Properties

Label 2736.2.s.x.577.3
Level $2736$
Weight $2$
Character 2736.577
Analytic conductor $21.847$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(577,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 456)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 577.3
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 2736.577
Dual form 2736.2.s.x.1873.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.53209 + 2.65366i) q^{5} +2.06418 q^{7} -6.45336 q^{11} +(-0.500000 + 0.866025i) q^{13} +(0.694593 + 1.20307i) q^{17} +(3.75877 - 2.20718i) q^{19} +(-1.53209 + 2.65366i) q^{23} +(-2.19459 + 3.80115i) q^{25} +(-1.75877 + 3.04628i) q^{29} -9.45336 q^{31} +(3.16250 + 5.47762i) q^{35} -2.38919 q^{37} +(5.06418 + 8.77141i) q^{41} +(3.03209 + 5.25173i) q^{43} +(3.00000 - 5.19615i) q^{47} -2.73917 q^{49} +(-5.29086 + 9.16404i) q^{53} +(-9.88713 - 17.1250i) q^{55} +(5.59627 + 9.69302i) q^{59} +(-2.56418 + 4.44129i) q^{61} -3.06418 q^{65} +(1.72668 - 2.99070i) q^{67} +(-3.36959 - 5.83629i) q^{71} +(4.56418 + 7.90539i) q^{73} -13.3209 q^{77} +(-0.790859 - 1.36981i) q^{79} -17.6459 q^{83} +(-2.12836 + 3.68642i) q^{85} +(5.22668 - 9.05288i) q^{89} +(-1.03209 + 1.78763i) q^{91} +(11.6159 + 6.59289i) q^{95} +(-3.36959 - 5.83629i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} - 12 q^{11} - 3 q^{13} - 9 q^{25} + 12 q^{29} - 30 q^{31} + 24 q^{35} - 6 q^{37} + 12 q^{41} + 9 q^{43} + 18 q^{47} + 12 q^{49} + 6 q^{59} + 3 q^{61} - 3 q^{67} - 6 q^{71} + 9 q^{73} + 12 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.53209 + 2.65366i 0.685171 + 1.18675i 0.973383 + 0.229184i \(0.0736059\pi\)
−0.288212 + 0.957567i \(0.593061\pi\)
\(6\) 0 0
\(7\) 2.06418 0.780186 0.390093 0.920775i \(-0.372443\pi\)
0.390093 + 0.920775i \(0.372443\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.45336 −1.94576 −0.972881 0.231306i \(-0.925700\pi\)
−0.972881 + 0.231306i \(0.925700\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i −0.926995 0.375073i \(-0.877618\pi\)
0.788320 + 0.615265i \(0.210951\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.694593 + 1.20307i 0.168463 + 0.291787i 0.937880 0.346960i \(-0.112786\pi\)
−0.769416 + 0.638748i \(0.779453\pi\)
\(18\) 0 0
\(19\) 3.75877 2.20718i 0.862321 0.506362i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.53209 + 2.65366i −0.319463 + 0.553325i −0.980376 0.197137i \(-0.936836\pi\)
0.660913 + 0.750462i \(0.270169\pi\)
\(24\) 0 0
\(25\) −2.19459 + 3.80115i −0.438919 + 0.760229i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.75877 + 3.04628i −0.326595 + 0.565680i −0.981834 0.189742i \(-0.939235\pi\)
0.655238 + 0.755422i \(0.272568\pi\)
\(30\) 0 0
\(31\) −9.45336 −1.69787 −0.848937 0.528494i \(-0.822757\pi\)
−0.848937 + 0.528494i \(0.822757\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.16250 + 5.47762i 0.534561 + 0.925886i
\(36\) 0 0
\(37\) −2.38919 −0.392780 −0.196390 0.980526i \(-0.562922\pi\)
−0.196390 + 0.980526i \(0.562922\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.06418 + 8.77141i 0.790892 + 1.36986i 0.925415 + 0.378954i \(0.123716\pi\)
−0.134524 + 0.990910i \(0.542950\pi\)
\(42\) 0 0
\(43\) 3.03209 + 5.25173i 0.462389 + 0.800882i 0.999079 0.0428977i \(-0.0136590\pi\)
