168i \(-0.289488\pi\)
−0.990528 + 0.137309i \(0.956155\pi\)
\(132\) 0.288164 0.499115i 0.0250815 0.0434424i
\(133\) 6.31828 + 6.99494i 0.547864 + 0.606538i
\(134\) −2.96898 5.14243i −0.256481 0.444239i
\(135\) −1.19023 2.06154i −0.102439 0.177429i
\(136\) −4.32155 −0.370569
\(137\) 8.35476 0.713796 0.356898 0.934143i \(-0.383834\pi\)
0.356898 + 0.934143i \(0.383834\pi\)
\(138\) 3.18736 + 5.52067i 0.271326 + 0.469950i
\(139\) 4.82663 + 8.35996i 0.409389 + 0.709083i 0.994821 0.101638i \(-0.0324085\pi\)
−0.585432 + 0.810721i \(0.699075\pi\)
\(140\) 5.32450 1.14054i 0.450003 0.0963933i
\(141\) 5.54746 9.60848i 0.467180 0.809180i
\(142\) 6.41451 + 11.1103i 0.538294 + 0.932352i
\(143\) 2.38239 + 0.317326i 0.199225 + 0.0265361i
\(144\) 0.761650 1.31922i 0.0634708 0.109935i
\(145\) 3.08387 0.256102
\(146\) −4.32575 + 7.49242i −0.358002 + 0.620077i
\(147\) 0.709729 6.96393i 0.0585375 0.574375i
\(148\) 6.82799 0.561257
\(149\) −6.63040 + 11.4842i −0.543183 + 0.940821i 0.455535 + 0.890218i \(0.349448\pi\)
−0.998719 + 0.0506036i \(0.983885\pi\)
\(150\) −0.710289 −0.0579949
\(151\) −8.22189 + 14.2407i −0.669088 + 1.15889i 0.309072 + 0.951039i \(0.399982\pi\)
−0.978160 + 0.207855i \(0.933352\pi\)
\(152\) −5.43736 + 9.41778i −0.441028 + 0.763883i
\(153\) −0.707897 + 1.22611i −0.0572301 + 0.0991255i
\(154\) −1.83756 + 0.393617i −0.148075 + 0.0317186i
\(155\) −14.7150 −1.18193
\(156\) −3.09004 0.411582i −0.247401 0.0329530i
\(157\) 9.15038 15.8489i 0.730279 1.26488i −0.226484 0.974015i \(-0.572723\pi\)
0.956764 0.290866i \(-0.0939435\pi\)
\(158\) −2.13466 3.69733i −0.169824 0.294144i
\(159\) 6.78449 0.538045
\(160\) 5.33414 + 9.23900i 0.421701 + 0.730407i
\(161\) −4.86745 + 15.0613i −0.383609 + 1.18700i
\(162\) −0.532778 0.922798i −0.0418590 0.0725019i
\(163\) −3.39411 + 5.87878i −0.265847 + 0.460461i −0.967785 0.251777i \(-0.918985\pi\)
0.701938 + 0.712238i \(0.252318\pi\)
\(164\) −4.55028 + 7.88132i −0.355317 + 0.615428i
\(165\) −1.58679 −0.123532
\(166\) 8.99868 0.698433
\(167\) 0.826837 1.43212i 0.0639826 0.110821i −0.832260 0.554386i \(-0.812953\pi\)
0.896242 + 0.443565i \(0.146286\pi\)
\(168\) 7.89671 1.69152i 0.609244 0.130504i
\(169\) −3.32652 12.5672i −0.255886 0.966707i
\(170\) 1.79559 + 3.11005i 0.137716 + 0.238530i
\(171\) 1.78135 + 3.08539i 0.136223 + 0.235946i
\(172\) −4.51346 7.81755i −0.344148 0.596083i
\(173\) 5.99394 10.3818i 0.455711 0.789314i −0.543018 0.839721i \(-0.682718\pi\)
0.998729 + 0.0504069i \(0.0160518\pi\)
\(174\) 1.38042 0.104649
\(175\) −1.18217 1.30877i −0.0893634 0.0989338i
\(176\) −0.507708 0.879376i −0.0382699 0.0662855i
\(177\) −2.57641 4.46248i −0.193655 0.335420i
\(178\) 1.94097 0.145482
\(179\) 1.33508 + 2.31243i 0.0997888 + 0.172839i 0.911597 0.411085i \(-0.134850\pi\)
−0.811808 + 0.583924i \(0.801517\pi\)
\(180\) 2.05813 0.153404
\(181\) −0.752089 −0.0559024 −0.0279512 0.999609i \(-0.508898\pi\)
−0.0279512 + 0.999609i \(0.508898\pi\)
\(182\) 5.75788 + 8.37669i 0.426803 + 0.620922i
\(183\) −4.83755 −0.357602
\(184\) −18.2610 −1.34622
\(185\) −9.39968 16.2807i −0.691078 1.19698i
\(186\) −6.58679 −0.482967
\(187\) 0.471878 + 0.817316i 0.0345071 + 0.0597681i
\(188\) 4.79628 + 8.30741i 0.349805 + 0.605880i
\(189\) 0.813611 2.51755i 0.0591815 0.183125i
\(190\) 9.03683 0.655601
\(191\) −2.57907 + 4.46708i −0.186615 + 0.323226i −0.944119 0.329603i \(-0.893085\pi\)
0.757505 + 0.652830i \(0.226418\pi\)
\(192\) 3.91100 + 6.77405i 0.282252 + 0.488875i
\(193\) −1.42313 2.46494i −0.102439 0.177430i 0.810250 0.586085i \(-0.199331\pi\)
−0.912689 + 0.408655i \(0.865998\pi\)
\(194\) −8.40173 14.5522i −0.603209 1.04479i
\(195\) 3.27249 + 7.93451i 0.234348 + 0.568202i
\(196\) 4.90748 + 3.54189i 0.350535 + 0.252992i
\(197\) −0.483548 + 0.837530i −0.0344514 + 0.0596716i −0.882737 0.469867i \(-0.844302\pi\)
0.848286 + 0.529539i \(0.177635\pi\)
\(198\) −0.710289 −0.0504780
\(199\) 9.38169 0.665051 0.332525 0.943094i \(-0.392099\pi\)
0.332525 + 0.943094i \(0.392099\pi\)
\(200\) 1.01734 1.76209i 0.0719371 0.124599i
\(201\) 2.78633 4.82606i 0.196532 0.340404i
\(202\) −4.77933 8.27804i −0.336272 0.582441i
\(203\) 2.29750 + 2.54355i 0.161253 + 0.178522i
\(204\) −0.612042 1.06009i −0.0428515 0.0742210i
\(205\) 25.0564 1.75001
\(206\) −1.69206 2.93073i −0.117891 0.204194i
\(207\) −2.99126 + 5.18102i −0.207907 + 0.360106i
\(208\) −3.35013 + 4.35228i −0.232290 + 0.301776i
\(209\) 2.37486 0.164273
\(210\) −4.49839 4.98014i −0.310418 0.343662i
\(211\) 10.3756 17.9711i 0.714288 1.23718i −0.248945 0.968518i \(-0.580084\pi\)
0.963233 0.268666i \(-0.0865827\pi\)
\(212\) −2.93290 + 5.07994i −0.201433 + 0.348892i
\(213\) −6.01988 + 10.4267i −0.412475 + 0.714428i
\(214\) −5.33348 −0.364589
\(215\) −12.4268 + 21.5239i −0.847502 + 1.46792i
\(216\) 3.05238 0.207688
\(217\) −10.9627 12.1368i −0.744197 0.823897i
\(218\) −8.83670 + 15.3056i −0.598497 + 1.03663i
\(219\) −8.11924 −0.548647
\(220\) 0.685963 1.18812i 0.0462476 0.0801032i
\(221\) 3.11370 4.04513i 0.209450 0.272105i
\(222\) −4.20754 7.28767i −0.282392 0.489116i
\(223\) −4.05504 + 7.02354i −0.271546 + 0.470331i −0.969258 0.246047i \(-0.920868\pi\)
0.697712 + 0.716378i \(0.254201\pi\)
\(224\) −3.64628 + 11.2826i −0.243627 + 0.753853i
\(225\) −0.333295 0.577284i −0.0222197 0.0384856i
\(226\) 3.80899 + 6.59737i 0.253370 + 0.438850i
\(227\) 2.19729 0.145839 0.0729197 0.997338i \(-0.476768\pi\)
0.0729197 + 0.997338i \(0.476768\pi\)
\(228\) −3.08028 −0.203997
\(229\) −10.1545 17.5882i −0.671030 1.16226i −0.977612 0.210414i \(-0.932519\pi\)
0.306582 0.951844i \(-0.400815\pi\)
\(230\) 7.58738 + 13.1417i 0.500297 + 0.866540i
\(231\) −1.18217 1.30877i −0.0777809 0.0861108i
\(232\) −1.97717 + 3.42456i −0.129808 + 0.224833i
\(233\) −10.7709 18.6557i −0.705624 1.22218i −0.966466 0.256795i \(-0.917333\pi\)
0.260842 0.965382i \(-0.416000\pi\)
\(234\) 1.46485 + 3.55169i 0.0957602 + 0.232181i
\(235\) 13.2055 22.8726i 0.861432 1.49204i
\(236\) 4.45509 0.290001
\(237\) 2.00333 3.46986i 0.130130 0.225392i
\(238\) −1.22742 + 3.79799i −0.0795619 + 0.246187i
\(239\) −17.3697 −1.12355 −0.561775 0.827290i \(-0.689881\pi\)
−0.561775 + 0.827290i \(0.689881\pi\)
\(240\) 1.81308 3.14034i 0.117034 0.202708i
\(241\) −10.5031 −0.676566 −0.338283 0.941044i \(-0.609846\pi\)
−0.338283 + 0.941044i \(0.609846\pi\)
\(242\) 5.62382 9.74074i 0.361513 0.626159i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 2.09125 3.62216i 0.133879 0.231885i
\(245\) 1.68948 16.5774i 0.107937 1.05909i
\(246\) 11.2159 0.715098
\(247\) −4.89775 11.8751i −0.311636 0.755597i
\(248\) 9.43424 16.3406i 0.599075 1.03763i
\(249\) 4.22253 + 7.31363i 0.267592 + 0.463483i
\(250\) 10.9917 0.695179
\(251\) −0.706938 1.22445i −0.0446215 0.0772867i 0.842852 0.538145i \(-0.180875\pi\)
−0.887474 + 0.460859i \(0.847542\pi\)
\(252\) 1.53331 + 1.69752i 0.0965896 + 0.106934i
\(253\) 1.99395 + 3.45362i 0.125358 + 0.217127i
\(254\) −6.07830 + 10.5279i −0.381387 + 0.660581i
\(255\) −1.68512 + 2.91872i −0.105526 + 0.182777i
\(256\) −16.3136 −1.01960
\(257\) −13.7472 −0.857529 −0.428765 0.903416i \(-0.641051\pi\)
−0.428765 + 0.903416i \(0.641051\pi\)
\(258\) −5.56257 + 9.63465i −0.346310 + 0.599827i
\(259\) 6.42538 19.8820i 0.399254 1.23541i
\(260\) −7.35571 0.979756i −0.456182 0.0607619i
\(261\) 0.647747 + 1.12193i 0.0400945 + 0.0694458i
\(262\) −4.58992 7.94998i −0.283566 0.491151i
\(263\) −3.98871 6.90864i −0.245954 0.426005i 0.716445 0.697643i \(-0.245768\pi\)
−0.962399 + 0.271638i \(0.912435\pi\)
\(264\) 1.01734 1.76209i 0.0626132 0.108449i
\(265\) 16.1502 0.992099
\(266\) 6.73248 + 7.45349i 0.412795 + 0.457003i
\(267\) 0.910778 + 1.57751i 0.0557387 + 0.0965423i
\(268\) 2.40903 + 4.17257i 0.147155 + 0.254880i
\(269\) 27.6383 1.68514 0.842569 0.538589i \(-0.181042\pi\)
0.842569 + 0.538589i \(0.181042\pi\)
\(270\) −1.26826 2.19668i −0.0771836 0.133686i
\(271\) 10.3191 0.626838 0.313419 0.949615i \(-0.398526\pi\)
0.313419 + 0.949615i \(0.398526\pi\)
\(272\) −2.15668 −0.130768
\(273\) −4.10630 + 8.61036i −0.248524 + 0.521123i
\(274\) 8.90247 0.537818
\(275\) −0.444343 −0.0267949
\(276\) −2.58622 4.47947i −0.155672 0.269632i
\(277\) −2.15568 −0.129522 −0.0647611 0.997901i \(-0.520629\pi\)
−0.0647611 + 0.997901i \(0.520629\pi\)
\(278\) 5.14304 + 8.90801i 0.308459 + 0.534267i
\(279\) −3.09078 5.35339i −0.185040 0.320499i
\(280\) 18.7978 4.02660i 1.12338 0.240635i
\(281\) −2.60596 −0.155458 −0.0777292 0.996975i \(-0.524767\pi\)
−0.0777292 + 0.996975i \(0.524767\pi\)
\(282\) 5.91112 10.2384i 0.352002 0.609686i
\(283\) −0.866211 1.50032i −0.0514909 0.0891849i 0.839131 0.543929i \(-0.183064\pi\)
−0.890622 + 0.454744i \(0.849731\pi\)
\(284\) −5.20473 9.01486i −0.308844 0.534934i
\(285\) 4.24043 + 7.34465i 0.251182 + 0.435059i
\(286\) 2.53856 + 0.338128i 0.150108 + 0.0199939i
\(287\) 18.6671 + 20.6663i 1.10188 + 1.21989i
\(288\) −2.24080 + 3.88118i −0.132040 + 0.228701i
\(289\) −14.9955 −0.882090
\(290\) 3.28604 0.192963
\(291\) 7.88484 13.6569i 0.462217 0.800584i
\(292\) 3.50991 6.07935i 0.205402 0.355767i
\(293\) −16.4196 28.4396i −0.959243 1.66146i −0.724345 0.689438i \(-0.757858\pi\)
−0.234898 0.972020i \(-0.575476\pi\)
\(294\) 0.756256 7.42045i 0.0441057 0.432770i
\(295\) −6.13305 10.6227i −0.357080 0.618480i
\(296\) 24.1058 1.40112
\(297\) −0.333295 0.577284i −0.0193397 0.0334974i
\(298\) −7.06506 + 12.2370i −0.409268 + 0.708873i
\(299\) 13.1571 17.0929i 0.760896 0.988510i
\(300\) 0.576328 0.0332743
\(301\) −27.0107 + 5.78586i −1.55687 + 0.333492i
\(302\) −8.76088 + 15.1743i −0.504132 + 0.873182i
\(303\) 4.48529 7.76875i 0.257673 0.446303i
\(304\) −2.71353 + 4.69997i −0.155632 + 0.269562i
\(305\) −11.5156 −0.659381
\(306\) −0.754304 + 1.30649i −0.0431207 + 0.0746872i
\(307\) −29.4618 −1.68147 −0.840737 0.541444i \(-0.817878\pi\)
−0.840737 + 0.541444i \(0.817878\pi\)
\(308\) 1.49100 0.319381i 0.0849575 0.0181984i
\(309\) 1.58796 2.75042i 0.0903358 0.156466i
\(310\) −15.6796 −0.890541
\(311\) −3.53099 + 6.11585i −0.200224 + 0.346798i −0.948601 0.316476i \(-0.897500\pi\)
0.748377 + 0.663274i \(0.230834\pi\)
\(312\) −10.9092 1.45306i −0.617610 0.0822635i
\(313\) 8.17883 + 14.1661i 0.462295 + 0.800718i 0.999075 0.0430043i \(-0.0136929\pi\)
−0.536780 + 0.843722i \(0.680360\pi\)
\(314\) 9.75023 16.8879i 0.550237 0.953039i
\(315\) 1.93677 5.99292i 0.109125 0.337663i
\(316\) 1.73206 + 3.00001i 0.0974359 + 0.168764i
\(317\) −9.48109 16.4217i −0.532511 0.922337i −0.999279 0.0379568i \(-0.987915\pi\)
0.466768 0.884380i \(-0.345418\pi\)
\(318\) 7.22925 0.405396
\(319\) 0.863564 0.0483503
\(320\) 9.30997 + 16.1253i 0.520443 + 0.901434i
\(321\) −2.50268 4.33476i −0.139686 0.241943i
\(322\) −5.18654 + 16.0486i −0.289035 + 0.894356i
\(323\) 2.52203 4.36828i 0.140329 0.243057i
\(324\) 0.432296 + 0.748758i 0.0240164 + 0.0415977i
\(325\) 0.916381 + 2.22187i 0.0508317 + 0.123247i
\(326\) −3.61662 + 6.26416i −0.200306 + 0.346940i
\(327\) −16.5861 −0.917213
\(328\) −16.0645 + 27.8245i −0.887011 + 1.53635i
\(329\) 28.7033 6.14841i 1.58246 0.338973i
\(330\) −1.69081 −0.0930763
\(331\) 9.51894 16.4873i 0.523208 0.906223i −0.476427 0.879214i \(-0.658068\pi\)
0.999635 0.0270089i \(-0.00859826\pi\)
\(332\) −7.30152 −0.400723
\(333\) 3.94868 6.83932i 0.216386 0.374792i
\(334\) 0.881041 1.52601i 0.0482084 0.0834994i
\(335\) 6.63274 11.4882i 0.362385 0.627669i
\(336\) 3.94087 0.844159i 0.214992 0.0460526i
\(337\) 1.90388 0.103711 0.0518555 0.998655i \(-0.483486\pi\)
0.0518555 + 0.998655i \(0.483486\pi\)
\(338\) −3.54460 13.3910i −0.192801 0.728376i
\(339\) −3.57465 + 6.19148i −0.194149 + 0.336275i
\(340\) −1.45694 2.52350i −0.0790138 0.136856i
\(341\) −4.12057 −0.223141
\(342\) 1.89813 + 3.28765i 0.102639 + 0.177776i
\(343\) 14.9315 10.9567i 0.806226 0.591608i
\(344\) −15.9345 27.5993i −0.859130 1.48806i
\(345\) −7.12058 + 12.3332i −0.383359 + 0.663998i
\(346\) 6.38687 11.0624i 0.343360 0.594718i