−0.536690 + 0.843779i \(0.680326\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) −2.73917 −0.391310
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.29086 + 9.16404i −0.726755 + 1.25878i 0.231492 + 0.972837i \(0.425639\pi\)
−0.958247 + 0.285941i \(0.907694\pi\)
\(54\) 0 0
\(55\) −9.88713 17.1250i −1.33318 2.30914i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.59627 + 9.69302i 0.728572 + 1.26192i 0.957487 + 0.288477i \(0.0931489\pi\)
−0.228915 + 0.973446i \(0.573518\pi\)
\(60\) 0 0
\(61\) −2.56418 + 4.44129i −0.328309 + 0.568648i −0.982177 0.187961i \(-0.939812\pi\)
0.653867 + 0.756609i \(0.273146\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.06418 −0.380064
\(66\) 0 0
\(67\) 1.72668 2.99070i 0.210948 0.365372i −0.741064 0.671435i \(-0.765678\pi\)
0.952011 + 0.306063i \(0.0990117\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.36959 5.83629i −0.399896 0.692640i 0.593817 0.804600i \(-0.297620\pi\)
−0.993713 + 0.111960i \(0.964287\pi\)
\(72\) 0 0
\(73\) 4.56418 + 7.90539i 0.534197 + 0.925256i 0.999202 + 0.0399477i \(0.0127191\pi\)
−0.465005 + 0.885308i \(0.653948\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13.3209 −1.51806
\(78\) 0 0
\(79\) −0.790859 1.36981i −0.0889786 0.154116i 0.818101 0.575075i \(-0.195027\pi\)
−0.907080 + 0.420959i \(0.861694\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −17.6459 −1.93689 −0.968444 0.249230i \(-0.919823\pi\)
−0.968444 + 0.249230i \(0.919823\pi\)
\(84\) 0 0
\(85\) −2.12836 + 3.68642i −0.230853 + 0.399848i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.22668 9.05288i 0.554027 0.959603i −0.443951 0.896051i \(-0.646424\pi\)
0.997979 0.0635523i \(-0.0202430\pi\)
\(90\) 0 0
\(91\) −1.03209 + 1.78763i −0.108192 + 0.187395i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.6159 + 6.59289i 1.19176 + 0.676416i
\(96\) 0 0
\(97\) −3.36959 5.83629i −0.342130 0.592586i 0.642698 0.766119i \(-0.277815\pi\)
−0.984828 + 0.173534i \(0.944481\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.305407 0.528981i 0.0303892 0.0526356i −0.850431 0.526087i \(-0.823659\pi\)
0.880820 + 0.473451i \(0.156992\pi\)
\(102\) 0 0
\(103\) −0.0641778 −0.00632362 −0.00316181 0.999995i \(-0.501006\pi\)
−0.00316181 + 0.999995i \(0.501006\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.610815 0.0590497 0.0295248 0.999564i \(-0.490601\pi\)
0.0295248 + 0.999564i \(0.490601\pi\)
\(108\) 0 0
\(109\) −2.30541 3.99308i −0.220818 0.382468i 0.734239 0.678891i \(-0.237539\pi\)
−0.955057 + 0.296424i \(0.904206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.4884 −1.64517 −0.822587 0.568639i \(-0.807470\pi\)
−0.822587 + 0.568639i \(0.807470\pi\)
\(114\) 0 0
\(115\) −9.38919 −0.875546
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.43376 + 2.48335i 0.131433 + 0.227648i
\(120\) 0 0
\(121\) 30.6459 2.78599
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.87164 0.167405
\(126\) 0 0
\(127\) 7.06418 12.2355i 0.626844 1.08573i −0.361337 0.932435i \(-0.617679\pi\)
0.988181 0.153291i \(-0.0489872\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.75877 4.77833i −0.241035 0.417485i 0.719974 0.694001i \(-0.244153\pi\)
−0.961009 + 0.276516i \(0.910820\pi\)
\(132\) 0 0