\(347\) −20.8805 −1.12092 −0.560462 0.828180i \(-0.689376\pi\)
−0.560462 + 0.828180i \(0.689376\pi\)
\(348\) −1.12007 −0.0600422
\(349\) −4.79951 + 8.31300i −0.256912 + 0.444984i −0.965413 0.260725i \(-0.916038\pi\)
0.708501 + 0.705710i \(0.249372\pi\)
\(350\) −1.25966 1.39457i −0.0673319 0.0745428i
\(351\) −2.19926 + 2.85714i −0.117388 + 0.152503i
\(352\) 1.49370 + 2.58716i 0.0796143 + 0.137896i
\(353\) −5.40698 9.36517i −0.287785 0.498457i 0.685496 0.728076i \(-0.259585\pi\)
−0.973281 + 0.229619i \(0.926252\pi\)
\(354\) −2.74531 4.75502i −0.145912 0.252726i
\(355\) −14.3301 + 24.8204i −0.760561 + 1.31733i
\(356\) −1.57490 −0.0834696
\(357\) −3.66275 + 0.784584i −0.193853 + 0.0415246i
\(358\) 1.42260 + 2.46402i 0.0751870 + 0.130228i
\(359\) 14.4945 + 25.1052i 0.764990 + 1.32500i 0.940252 + 0.340479i \(0.110589\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(360\) 7.26607 0.382956
\(361\) 3.15358 + 5.46217i 0.165978 + 0.287482i
\(362\) −0.801393 −0.0421203
\(363\) 10.5557 0.554028
\(364\) −4.67194 6.79684i −0.244876 0.356251i
\(365\) −19.3275 −1.01165
\(366\) −5.15468 −0.269439
\(367\) 16.2867 + 28.2093i 0.850156 + 1.47251i 0.881067 + 0.472992i \(0.156826\pi\)
−0.0309103 + 0.999522i \(0.509841\pi\)
\(368\) −9.11318 −0.475057
\(369\) 5.26293 + 9.11566i 0.273977 + 0.474542i
\(370\) −10.0159 17.3480i −0.520701 0.901880i
\(371\) 12.0320 + 13.3205i 0.624669 + 0.691568i
\(372\) 5.34452 0.277101
\(373\) 11.9389 20.6788i 0.618172 1.07071i −0.371647 0.928374i \(-0.621207\pi\)
0.989819 0.142331i \(-0.0454598\pi\)
\(374\) 0.502812 + 0.870896i 0.0259998 + 0.0450329i
\(375\) 5.15775 + 8.93349i 0.266345 + 0.461324i
\(376\) 16.9330 + 29.3287i 0.873250 + 1.51251i
\(377\) −1.78095 4.31812i −0.0917237 0.222395i
\(378\) 0.866948 2.68258i 0.0445910 0.137977i
\(379\) −4.89406 + 8.47676i −0.251391 + 0.435422i −0.963909 0.266232i \(-0.914221\pi\)
0.712518 + 0.701654i \(0.247555\pi\)
\(380\) −7.33248 −0.376148
\(381\) −11.4087 −0.584486
\(382\) −2.74814 + 4.75992i −0.140607 + 0.243539i
\(383\) −7.42839 + 12.8664i −0.379573 + 0.657440i −0.991000 0.133861i \(-0.957262\pi\)
0.611427 + 0.791301i \(0.290596\pi\)
\(384\) −0.314218 0.544241i −0.0160349 0.0277732i
\(385\) −2.81410 3.11548i −0.143420 0.158779i
\(386\) −1.51643 2.62653i −0.0771841 0.133687i
\(387\) −10.4407 −0.530730
\(388\) 6.81716 + 11.8077i 0.346089 + 0.599444i
\(389\) −9.62735 + 16.6751i −0.488126 + 0.845459i −0.999907 0.0136568i \(-0.995653\pi\)
0.511781 + 0.859116i \(0.328986\pi\)
\(390\) 3.48702 + 8.45467i 0.176572 + 0.428119i
\(391\) 8.47003 0.428348
\(392\) 17.3255 + 12.5044i 0.875072 + 0.631568i
\(393\) 4.30754 7.46087i 0.217287 0.376351i
\(394\) −0.515248 + 0.892435i −0.0259578 + 0.0449602i
\(395\) 4.76884 8.25987i 0.239946 0.415599i
\(396\) 0.576328 0.0289616
\(397\) −19.1505 + 33.1696i −0.961136 + 1.66474i −0.241481 + 0.970406i \(0.577633\pi\)
−0.719655 + 0.694331i \(0.755700\pi\)
\(398\) 9.99671 0.501090
\(399\) −2.89865 + 8.96926i −0.145114 + 0.449025i
\(400\) 0.507708 0.879376i 0.0253854 0.0439688i
\(401\) 35.6114 1.77835 0.889175 0.457566i \(-0.151279\pi\)
0.889175 + 0.457566i \(0.151279\pi\)
\(402\) 2.96898 5.14243i 0.148080 0.256481i
\(403\) 8.49796 + 20.6043i 0.423314 + 1.02637i
\(404\) 3.87794 + 6.71680i 0.192935 + 0.334173i
\(405\) 1.19023 2.06154i 0.0591430 0.102439i
\(406\) 2.44811 + 2.71029i 0.121498 + 0.134510i
\(407\) −2.63215 4.55902i −0.130471 0.225982i
\(408\) −2.16077 3.74257i −0.106974 0.185285i
\(409\) −3.16472 −0.156485 −0.0782426 0.996934i \(-0.524931\pi\)
−0.0782426 + 0.996934i \(0.524931\pi\)
\(410\) 26.6990 1.31857
\(411\) 4.17738 + 7.23544i 0.206055 + 0.356898i
\(412\) 1.37293 + 2.37799i 0.0676396 + 0.117155i
\(413\) 4.19240 12.9725i 0.206294 0.638333i
\(414\) −3.18736 + 5.52067i −0.156650 + 0.271326i
\(415\) 10.0516 + 17.4098i 0.493412 + 0.854614i
\(416\) 9.85620 12.8046i 0.483240 0.627796i
\(417\) −4.82663 + 8.35996i −0.236361 + 0.409389i
\(418\) 2.53055 0.123773
\(419\) 11.0530 19.1444i 0.539975 0.935265i −0.458929 0.888473i \(-0.651767\pi\)
0.998905 0.0467918i \(-0.0148997\pi\)
\(420\) 3.64999 + 4.04088i 0.178101 + 0.197175i
\(421\) 7.75012 0.377718 0.188859 0.982004i \(-0.439521\pi\)
0.188859 + 0.982004i \(0.439521\pi\)
\(422\) 11.0558 19.1492i 0.538189 0.932170i
\(423\) 11.0949 0.539453
\(424\) −10.3544 + 17.9344i −0.502855 + 0.870971i
\(425\) −0.471878 + 0.817316i −0.0228894 + 0.0396456i
\(426\) −6.41451 + 11.1103i −0.310784 + 0.538294i
\(427\) −8.57917 9.49795i −0.415175 0.459638i
\(428\) 4.32759 0.209182
\(429\) 0.916381 + 2.22187i 0.0442433 + 0.107273i
\(430\) −13.2415 + 22.9349i −0.638560 + 1.10602i
\(431\) 17.2795 + 29.9290i 0.832324 + 1.44163i 0.896191 + 0.443669i \(0.146323\pi\)
−0.0638670 + 0.997958i \(0.520343\pi\)
\(432\) 1.52330 0.0732898
\(433\) −12.2389 21.1985i −0.588166 1.01873i −0.994473 0.104997i \(-0.966517\pi\)
0.406306 0.913737i \(-0.366817\pi\)
\(434\) −11.6814 12.9324i −0.560724 0.620774i
\(435\) 1.54194 + 2.67071i 0.0739302 + 0.128051i
\(436\) 7.17010 12.4190i 0.343385 0.594761i
\(437\) 10.6570 18.4584i 0.509792 0.882986i
\(438\) −8.65150 −0.413385
\(439\) −10.7270 −0.511970 −0.255985 0.966681i \(-0.582400\pi\)
−0.255985 + 0.966681i \(0.582400\pi\)
\(440\) 2.42175 4.19459i 0.115452 0.199969i
\(441\) 6.38580 2.86732i 0.304086 0.136539i
\(442\) 3.31782 4.31031i 0.157813 0.205020i
\(443\) 19.9363 + 34.5306i 0.947200 + 1.64060i 0.751284 + 0.659979i \(0.229435\pi\)
0.195916 + 0.980621i \(0.437232\pi\)
\(444\) 3.41400 + 5.91321i 0.162021 + 0.280629i
\(445\) 2.16807 + 3.75521i 0.102776 + 0.178014i
\(446\) −4.32087 + 7.48397i −0.204599 + 0.354376i
\(447\) −13.2608 −0.627214
\(448\) −6.36406 + 19.6922i −0.300674 + 0.930370i
\(449\) 15.2790 + 26.4640i 0.721060 + 1.24891i 0.960575 + 0.278021i \(0.0896783\pi\)
−0.239515 + 0.970893i \(0.576988\pi\)
\(450\) −0.355145 0.615128i −0.0167417 0.0289974i
\(451\) 7.01643 0.330391
\(452\) −3.09062 5.35310i −0.145370 0.251789i
\(453\) −16.4438 −0.772596