\(133\) 7.75877 4.55601i 0.672771 0.395056i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.88713 15.3930i 0.759278 1.31511i −0.183941 0.982937i \(-0.558885\pi\)
0.943219 0.332171i \(-0.107781\pi\)
\(138\) 0 0
\(139\) −5.48545 + 9.50108i −0.465270 + 0.805871i −0.999214 0.0396488i \(-0.987376\pi\)
0.533944 + 0.845520i \(0.320709\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.22668 5.58878i 0.269829 0.467357i
\(144\) 0 0
\(145\) −10.7784 −0.895095
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.53209 + 11.3139i 0.535130 + 0.926872i 0.999157 + 0.0410508i \(0.0130706\pi\)
−0.464027 + 0.885821i \(0.653596\pi\)
\(150\) 0 0
\(151\) −4.90673 −0.399304 −0.199652 0.979867i \(-0.563981\pi\)
−0.199652 + 0.979867i \(0.563981\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.4834 25.0860i −1.16333 2.01495i
\(156\) 0 0
\(157\) −5.86959 10.1664i −0.468444 0.811369i 0.530906 0.847431i \(-0.321852\pi\)
−0.999350 + 0.0360623i \(0.988519\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.16250 + 5.47762i −0.249240 + 0.431697i
\(162\) 0 0
\(163\) 13.4534 1.05375 0.526874 0.849943i \(-0.323364\pi\)
0.526874 + 0.849943i \(0.323364\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.98545 + 12.0992i −0.540551 + 0.936261i 0.458322 + 0.888786i \(0.348451\pi\)
−0.998872 + 0.0474747i \(0.984883\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.75877 + 3.04628i 0.133717 + 0.231604i 0.925107 0.379708i \(-0.123975\pi\)
−0.791390 + 0.611312i \(0.790642\pi\)
\(174\) 0 0
\(175\) −4.53003 + 7.84624i −0.342438 + 0.593120i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.0642 0.826975 0.413488 0.910510i \(-0.364310\pi\)
0.413488 + 0.910510i \(0.364310\pi\)
\(180\) 0 0
\(181\) −10.7588 + 18.6347i −0.799693 + 1.38511i 0.120123 + 0.992759i \(0.461671\pi\)
−0.919816 + 0.392350i \(0.871662\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.66044 6.34008i −0.269121 0.466132i
\(186\) 0 0
\(187\) −4.48246 7.76385i −0.327790 0.567749i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.2317 −1.10213 −0.551065 0.834462i \(-0.685778\pi\)
−0.551065 + 0.834462i \(0.685778\pi\)
\(192\) 0 0
\(193\) −3.13041 5.42204i −0.225332 0.390287i 0.731087 0.682284i \(-0.239013\pi\)
−0.956419 + 0.291998i \(0.905680\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.71007 0.478073 0.239036 0.971011i \(-0.423168\pi\)
0.239036 + 0.971011i \(0.423168\pi\)
\(198\) 0 0
\(199\) −12.4659 + 21.5915i −0.883681 + 1.53058i −0.0364626 + 0.999335i \(0.511609\pi\)
−0.847218 + 0.531245i \(0.821724\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.63041 + 6.28806i −0.254805 + 0.441336i
\(204\) 0 0
\(205\) −15.5175 + 26.8772i −1.08379 + 1.87718i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −24.2567 + 14.2437i −1.67787 + 0.985260i
\(210\) 0 0
\(211\) 4.48545 + 7.76903i 0.308791 + 0.534842i 0.978098 0.208144i \(-0.0667422\pi\)
−0.669307 + 0.742986i \(0.733409\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.29086 + 16.0922i −0.633631 + 1.09748i
\(216\) 0 0
\(217\) −19.5134 −1.32466
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.38919 −0.0934467
\(222\) 0 0
\(223\) 12.5692 + 21.7705i 0.841698 + 1.45786i 0.888458 + 0.458957i \(0.151777\pi\)
−0.0467604 + 0.998906i \(0.514890\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −22.8384 −1.51584 −0.757920 0.652348i \(-0.773784\pi\)