\(454\) 2.34134 0.109884
\(455\) −9.77487 + 20.4966i −0.458253 + 0.960897i
\(456\) −10.8747 −0.509255
\(457\) −16.0347 −0.750070 −0.375035 0.927011i \(-0.622369\pi\)
−0.375035 + 0.927011i \(0.622369\pi\)
\(458\) −10.8202 18.7412i −0.505596 0.875717i
\(459\) −1.41579 −0.0660836
\(460\) −6.15640 10.6632i −0.287043 0.497174i
\(461\) 19.7152 + 34.1477i 0.918227 + 1.59042i 0.802106 + 0.597181i \(0.203713\pi\)
0.116121 + 0.993235i \(0.462954\pi\)
\(462\) −1.25966 1.39457i −0.0586049 0.0648812i
\(463\) −25.9972 −1.20819 −0.604096 0.796912i \(-0.706466\pi\)
−0.604096 + 0.796912i \(0.706466\pi\)
\(464\) −0.986712 + 1.70904i −0.0458070 + 0.0793400i
\(465\) −7.35748 12.7435i −0.341195 0.590967i
\(466\) −11.4770 19.8787i −0.531661 0.920863i
\(467\) −10.4162 18.0413i −0.482003 0.834854i 0.517784 0.855512i \(-0.326757\pi\)
−0.999787 + 0.0206579i \(0.993424\pi\)
\(468\) −1.18858 2.88184i −0.0549421 0.133213i
\(469\) 14.4168 3.08817i 0.665706 0.142598i
\(470\) 14.0712 24.3720i 0.649056 1.12420i
\(471\) 18.3008 0.843254
\(472\) 15.7284 0.723957
\(473\) −3.47983 + 6.02724i −0.160003 + 0.277133i
\(474\) 2.13466 3.69733i 0.0980480 0.169824i
\(475\) 1.18743 + 2.05669i 0.0544831 + 0.0943674i
\(476\) 0.995929 3.08169i 0.0456483 0.141249i
\(477\) 3.39224 + 5.87554i 0.155320 + 0.269022i
\(478\) −18.5083 −0.846552
\(479\) 15.4439 + 26.7496i 0.705650 + 1.22222i 0.966456 + 0.256831i \(0.0826783\pi\)
−0.260806 + 0.965391i \(0.583988\pi\)
\(480\) −5.33414 + 9.23900i −0.243469 + 0.421701i
\(481\) −17.3683 + 22.5639i −0.791928 + 1.02882i
\(482\) −11.1917 −0.509766
\(483\) −15.4772 + 3.31531i −0.704236 + 0.150852i
\(484\) −4.56317 + 7.90363i −0.207417 + 0.359256i
\(485\) 18.7695 32.5098i 0.852281 1.47619i
\(486\) 0.532778 0.922798i 0.0241673 0.0418590i
\(487\) 22.4271 1.01627 0.508135 0.861278i \(-0.330335\pi\)
0.508135 + 0.861278i \(0.330335\pi\)
\(488\) 7.38302 12.7878i 0.334214 0.578875i
\(489\) −6.78823 −0.306974
\(490\) 1.80024 17.6641i 0.0813264 0.797982i
\(491\) −6.66716 + 11.5479i −0.300885 + 0.521147i −0.976337 0.216257i \(-0.930615\pi\)
0.675452 + 0.737404i \(0.263949\pi\)
\(492\) −9.10056 −0.410285
\(493\) 0.917077 1.58842i 0.0413031 0.0715390i
\(494\) −5.21882 12.6536i −0.234806 0.569313i
\(495\) −0.793396 1.37420i −0.0356605 0.0617658i
\(496\) 4.70818 8.15481i 0.211404 0.366162i
\(497\) −31.1476 + 6.67201i −1.39716 + 0.299280i
\(498\) 4.49934 + 7.79308i 0.201620 + 0.349216i
\(499\) −15.2608 26.4324i −0.683165 1.18328i −0.974010 0.226507i \(-0.927269\pi\)
0.290844 0.956770i \(-0.406064\pi\)
\(500\) −8.91870 −0.398856
\(501\) 1.65367 0.0738807
\(502\) −0.753281 1.30472i −0.0336206 0.0582326i
\(503\) −12.1432 21.0327i −0.541441 0.937803i −0.998822 0.0485320i \(-0.984546\pi\)
0.457381 0.889271i \(-0.348788\pi\)
\(504\) 5.41325 + 5.99299i 0.241126 + 0.266949i
\(505\) 10.6771 18.4932i 0.475123 0.822937i
\(506\) 2.12466 + 3.68002i 0.0944528 + 0.163597i
\(507\) 9.22024 9.16445i 0.409485 0.407007i
\(508\) 4.93193 8.54236i 0.218819 0.379006i
\(509\) 23.4638 1.04001 0.520007 0.854162i \(-0.325929\pi\)
0.520007 + 0.854162i \(0.325929\pi\)
\(510\) −1.79559 + 3.11005i −0.0795101 + 0.137716i
\(511\) −14.3991 15.9412i −0.636978 0.705195i
\(512\) −16.1262 −0.712684
\(513\) −1.78135 + 3.08539i −0.0786485 + 0.136223i
\(514\) −14.6484 −0.646115
\(515\) 3.78007 6.54727i 0.166570 0.288507i
\(516\) 4.51346 7.81755i 0.198694 0.344148i
\(517\) 3.69788 6.40492i 0.162633 0.281688i
\(518\) 6.84660 21.1853i 0.300822 0.930831i
\(519\) 11.9879 0.526209
\(520\) −25.9688 3.45896i −1.13881 0.151685i
\(521\) 2.93601 5.08531i 0.128629 0.222791i −0.794517 0.607242i \(-0.792276\pi\)
0.923146 + 0.384451i \(0.125609\pi\)
\(522\) 0.690210 + 1.19548i 0.0302097 + 0.0523247i
\(523\) 10.0697 0.440316 0.220158 0.975464i \(-0.429343\pi\)
0.220158 + 0.975464i \(0.429343\pi\)
\(524\) 3.72426 + 6.45061i 0.162695 + 0.281796i
\(525\) 0.542345 1.67817i 0.0236699 0.0732414i
\(526\) −4.25019 7.36154i −0.185317 0.320978i
\(527\) −4.37591 + 7.57930i −0.190618 + 0.330159i
\(528\) 0.507708 0.879376i 0.0220952 0.0382699i
\(529\) 12.7906 0.556115
\(530\) 17.2089 0.747509
\(531\) 2.57641 4.46248i 0.111807 0.193655i
\(532\) −5.46273 6.04776i −0.236839 0.262204i
\(533\) −14.4702 35.0846i −0.626773 1.51968i
\(534\) 0.970485 + 1.68093i 0.0419970 + 0.0727409i
\(535\) −5.95752 10.3187i −0.257566 0.446118i
\(536\) 8.50493 + 14.7310i 0.367357 + 0.636281i
\(537\) −1.33508 + 2.31243i −0.0576131 + 0.0997888i
\(538\) 29.4502 1.26969
\(539\) 0.473099 4.64209i 0.0203778 0.199949i
\(540\) 1.02906 + 1.78239i 0.0442838 + 0.0767018i
\(541\) 19.5150 + 33.8010i 0.839015 + 1.45322i 0.890719 + 0.454555i \(0.150202\pi\)
−0.0517032 + 0.998662i \(0.516465\pi\)
\(542\) 10.9955 0.472298
\(543\) −0.376045 0.651328i −0.0161376 0.0279512i
\(544\) 6.34503 0.272041
\(545\) −39.4825 −1.69125
\(546\) −4.37549 + 9.17482i −0.187254 + 0.392646i
\(547\) −30.9149 −1.32183 −0.660913 0.750462i \(-0.729831\pi\)
−0.660913 + 0.750462i \(0.729831\pi\)
\(548\) −7.22346 −0.308571
\(549\) −2.41878 4.18944i −0.103231 0.178801i
\(550\) −0.473472 −0.0201889
\(551\) −2.30773 3.99710i −0.0983125 0.170282i
\(552\) −9.13048 15.8145i −0.388619 0.673108i
\(553\) 10.3655 2.22035i 0.440784 0.0944187i
\(554\) −2.29700 −0.0975901
\(555\) 9.39968 16.2807i 0.398994 0.691078i
\(556\) −4.17306 7.22795i −0.176977 0.306533i
\(557\) 5.41116 + 9.37241i 0.229278 + 0.397122i 0.957594 0.288120i \(-0.0930301\pi\)
−0.728316 + 0.685241i \(0.759697\pi\)
\(558\) −3.29340 5.70433i −0.139421 0.241484i
\(559\) 37.3149 + 4.97021i 1.57825 + 0.210218i
\(560\) 9.38109 2.00949i 0.396423 0.0849163i
\(561\) −0.471878 + 0.817316i −0.0199227 + 0.0345071i
\(562\) −2.77679 −0.117132
\(563\) −33.1161 −1.39568 −0.697839 0.716254i \(-0.745855\pi\)
−0.697839 + 0.716254i \(0.745855\pi\)
\(564\) −4.79628 + 8.30741i −0.201960 + 0.349805i
\(565\) −8.50932 + 14.7386i −0.357990 + 0.620057i
\(566\) −0.922996 1.59868i −0.0387964 0.0671974i