−0.757920 + 0.652348i \(0.773784\pi\)
\(228\) 0 0
\(229\) −6.03508 −0.398809 −0.199405 0.979917i \(-0.563901\pi\)
−0.199405 + 0.979917i \(0.563901\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.30541 + 3.99308i 0.151032 + 0.261596i 0.931607 0.363467i \(-0.118407\pi\)
−0.780575 + 0.625062i \(0.785074\pi\)
\(234\) 0 0
\(235\) 18.3851 1.19931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.36009 0.605454 0.302727 0.953077i \(-0.402103\pi\)
0.302727 + 0.953077i \(0.402103\pi\)
\(240\) 0 0
\(241\) 10.0817 17.4620i 0.649421 1.12483i −0.333841 0.942629i \(-0.608345\pi\)
0.983261 0.182200i \(-0.0583218\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.19665 7.26881i −0.268114 0.464388i
\(246\) 0 0
\(247\) 0.0320889 + 4.35878i 0.00204177 + 0.277343i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.06418 + 10.5035i −0.382768 + 0.662973i −0.991457 0.130436i \(-0.958362\pi\)
0.608689 + 0.793409i \(0.291696\pi\)
\(252\) 0 0
\(253\) 9.88713 17.1250i 0.621598 1.07664i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.4192 26.7069i 0.961824 1.66593i 0.243909 0.969798i \(-0.421570\pi\)
0.717916 0.696130i \(-0.245096\pi\)
\(258\) 0 0
\(259\) −4.93170 −0.306441
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.24123 + 9.07808i 0.323188 + 0.559778i 0.981144 0.193278i \(-0.0619120\pi\)
−0.657956 + 0.753056i \(0.728579\pi\)
\(264\) 0 0
\(265\) −32.4243 −1.99181
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.901674 1.56175i −0.0549760 0.0952213i 0.837228 0.546854i \(-0.184175\pi\)
−0.892204 + 0.451633i \(0.850842\pi\)
\(270\) 0 0
\(271\) 14.1284 + 24.4710i 0.858236 + 1.48651i 0.873610 + 0.486627i \(0.161773\pi\)
−0.0153732 + 0.999882i \(0.504894\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.1625 24.5302i 0.854031 1.47923i
\(276\) 0 0
\(277\) 6.48246 0.389493 0.194747 0.980854i \(-0.437612\pi\)
0.194747 + 0.980854i \(0.437612\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.92127 5.05980i 0.174269 0.301842i −0.765639 0.643270i \(-0.777577\pi\)
0.939908 + 0.341428i \(0.110911\pi\)
\(282\) 0 0
\(283\) 8.12836 + 14.0787i 0.483181 + 0.836893i 0.999813 0.0193137i \(-0.00614812\pi\)
−0.516633 + 0.856207i \(0.672815\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.4534 + 18.1058i 0.617043 + 1.06875i
\(288\) 0 0
\(289\) 7.53508 13.0511i 0.443240 0.767714i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −26.2567 −1.53393 −0.766967 0.641687i \(-0.778235\pi\)
−0.766967 + 0.641687i \(0.778235\pi\)
\(294\) 0 0
\(295\) −17.1480 + 29.7011i −0.998393 + 1.72927i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.53209 2.65366i −0.0886030 0.153465i
\(300\) 0 0
\(301\) 6.25877 + 10.8405i 0.360750 + 0.624837i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.7142 −0.899792
\(306\) 0 0
\(307\) 7.14796 + 12.3806i 0.407955 + 0.706599i 0.994661 0.103201i \(-0.0329086\pi\)
−0.586705 + 0.809801i \(0.699575\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.2276 1.26041 0.630206 0.776428i \(-0.282970\pi\)
0.630206 + 0.776428i \(0.282970\pi\)
\(312\) 0 0
\(313\) −1.56624 + 2.71280i −0.0885290 + 0.153337i −0.906890 0.421368i \(-0.861550\pi\)