\(567\) 2.58706 0.554165i 0.108646 0.0232727i
\(568\) −18.3750 31.8264i −0.770996 1.33540i
\(569\) −25.4161 −1.06550 −0.532749 0.846273i \(-0.678841\pi\)
−0.532749 + 0.846273i \(0.678841\pi\)
\(570\) 4.51842 + 7.82613i 0.189256 + 0.327800i
\(571\) 19.9266 34.5138i 0.833901 1.44436i −0.0610215 0.998136i \(-0.519436\pi\)
0.894922 0.446222i \(-0.147231\pi\)
\(572\) −2.05979 0.274357i −0.0861241 0.0114714i
\(573\) −5.15813 −0.215484
\(574\) 19.8908 + 22.0210i 0.830228 + 0.919141i
\(575\) −1.99395 + 3.45362i −0.0831534 + 0.144026i
\(576\) −3.91100 + 6.77405i −0.162958 + 0.282252i
\(577\) −3.99457 + 6.91879i −0.166296 + 0.288033i −0.937115 0.349021i \(-0.886514\pi\)
0.770819 + 0.637054i \(0.219847\pi\)
\(578\) −15.9786 −0.664621
\(579\) 1.42313 2.46494i 0.0591434 0.102439i
\(580\) −2.66629 −0.110712
\(581\) −6.87099 + 21.2608i −0.285057 + 0.882047i
\(582\) 8.40173 14.5522i 0.348263 0.603209i
\(583\) 4.52247 0.187302
\(584\) 12.3915 21.4627i 0.512764 0.888134i
\(585\) −5.23525 + 6.80131i −0.216451 + 0.281200i
\(586\) −17.4960 30.3039i −0.722753 1.25184i
\(587\) 7.56713 13.1067i 0.312329 0.540969i −0.666537 0.745472i \(-0.732224\pi\)
0.978866 + 0.204502i \(0.0655576\pi\)
\(588\) −0.613626 + 6.02095i −0.0253055 + 0.248300i
\(589\) 11.0115 + 19.0725i 0.453722 + 0.785869i
\(590\) −6.53510 11.3191i −0.269046 0.466001i
\(591\) −0.967097 −0.0397810
\(592\) 12.0300 0.494432
\(593\) −10.5712 18.3099i −0.434109 0.751898i 0.563114 0.826379i \(-0.309603\pi\)
−0.997222 + 0.0744812i \(0.976270\pi\)
\(594\) −0.355145 0.615128i −0.0145718 0.0252390i
\(595\) −8.71904 + 1.86767i −0.357446 + 0.0765670i
\(596\) 5.73259 9.92913i 0.234816 0.406713i
\(597\) 4.69085 + 8.12478i 0.191984 + 0.332525i
\(598\) 14.0196 18.2135i 0.573306 0.744804i
\(599\) 4.21779 7.30543i 0.172334 0.298492i −0.766901 0.641765i \(-0.778202\pi\)
0.939236 + 0.343273i \(0.111536\pi\)
\(600\) 2.03469 0.0830658
\(601\) 8.61342 14.9189i 0.351349 0.608554i −0.635137 0.772399i \(-0.719056\pi\)
0.986486 + 0.163845i \(0.0523898\pi\)
\(602\) −28.7814 + 6.16516i −1.17304 + 0.251273i
\(603\) 5.57265 0.226936
\(604\) 7.10857 12.3124i 0.289244 0.500985i
\(605\) 25.1273 1.02157
\(606\) 4.77933 8.27804i 0.194147 0.336272i
\(607\) −8.29269 + 14.3634i −0.336590 + 0.582991i −0.983789 0.179330i \(-0.942607\pi\)
0.647199 + 0.762321i \(0.275940\pi\)
\(608\) 7.98330 13.8275i 0.323766 0.560779i
\(609\) −1.05403 + 3.26147i −0.0427114 + 0.132161i
\(610\) −12.2705 −0.496818
\(611\) −39.6531 5.28165i −1.60419 0.213673i
\(612\) 0.612042 1.06009i 0.0247403 0.0428515i
\(613\) 8.60287 + 14.9006i 0.347467 + 0.601830i 0.985799 0.167931i \(-0.0537086\pi\)
−0.638332 + 0.769761i \(0.720375\pi\)
\(614\) −31.3932 −1.26693
\(615\) 12.5282 + 21.6995i 0.505185 + 0.875007i
\(616\) 5.26387 1.12755i 0.212087 0.0454304i
\(617\) 24.1220 + 41.7805i 0.971115 + 1.68202i 0.692202 + 0.721704i \(0.256641\pi\)
0.278913 + 0.960316i \(0.410026\pi\)
\(618\) 1.69206 2.93073i 0.0680645 0.117891i
\(619\) 18.8263 32.6081i 0.756694 1.31063i −0.187834 0.982201i \(-0.560147\pi\)
0.944528 0.328431i \(-0.106520\pi\)
\(620\) 12.7224 0.510945
\(621\) −5.98253 −0.240071
\(622\) −3.76246 + 6.51678i −0.150861 + 0.261299i
\(623\) −1.48204 + 4.58585i −0.0593766 + 0.183728i
\(624\) −5.44425 0.725155i −0.217944 0.0290295i
\(625\) 13.9443 + 24.1522i 0.557772 + 0.966090i
\(626\) 8.71499 + 15.0948i 0.348321 + 0.603310i
\(627\) 1.18743 + 2.05669i 0.0474214 + 0.0821363i
\(628\) −7.91134 + 13.7028i −0.315697 + 0.546803i
\(629\) −11.1810 −0.445817
\(630\) 2.06374 6.38579i 0.0822212 0.254416i
\(631\) −9.79240 16.9609i −0.389829 0.675204i 0.602597 0.798046i \(-0.294133\pi\)
−0.992426 + 0.122841i \(0.960799\pi\)
\(632\) 6.11491 + 10.5913i 0.243238 + 0.421301i
\(633\) 20.7513 0.824789
\(634\) −10.1026 17.4983i −0.401227 0.694945i
\(635\) −27.1580 −1.07773
\(636\) −5.86581 −0.232594
\(637\) −24.1877 + 7.20785i −0.958353 + 0.285585i
\(638\) 0.920175 0.0364301
\(639\) −12.0398 −0.476285
\(640\) −0.747983 1.29554i −0.0295666 0.0512109i
\(641\) −13.9241 −0.549969 −0.274984 0.961449i \(-0.588673\pi\)
−0.274984 + 0.961449i \(0.588673\pi\)
\(642\) −2.66674 4.61893i −0.105248 0.182295i
\(643\) 10.3893 + 17.9948i 0.409714 + 0.709645i 0.994858 0.101284i \(-0.0322952\pi\)
−0.585144 + 0.810930i \(0.698962\pi\)
\(644\) 4.20836 13.0219i 0.165833 0.513133i
\(645\) −24.8536 −0.978611
\(646\) 2.68736 4.65464i 0.105733 0.183134i
\(647\) 3.96380 + 6.86551i 0.155833 + 0.269911i 0.933362 0.358936i \(-0.116860\pi\)
−0.777529 + 0.628847i \(0.783527\pi\)
\(648\) 1.52619 + 2.64344i 0.0599544 + 0.103844i
\(649\) −1.71741 2.97464i −0.0674143 0.116765i
\(650\) 0.976455 + 2.36752i 0.0382997 + 0.0928620i
\(651\) 5.02939 15.5624i 0.197117 0.609937i
\(652\) 2.93452 5.08274i 0.114925 0.199055i
\(653\) 36.2648 1.41915 0.709576 0.704629i \(-0.248887\pi\)
0.709576 + 0.704629i \(0.248887\pi\)
\(654\) −17.6734 −0.691085
\(655\) 10.2539 17.7603i 0.400654 0.693953i
\(656\) −8.01701 + 13.8859i −0.313012 + 0.542152i
\(657\) −4.05962 7.03147i −0.158381 0.274324i
\(658\) 30.5849 6.55147i 1.19232 0.255403i
\(659\) 11.6108 + 20.1105i 0.452293 + 0.783395i 0.998528 0.0542371i \(-0.0172727\pi\)
−0.546235 + 0.837632i \(0.683939\pi\)
\(660\) 1.37193 0.0534022
\(661\) 9.43649 + 16.3445i 0.367037 + 0.635726i 0.989101 0.147240i \(-0.0470390\pi\)
−0.622064 + 0.782966i \(0.713706\pi\)
\(662\) 10.1430 17.5681i 0.394217 0.682804i
\(663\) 5.06003 + 0.673979i 0.196515 + 0.0261752i
\(664\) −25.7775 −1.00036
\(665\) −6.90013 + 21.3510i −0.267575 + 0.827955i
\(666\) 4.20754 7.28767i 0.163039 0.282392i
\(667\) 3.87517 6.71198i 0.150047 0.259889i
\(668\) −0.714876 + 1.23820i −0.0276594 + 0.0479075i
\(669\) −8.11008 −0.313554
\(670\) 7.06755 12.2414i 0.273043 0.472925i
\(671\) −3.22466 −0.124487
\(672\) −11.5942 + 2.48355i −0.447256 + 0.0958049i
\(673\) −6.68396 + 11.5770i −0.257648 + 0.446259i −0.965611 0.259990i \(-0.916281\pi\)
0.707964 + 0.706249i \(0.249614\pi\)
\(674\) 2.02869 0.0781423
\(675\) 0.333295 0.577284i 0.0128285 0.0222197i
\(676\) 2.87608 + 10.8655i 0.110619 + 0.417903i
\(677\) 10.5600 + 18.2904i 0.405853 + 0.702958i 0.994420 0.105490i \(-0.0336412\pi\)
−0.588567 + 0.808448i \(0.700308\pi\)
\(678\) −3.80899 + 6.59737i −0.146283 + 0.253370i
\(679\) 40.7972 8.73900i 1.56565 0.335372i
\(680\) −5.14363 8.90903i −0.197249 0.341646i
\(681\) 1.09865 + 1.90291i 0.0421002 + 0.0729197i
\(682\) −4.39069 −0.168128
\(683\) −33.8330 −1.29458 −0.647291 0.762243i \(-0.724098\pi\)
−0.647291 + 0.762243i \(0.724098\pi\)
\(684\) −1.54014 2.66760i −0.0588887 0.101998i
\(685\) 9.94409 + 17.2237i 0.379944 + 0.658083i
\(686\) 15.9104 11.6750i 0.607460 0.445754i
\(687\) 10.1545 17.5882i 0.387420 0.671030i
\(688\) −7.95214 13.7735i −0.303173 0.525110i
\(689\) −9.32683 22.6140i −0.355324 0.861523i
\(690\) −7.58738 + 13.1417i −0.288847 + 0.500297i
\(691\) 26.3523 1.00249 0.501245 0.865306i \(-0.332876\pi\)
0.501245 + 0.865306i \(0.332876\pi\)
\(692\) −5.18231 + 8.97602i −0.197002 + 0.341217i
\(693\) 0.542345 1.67817i 0.0206020 0.0637485i
\(694\) −22.2493 −0.844573
\(695\) −11.4896 + 19.9006i −0.435825 + 0.754871i
\(696\) −3.95434 −0.149889
\(697\) 7.45122 12.9059i 0.282235 0.488846i
\(698\) −5.11414 + 8.85796i −0.193573 + 0.335279i
\(699\) 10.7709 18.6557i 0.407392 0.705624i
\(700\) 1.02209 + 1.13155i 0.0386314 + 0.0427686i
\(701\) 11.2115 0.423453 0.211727 0.977329i \(-0.432091\pi\)
0.211727 + 0.977329i \(0.432091\pi\)
\(702\) −2.34343 + 3.04444i −0.0884471 + 0.114905i
\(703\) −14.0680 + 24.3664i −0.530583 + 0.918997i
\(704\) 2.60703 + 4.51551i 0.0982563 + 0.170185i
\(705\) 26.4110 0.994696
\(706\) −5.76144 9.97910i −0.216835 0.375569i
\(707\) 23.2075 4.97118i 0.872807 0.186961i
\(708\) 2.22754 + 3.85822i 0.0837162 + 0.145001i
\(709\) −5.75056 + 9.96027i −0.215967 + 0.374066i −0.953571 0.301168i \(-0.902624\pi\)
0.737604 + 0.675233i \(0.235957\pi\)
\(710\) −15.2695 + 26.4475i −0.573054 + 0.992558i
\(711\) 4.00665 0.150261
\(712\) −5.56008 −0.208373
\(713\) −18.4907 + 32.0268i −0.692481 + 1.19941i
\(714\) −3.90287 + 0.836018i −0.146061 + 0.0312872i
\(715\) 2.18141 + 5.28907i 0.0815800 + 0.197800i
\(716\) −1.15430 1.99931i −0.0431383 0.0747176i
\(717\) −8.68483 15.0426i −0.324341 0.561775i
\(718\) 15.4447 + 26.7510i 0.576390 + 0.998337i
\(719\) −12.0552 + 20.8803i −0.449585 + 0.778704i −0.998359 0.0572668i \(-0.981761\pi\)
0.548774 + 0.835971i \(0.315095\pi\)
\(720\) 3.62615 0.135139
\(721\) 8.21630 1.75998i 0.305991 0.0655451i
\(722\) 3.36032 + 5.82024i 0.125058 + 0.216607i
\(723\) −5.25156 9.09597i −0.195308 0.338283i
\(724\) 0.650250 0.0241663
\(725\) 0.431782 + 0.747868i 0.0160360 + 0.0277751i
\(726\) 11.2476 0.417439
\(727\) 27.2156 1.00937 0.504686 0.863303i \(-0.331608\pi\)
0.504686 + 0.863303i \(0.331608\pi\)
\(728\) −16.4940 23.9958i −0.611308 0.889343i
\(729\) 1.00000 0.0370370
\(730\) −20.5946 −0.762239
\(731\) 7.39094 + 12.8015i 0.273364 + 0.473480i
\(732\) 4.18250 0.154590
\(733\) −0.965303 1.67195i −0.0356543 0.0617550i 0.847648 0.530560i \(-0.178018\pi\)
−0.883302 + 0.468805i \(0.844685\pi\)
\(734\) 17.3543 + 30.0586i 0.640560 + 1.10948i
\(735\) 15.2011 6.82554i 0.560703 0.251764i
\(736\) 26.8113 0.988278
\(737\) 1.85734 3.21700i 0.0684159 0.118500i
\(738\) 5.60794 + 9.71324i 0.206431 + 0.357549i
\(739\) −11.3609 19.6776i −0.417916 0.723851i 0.577814 0.816169i \(-0.303906\pi\)
−0.995730 + 0.0923172i \(0.970573\pi\)
\(740\) 8.12688 + 14.0762i 0.298750 + 0.517450i
\(741\) 7.83530 10.1791i 0.287837 0.373940i
\(742\) 12.8207 + 14.1938i 0.470664 + 0.521070i
\(743\) 10.9451 18.9574i 0.401535 0.695480i −0.592376 0.805662i \(-0.701810\pi\)
0.993911 + 0.110182i \(0.0351434\pi\)
\(744\) 18.8685 0.691752
\(745\) −31.5668 −1.15652
\(746\) 12.7215 22.0344i 0.465769 0.806735i
\(747\) −4.22253 + 7.31363i −0.154494 + 0.267592i
\(748\) −0.407981 0.706644i −0.0149173 0.0258375i
\(749\) 4.07241 12.6012i 0.148803 0.460438i
\(750\) 5.49587 + 9.51913i 0.200681 + 0.347590i
\(751\) 24.6771 0.900480 0.450240 0.892908i \(-0.351338\pi\)
0.450240 + 0.892908i \(0.351338\pi\)
\(752\) 8.45044 + 14.6366i 0.308156 + 0.533741i
\(753\) 0.706938 1.22445i 0.0257622 0.0446215i
\(754\) −1.89770 4.60120i −0.0691103 0.167566i
\(755\) −39.1438 −1.42459
\(756\) −0.703441 + 2.17665i −0.0255839 + 0.0791639i
\(757\) 1.04346 1.80733i 0.0379252 0.0656884i −0.846440 0.532484i \(-0.821258\pi\)
0.884365 + 0.466796i \(0.154592\pi\)
\(758\) −5.21489 + 9.03246i −0.189413 + 0.328074i
\(759\) −1.99395 + 3.45362i −0.0723757 + 0.125358i
\(760\) −25.8868 −0.939014
\(761\) 10.7988 18.7040i 0.391455 0.678020i −0.601186 0.799109i \(-0.705305\pi\)
0.992642 + 0.121088i \(0.0386384\pi\)
\(762\) −12.1566 −0.440387
\(763\) −29.4147 32.5648i −1.06488 1.17893i
\(764\) 2.22984 3.86219i 0.0806727 0.139729i
\(765\) −3.37024 −0.121851
\(766\) −7.91537 + 13.7098i −0.285994 + 0.495356i
\(767\) −11.3324 + 14.7223i −0.409189 + 0.531593i
\(768\) −8.15681 14.1280i −0.294334 0.509801i
\(769\) 2.39533 4.14883i 0.0863777 0.149611i −0.819600 0.572937i \(-0.805804\pi\)
0.905977 + 0.423326i \(0.139137\pi\)
\(770\) −2.99858 3.31971i −0.108061 0.119634i
\(771\) −6.87362 11.9055i −0.247547 0.428765i
\(772\) 1.23043 + 2.13116i 0.0442841 + 0.0767023i
\(773\) 10.5896 0.380882 0.190441 0.981699i \(-0.439008\pi\)
0.190441 + 0.981699i \(0.439008\pi\)
\(774\) −11.1251 −0.399885
\(775\) −2.06028 3.56852i −0.0740076 0.128185i
\(776\) 24.0675 + 41.6862i 0.863974 + 1.49645i
\(777\) 20.4310 4.37644i 0.732957 0.157004i
\(778\) −10.2585 + 17.7682i −0.367784 + 0.637021i
\(779\) −18.7502 32.4764i −0.671797 1.16359i
\(780\) −2.82936 6.86011i −0.101307 0.245631i
\(781\) −4.01279 + 6.95036i −0.143589 + 0.248703i
\(782\) 9.02529 0.322744
\(783\) −0.647747 + 1.12193i −0.0231486 + 0.0400945i
\(784\) 8.64636 + 6.24036i 0.308798 + 0.222870i
\(785\) 43.5642 1.55487
\(786\) 4.58992 7.94998i 0.163717 0.283566i
\(787\) −30.2310 −1.07762 −0.538810 0.842427i \(-0.681126\pi\)