0.818361 + 0.574705i \(0.194883\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.04963 + 5.28211i −0.171284 + 0.296673i −0.938869 0.344274i \(-0.888125\pi\)
0.767585 + 0.640947i \(0.221458\pi\)
\(318\) 0 0
\(319\) 11.3500 19.6588i 0.635477 1.10068i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.26621 + 2.98897i 0.293020 + 0.166311i
\(324\) 0 0
\(325\) −2.19459 3.80115i −0.121734 0.210850i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.19253 10.7258i 0.341405 0.591332i
\(330\) 0 0
\(331\) 1.93582 0.106402 0.0532012 0.998584i \(-0.483058\pi\)
0.0532012 + 0.998584i \(0.483058\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.5817 0.578141
\(336\) 0 0
\(337\) 3.58378 + 6.20729i 0.195221 + 0.338132i 0.946973 0.321313i \(-0.104124\pi\)
−0.751752 + 0.659446i \(0.770791\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 61.0060 3.30366
\(342\) 0 0
\(343\) −20.1034 −1.08548
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.80840 + 8.32839i 0.258128 + 0.447092i 0.965741 0.259510i \(-0.0835609\pi\)
−0.707612 + 0.706601i \(0.750228\pi\)
\(348\) 0 0
\(349\) 31.5134 1.68687 0.843437 0.537227i \(-0.180528\pi\)
0.843437 + 0.537227i \(0.180528\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.8425 1.37546 0.687730 0.725967i \(-0.258607\pi\)
0.687730 + 0.725967i \(0.258607\pi\)
\(354\) 0 0
\(355\) 10.3250 17.8834i 0.547995 0.949154i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.1284 27.9351i −0.851222 1.47436i −0.880106 0.474777i \(-0.842529\pi\)
0.0288840 0.999583i \(-0.490805\pi\)
\(360\) 0 0
\(361\) 9.25671 16.5926i 0.487195 0.873293i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.9855 + 24.2235i −0.732032 + 1.26792i
\(366\) 0 0
\(367\) 14.6334 25.3458i 0.763858 1.32304i −0.176991 0.984213i \(-0.556636\pi\)
0.940848 0.338828i \(-0.110030\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.9213 + 18.9162i −0.567004 + 0.982080i
\(372\) 0 0
\(373\) 8.03920 0.416254 0.208127 0.978102i \(-0.433263\pi\)
0.208127 + 0.978102i \(0.433263\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.75877 3.04628i −0.0905813 0.156891i
\(378\) 0 0
\(379\) −8.19253 −0.420822 −0.210411 0.977613i \(-0.567480\pi\)
−0.210411 + 0.977613i \(0.567480\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.74422 + 4.75313i 0.140223 + 0.242874i 0.927581 0.373623i \(-0.121885\pi\)
−0.787357 + 0.616497i \(0.788551\pi\)
\(384\) 0 0
\(385\) −20.4088 35.3491i −1.04013 1.80155i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.22668 7.32083i 0.214301 0.371181i −0.738755 0.673974i \(-0.764586\pi\)
0.953056 + 0.302793i \(0.0979192\pi\)
\(390\) 0 0
\(391\) −4.25671 −0.215271
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.42333 4.19734i 0.121931 0.211191i
\(396\) 0 0
\(397\) −12.5351 21.7114i −0.629118 1.08966i −0.987729 0.156177i \(-0.950083\pi\)
0.358611 0.933487i \(-0.383250\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.8726 22.2960i −0.642826 1.11341i −0.984799 0.173697i \(-0.944429\pi\)
0.341973 0.939710i \(-0.388905\pi\)
\(402\) 0 0
\(403\) 4.72668 8.18685i 0.235453 0.407816i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.4183 0.764256
\(408\) 0 0
\(409\) 3.21213 5.56358i 0.158830 0.275101i −0.775617 0.631204i \(-0.782561\pi\)