−0.538810 + 0.842427i \(0.681126\pi\)
\(788\) 0.418072 0.724121i 0.0148932 0.0257958i
\(789\) 3.98871 6.90864i 0.142002 0.245954i
\(790\) 5.08146 8.80135i 0.180790 0.313138i
\(791\) −18.4957 + 3.96190i −0.657632 + 0.140869i
\(792\) 2.03469 0.0722995
\(793\) 6.65032 + 16.1245i 0.236160 + 0.572596i
\(794\) −20.4059 + 35.3441i −0.724179 + 1.25432i
\(795\) 8.07510 + 13.9865i 0.286394 + 0.496050i
\(796\) −8.11133 −0.287498
\(797\) −4.57126 7.91765i −0.161922 0.280457i 0.773636 0.633630i \(-0.218436\pi\)
−0.935558 + 0.353173i \(0.885103\pi\)
\(798\) −3.08868 + 9.55725i −0.109338 + 0.338323i
\(799\) −7.85406 13.6036i −0.277857 0.481262i
\(800\) −1.49370 + 2.58716i −0.0528102 + 0.0914699i
\(801\) −0.910778 + 1.57751i −0.0321808 + 0.0557387i
\(802\) 37.9460 1.33992
\(803\) −5.41221 −0.190993
\(804\) −2.40903 + 4.17257i −0.0849601 + 0.147155i
\(805\) −36.8428 + 7.89196i −1.29854 + 0.278155i
\(806\) 9.05505 + 21.9550i 0.318951 + 0.773332i
\(807\) 13.8192 + 23.9355i 0.486457 + 0.842569i
\(808\) 13.6908 + 23.7132i 0.481641 + 0.834227i
\(809\) 17.1951 + 29.7828i 0.604547 + 1.04711i 0.992123 + 0.125269i \(0.0399794\pi\)
−0.387575 + 0.921838i \(0.626687\pi\)
\(810\) 1.26826 2.19668i 0.0445620 0.0771836i
\(811\) −11.9106 −0.418237 −0.209119 0.977890i \(-0.567060\pi\)
−0.209119 + 0.977890i \(0.567060\pi\)
\(812\) −1.98640 2.19913i −0.0697089 0.0771743i
\(813\) 5.15953 + 8.93656i 0.180952 + 0.313419i
\(814\) −2.80470 4.85789i −0.0983049 0.170269i
\(815\) −16.1591 −0.566029
\(816\) −1.07834 1.86774i −0.0377494 0.0653839i
\(817\) 37.1970 1.30136
\(818\) −3.37218 −0.117906
\(819\) −9.50994 + 0.749025i −0.332304 + 0.0261730i
\(820\) −21.6635 −0.756523
\(821\) 2.95276 0.103052 0.0515261 0.998672i \(-0.483591\pi\)
0.0515261 + 0.998672i \(0.483591\pi\)
\(822\) 4.45123 + 7.70976i 0.155255 + 0.268909i
\(823\) −42.3055 −1.47468 −0.737338 0.675524i \(-0.763917\pi\)
−0.737338 + 0.675524i \(0.763917\pi\)
\(824\) 4.84705 + 8.39534i 0.168855 + 0.292466i
\(825\) −0.222171 0.384812i −0.00773501 0.0133974i
\(826\) 4.46723 13.8229i 0.155435 0.480960i
\(827\) −23.0380 −0.801109 −0.400554 0.916273i \(-0.631182\pi\)
−0.400554 + 0.916273i \(0.631182\pi\)
\(828\) 2.58622 4.47947i 0.0898774 0.155672i
\(829\) −8.23948 14.2712i −0.286169 0.495659i 0.686723 0.726919i \(-0.259049\pi\)
−0.972892 + 0.231260i \(0.925715\pi\)
\(830\) 10.7105 + 18.5511i 0.371767 + 0.643919i
\(831\) −1.07784 1.86687i −0.0373899 0.0647611i
\(832\) 17.2026 22.3486i 0.596392 0.774797i
\(833\) −8.03616 5.79996i −0.278436 0.200957i
\(834\) −5.14304 + 8.90801i −0.178089 + 0.308459i
\(835\) 3.93651 0.136228
\(836\) −2.05328 −0.0710143
\(837\) 3.09078 5.35339i 0.106833 0.185040i
\(838\) 11.7776 20.3994i 0.406851 0.704686i
\(839\) −8.66147 15.0021i −0.299027 0.517930i 0.676887 0.736087i \(-0.263329\pi\)
−0.975914 + 0.218157i \(0.929995\pi\)
\(840\) 12.8860 + 14.2661i 0.444611 + 0.492226i
\(841\) 13.6608 + 23.6613i 0.471064 + 0.815906i
\(842\) 8.25818 0.284596
\(843\) −1.30298 2.25682i −0.0448770 0.0777292i
\(844\) −8.97068 + 15.5377i −0.308784 + 0.534829i
\(845\) 21.9484 21.8156i 0.755049 0.750480i
\(846\) 11.8222 0.406457
\(847\) 18.7200 + 20.7248i 0.643225 + 0.712112i
\(848\) −5.16740 + 8.95020i −0.177449 + 0.307351i
\(849\) 0.866211 1.50032i 0.0297283 0.0514909i
\(850\) −0.502812 + 0.870896i −0.0172463 + 0.0298715i
\(851\) −47.2462 −1.61958
\(852\) 5.20473 9.01486i 0.178311 0.308844i
\(853\) −47.0511 −1.61100 −0.805499 0.592597i \(-0.798103\pi\)
−0.805499 + 0.592597i \(0.798103\pi\)
\(854\) −9.14158 10.1206i −0.312818 0.346320i
\(855\) −4.24043 + 7.34465i −0.145020 + 0.251182i
\(856\) 15.2782 0.522200
\(857\) −11.3602 + 19.6764i −0.388056 + 0.672133i −0.992188 0.124751i \(-0.960187\pi\)
0.604132 + 0.796884i \(0.293520\pi\)
\(858\) 0.976455 + 2.36752i 0.0333356 + 0.0808260i
\(859\) −18.8507 32.6504i −0.643177 1.11402i −0.984719 0.174149i \(-0.944282\pi\)
0.341542 0.939867i \(-0.389051\pi\)
\(860\) 10.7441 18.6094i 0.366371 0.634574i
\(861\) −8.56395 + 26.4993i −0.291859 + 0.903094i
\(862\) 18.4123 + 31.8910i 0.627124 + 1.08621i
\(863\) −19.9474 34.5499i −0.679018 1.17609i −0.975277 0.220986i \(-0.929072\pi\)
0.296259 0.955108i \(-0.404261\pi\)
\(864\) −4.48160 −0.152467
\(865\) 28.5367 0.970276
\(866\) −13.0413 22.5882i −0.443161 0.767577i
\(867\) −7.49776 12.9865i −0.254637 0.441045i
\(868\) 9.47826 + 10.4933i 0.321713 + 0.356167i
\(869\) 1.33540 2.31298i 0.0453003 0.0784624i
\(870\) 1.64302 + 2.84579i 0.0557035 + 0.0964814i
\(871\) −19.9166 2.65282i −0.674848 0.0898874i
\(872\) 25.3135 43.8443i 0.857225 1.48476i
\(873\) 15.7697 0.533723
\(874\) 11.3556 19.6685i 0.384109 0.665296i
\(875\) −8.39281 + 25.9698i −0.283729 + 0.877938i
\(876\) 7.01982 0.237178
\(877\) 7.62722 13.2107i 0.257553 0.446095i −0.708033 0.706179i \(-0.750417\pi\)
0.965586 + 0.260085i \(0.0837505\pi\)
\(878\) −11.4302 −0.385750
\(879\) 16.4196 28.4396i 0.553819 0.959243i
\(880\) 1.20858 2.09332i 0.0407412 0.0705658i
\(881\) −25.8195 + 44.7207i −0.869881 + 1.50668i −0.00776438 + 0.999970i \(0.502472\pi\)
−0.862117 + 0.506709i \(0.830862\pi\)
\(882\) 6.80443 3.05529i 0.229117 0.102877i
\(883\) 27.4588 0.924062 0.462031 0.886864i \(-0.347121\pi\)
0.462031 + 0.886864i \(0.347121\pi\)
\(884\) −2.69208 + 3.49738i −0.0905444 + 0.117630i
\(885\) 6.13305 10.6227i 0.206160 0.357080i
\(886\) 21.2432 + 36.7943i 0.713679 + 1.23613i
\(887\) 32.8632 1.10344 0.551718 0.834031i \(-0.313972\pi\)
0.551718 + 0.834031i \(0.313972\pi\)
\(888\) 12.0529 + 20.8762i 0.404468 + 0.700559i
\(889\) −20.2328 22.3996i −0.678586 0.751260i
\(890\) 2.31020 + 4.00138i 0.0774381 + 0.134127i
\(891\) 0.333295 0.577284i 0.0111658 0.0193397i
\(892\) 3.50595 6.07249i 0.117388 0.203322i
\(893\) −39.5279 −1.32275
\(894\) −14.1301 −0.472582
\(895\) −3.17811 + 5.50465i −0.106233 + 0.184000i
\(896\) 0.511302 1.58212i 0.0170814 0.0528548i
\(897\) 21.3815 + 2.84794i 0.713907 + 0.0950899i
\(898\) 16.2806 + 28.1989i 0.543291 + 0.941008i
\(899\) 4.00409 + 6.93528i 0.133544 + 0.231305i
\(900\) 0.288164 + 0.499115i 0.00960547 + 0.0166372i
\(901\) 4.80272 8.31856i 0.160002 0.277131i
\(902\) 7.47640 0.248937
\(903\) −18.5161 20.4990i −0.616176 0.682166i
\(904\) −10.9112 18.8988i −0.362901 0.628564i
\(905\) −0.895159 1.55046i −0.0297561 0.0515391i
\(906\) −17.5218 −0.582121
\(907\) −22.4096 38.8145i −0.744098 1.28882i −0.950615 0.310372i \(-0.899546\pi\)
0.206517 0.978443i \(-0.433787\pi\)
\(908\) −1.89976 −0.0630458
\(909\) 8.97058 0.297535
\(910\) −10.4157 + 21.8403i −0.345276 + 0.723999i
\(911\) 31.4169 1.04089 0.520445 0.853895i \(-0.325766\pi\)
0.520445 + 0.853895i \(0.325766\pi\)
\(912\) −5.42706 −0.179708
\(913\) 2.81470 + 4.87520i 0.0931528 + 0.161345i
\(914\) −17.0858 −0.565149
\(915\) −5.75780 9.97280i −0.190347 0.329691i
\(916\) 8.77952 + 15.2066i 0.290084 + 0.502439i
\(917\) 22.2878 4.77417i 0.736006 0.157657i
\(918\) −1.50861 −0.0497915
\(919\) −18.6931 + 32.3774i −0.616628 + 1.06803i 0.373469 + 0.927643i \(0.378168\pi\)
−0.990097 + 0.140388i \(0.955165\pi\)
\(920\) −21.7347 37.6457i −0.716573 1.24114i
\(921\) −14.7309 25.5147i −0.485400 0.840737i
\(922\) 21.0076 + 36.3863i 0.691849 + 1.19832i
\(923\) 43.0299 + 5.73144i 1.41635 + 0.188653i
\(924\) 1.02209 + 1.13155i 0.0336243 + 0.0372253i
\(925\) 2.63215 4.55902i 0.0865446 0.149900i
\(926\) −27.7014 −0.910326
\(927\) 3.17592 0.104311
\(928\) 2.90295 5.02805i 0.0952938 0.165054i
\(929\) 11.5787 20.0549i 0.379884 0.657978i −0.611161 0.791506i \(-0.709297\pi\)
0.991045 + 0.133528i \(0.0426306\pi\)
\(930\) −7.83980 13.5789i −0.257077 0.445271i
\(931\) −22.7507 + 10.2154i −0.745624 + 0.334796i
\(932\) 9.31241 + 16.1296i 0.305038 + 0.528342i
\(933\) −7.06198 −0.231199
\(934\) −11.0990 19.2241i −0.363171 0.629030i
\(935\) −1.12329 + 1.94559i −0.0367354 + 0.0636275i
\(936\) −4.19620 10.1742i −0.137157 0.332553i
\(937\) −20.1142 −0.657103 −0.328552 0.944486i \(-0.606560\pi\)
−0.328552 + 0.944486i \(0.606560\pi\)
\(938\) 15.3619 3.29061i 0.501584 0.107442i
\(939\) −8.17883 + 14.1661i −0.266906 + 0.462295i
\(940\) −11.4174 + 19.7755i −0.372393 + 0.645004i
\(941\) 9.41116 16.3006i 0.306795 0.531384i −0.670864 0.741580i \(-0.734077\pi\)
0.977659 + 0.210196i \(0.0674101\pi\)
\(942\) 19.5005 0.635360
\(943\) 31.4856 54.5347i 1.02531 1.77589i
\(944\) 7.84929 0.255473
\(945\) 6.15840 1.31917i 0.200333 0.0429125i
\(946\) −3.70795 + 6.42236i −0.120556 + 0.208809i
\(947\) −25.3469 −0.823663 −0.411832 0.911260i \(-0.635111\pi\)
−0.411832 + 0.911260i \(0.635111\pi\)
\(948\) −1.73206 + 3.00001i −0.0562546 + 0.0974359i
\(949\) 11.1617 + 27.0629i 0.362326 + 0.878500i
\(950\) 1.26527 + 2.19152i 0.0410509 + 0.0711022i
\(951\) 9.48109 16.4217i 0.307446 0.532511i
\(952\) 3.51606 10.8797i 0.113956 0.352613i
\(953\) −0.132751 0.229931i −0.00430021 0.00744818i 0.863867 0.503719i \(-0.168035\pi\)
−0.868168 + 0.496271i \(0.834702\pi\)
\(954\) 3.61462 + 6.26071i 0.117028 + 0.202698i
\(955\) −12.2787 −0.397330
\(956\) 15.0177 0.485706
\(957\) 0.431782 + 0.747868i 0.0139575 + 0.0241751i
\(958\) 16.4563 + 28.5032i 0.531680 + 0.920897i
\(959\) −6.79753 + 21.0335i −0.219504 + 0.679207i
\(960\) −9.30997 + 16.1253i −0.300478 + 0.520443i
\(961\) −3.60583 6.24549i −0.116317 0.201467i
\(962\) −18.5069 + 24.0431i −0.596687 + 0.775180i
\(963\) 2.50268 4.33476i 0.0806476 0.139686i
\(964\) 9.08091 0.292476
\(965\) 3.38771 5.86769i 0.109054 0.188888i
\(966\) −16.4918 + 3.53264i −0.530615 + 0.113661i
\(967\) 15.3845 0.494732 0.247366 0.968922i \(-0.420435\pi\)
0.247366 + 0.968922i \(0.420435\pi\)
\(968\) −16.1099 + 27.9032i −0.517793 + 0.896844i
\(969\) 5.04405 0.162038
\(970\) 20.0000 34.6410i 0.642161 1.11226i
\(971\) 23.2590 40.2858i 0.746418 1.29283i −0.203112 0.979156i \(-0.565105\pi\)
0.949529 0.313678i \(-0.101561\pi\)
\(972\) −0.432296 + 0.748758i −0.0138659 + 0.0240164i
\(973\) −24.9736 + 5.34949i −0.800617 + 0.171497i
\(974\) 23.8973 0.765720
\(975\) −1.46600 + 1.90454i −0.0469497 + 0.0609942i
\(976\) 3.68452 6.38177i 0.117939 0.204276i
\(977\) −5.27473 9.13611i −0.168754 0.292290i 0.769228 0.638974i \(-0.220641\pi\)
−0.937982 + 0.346684i \(0.887308\pi\)
\(978\) −7.23323 −0.231293
\(979\) 0.607116 + 1.05156i 0.0194035 + 0.0336079i
\(980\) −1.46071 + 14.3326i −0.0466607 + 0.457839i
\(981\) −8.29305 14.3640i −0.264777 0.458607i
\(982\) −7.10423 + 12.3049i −0.226705 + 0.392665i
\(983\) −16.6152 + 28.7783i −0.529942 + 0.917887i 0.469448 + 0.882960i \(0.344453\pi\)
−0.999390 + 0.0349264i \(0.988880\pi\)
\(984\) −32.1289 −1.02423
\(985\) −2.30214 −0.0733521
\(986\) 0.977196 1.69255i 0.0311203 0.0539019i
\(987\) 19.6763 + 21.7835i 0.626304 + 0.693378i
\(988\) 4.23455 + 10.2671i 0.134719 + 0.326641i
\(989\) 31.2309 + 54.0934i 0.993083 + 1.72007i
\(990\) −0.845407 1.46429i −0.0268688 0.0465381i
\(991\) −21.8815 37.8999i −0.695089 1.20393i −0.970151 0.242503i \(-0.922032\pi\)
0.275061 0.961427i \(-0.411302\pi\)
\(992\) −13.8516 + 23.9918i −0.439790 + 0.761739i
\(993\) 19.0379 0.604149
\(994\) −33.1895 + 7.10940i −1.05271 + 0.225496i
\(995\) 11.1664 + 19.3407i 0.353998 + 0.613142i
\(996\) −3.65076 6.32330i −0.115679 0.200362i
\(997\) 52.0822 1.64946 0.824729 0.565528i \(-0.191327\pi\)
0.824729 + 0.565528i \(0.191327\pi\)
\(998\) −16.2612 28.1652i −0.514739 0.891554i
\(999\) 7.89736 0.249861
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.l.b.256.6 yes 16
3.2 odd 2 819.2.s.e.802.3 16
7.2 even 3 273.2.j.b.100.3 16
13.3 even 3 273.2.j.b.172.3 yes 16
21.2 odd 6 819.2.n.e.100.6 16
39.29 odd 6 819.2.n.e.172.6 16
91.16 even 3 inner 273.2.l.b.16.6 yes 16
273.107 odd 6 819.2.s.e.289.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.b.100.3 16 7.2 even 3
273.2.j.b.172.3 yes 16 13.3 even 3
273.2.l.b.16.6 yes 16 91.16 even 3 inner
273.2.l.b.256.6 yes 16 1.1 even 1 trivial
819.2.n.e.100.6 16 21.2 odd 6
819.2.n.e.172.6 16 39.29 odd 6
819.2.s.e.289.3 16 273.107 odd 6
819.2.s.e.802.3 16 3.2 odd 2