0.934447 + 0.356102i \(0.115895\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.5517 + 20.0081i 0.568421 + 0.984535i
\(414\) 0 0
\(415\) −27.0351 46.8261i −1.32710 2.29860i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.2668 0.794686 0.397343 0.917670i \(-0.369932\pi\)
0.397343 + 0.917670i \(0.369932\pi\)
\(420\) 0 0
\(421\) 14.7297 + 25.5125i 0.717880 + 1.24341i 0.961838 + 0.273619i \(0.0882209\pi\)
−0.243958 + 0.969786i \(0.578446\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.09739 −0.295767
\(426\) 0 0
\(427\) −5.29292 + 9.16760i −0.256142 + 0.443651i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.51754 14.7528i 0.410276 0.710618i −0.584644 0.811290i \(-0.698766\pi\)
0.994920 + 0.100672i \(0.0320992\pi\)
\(432\) 0 0
\(433\) 6.84049 11.8481i 0.328733 0.569382i −0.653528 0.756903i \(-0.726712\pi\)
0.982261 + 0.187520i \(0.0600451\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.0983261 + 13.3561i 0.00470357 + 0.638908i
\(438\) 0 0
\(439\) 0.707081 + 1.22470i 0.0337471 + 0.0584518i 0.882406 0.470489i \(-0.155923\pi\)
−0.848659 + 0.528941i \(0.822589\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.369585 + 0.640140i −0.0175595 + 0.0304140i −0.874672 0.484716i \(-0.838923\pi\)
0.857112 + 0.515130i \(0.172256\pi\)
\(444\) 0 0
\(445\) 32.0310 1.51841
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7.51754 −0.354775 −0.177387 0.984141i \(-0.556765\pi\)
−0.177387 + 0.984141i \(0.556765\pi\)
\(450\) 0 0
\(451\) −32.6810 56.6051i −1.53889 2.66543i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.32501 −0.296521
\(456\) 0 0
\(457\) −15.6810 −0.733525 −0.366763 0.930315i \(-0.619534\pi\)
−0.366763 + 0.930315i \(0.619534\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.7442 + 18.6095i 0.500408 + 0.866733i 1.00000 0.000471567i \(0.000150104\pi\)
−0.499592 + 0.866261i \(0.666517\pi\)
\(462\) 0 0
\(463\) 9.62092 0.447122 0.223561 0.974690i \(-0.428232\pi\)
0.223561 + 0.974690i \(0.428232\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.87164 0.0866094 0.0433047 0.999062i \(-0.486211\pi\)
0.0433047 + 0.999062i \(0.486211\pi\)
\(468\) 0 0
\(469\) 3.56418 6.17334i 0.164578 0.285058i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −19.5672 33.8913i −0.899699 1.55833i
\(474\) 0 0
\(475\) 0.140844 + 19.1315i 0.00646237 + 0.877813i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.36959 + 5.83629i −0.153960 + 0.266667i −0.932680 0.360705i \(-0.882536\pi\)
0.778720 + 0.627372i \(0.215869\pi\)
\(480\) 0 0
\(481\) 1.19459 2.06910i 0.0544687 0.0943426i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.3250 17.8834i 0.468834 0.812045i
\(486\) 0 0
\(487\) 2.38507 0.108078 0.0540388 0.998539i \(-0.482791\pi\)
0.0540388 + 0.998539i \(0.482791\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.36959 + 9.30039i 0.242326 + 0.419721i 0.961376 0.275237i \(-0.0887563\pi\)
−0.719050 + 0.694958i \(0.755423\pi\)
\(492\) 0 0
\(493\) −4.88652 −0.220078
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.95542 12.0471i −0.311993 0.540388i
\(498\) 0 0
\(499\) 14.2733 + 24.7221i 0.638961 + 1.10671i 0.985661 + 0.168738i \(0.0539690\pi\)
−0.346700 + 0.937976i \(0.612698\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.75877 + 3.04628i −0.0784197 + 0.135827i −0.902568 0.430547i \(-0.858321\pi\)
0.824149 + 0.566374i \(0.191654\pi\)
\(504\) 0 0
\(505\) 1.87164 0.0832871
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.61081 6.25411i 0.160047 0.277209i −0.774839 0.632159i \(-0.782169\pi\)
0.934885 + 0.354950i \(0.115502\pi\)
\(510\) 0 0
\(511\) 9.42127 + 16.3181i 0.416773 + 0.721871i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.0983261 0.170306i −0.00433276 0.00750457i
\(516\) 0 0
\(517\) −19.3601 + 33.5327i −0.851456 + 1.47476i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.8075 −0.736348 −0.368174 0.929757i \(-0.620017\pi\)
−0.368174 + 0.929757i \(0.620017\pi\)
\(522\) 0 0
\(523\) −3.88413 + 6.72752i −0.169841 + 0.294174i −0.938364 0.345649i \(-0.887659\pi\)
0.768523 + 0.639823i \(0.220992\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.56624 11.3731i −0.286030 0.495418i
\(528\) 0 0
\(529\) 6.80541 + 11.7873i 0.295887 + 0.512492i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.1284 −0.438708
\(534\) 0 0
\(535\) 0.935822 + 1.62089i 0.0404591 + 0.0700773i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.6769 0.761396
\(540\) 0 0
\(541\) 18.1655 31.4636i 0.780996 1.35272i −0.150367 0.988630i \(-0.548045\pi\)
0.931362 0.364094i \(-0.118621\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.06418 12.2355i 0.302596 0.524112i
\(546\) 0 0
\(547\) 15.8105 27.3845i 0.676006 1.17088i −0.300167 0.953887i \(-0.597042\pi\)
0.976174 0.216991i \(-0.0696242\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.112874 + 15.3322i 0.00480859 + 0.653173i
\(552\) 0 0
\(553\) −1.63247 2.82753i −0.0694199 0.120239i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.01960 3.49805i 0.0855732 0.148217i −0.820062 0.572275i \(-0.806061\pi\)
0.905635 + 0.424057i \(0.139395\pi\)
\(558\) 0 0
\(559\) −6.06418 −0.256487
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.61081 −0.362903 −0.181451 0.983400i \(-0.558079\pi\)
−0.181451 + 0.983400i \(0.558079\pi\)
\(564\) 0 0
\(565\) −26.7939 46.4083i −1.12723 1.95241i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 27.6851 1.16062 0.580310 0.814396i \(-0.302931\pi\)
0.580310 + 0.814396i \(0.302931\pi\)
\(570\) 0 0
\(571\) −24.1533 −1.01079 −0.505393 0.862889i \(-0.668652\pi\)
−0.505393 + 0.862889i \(0.668652\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.72462 11.6474i −0.280436 0.485730i
\(576\) 0 0
\(577\) 28.8675 1.20177 0.600885 0.799335i \(-0.294815\pi\)
0.600885 + 0.799335i \(0.294815\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −36.4243 −1.51113
\(582\) 0 0
\(583\) 34.1438 59.1389i 1.41409 2.44928i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.14290 8.90777i −0.212270 0.367663i 0.740154 0.672437i \(-0.234752\pi\)
−0.952425 + 0.304774i \(0.901419\pi\)
\(588\) 0 0
\(589\) −35.5330 + 20.8653i −1.46411 + 0.859739i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.96585 + 13.7973i −0.327118 + 0.566586i −0.981939 0.189199i \(-0.939411\pi\)
0.654820 + 0.755784i \(0.272744\pi\)
\(594\) 0 0
\(595\) −4.39330 + 7.60943i −0.180108 + 0.311956i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.03003 15.6405i 0.368957 0.639052i −0.620446 0.784249i \(-0.713048\pi\)
0.989403 + 0.145197i \(0.0463816\pi\)
\(600\) 0 0
\(601\) −7.86753 −0.320923 −0.160462 0.987042i \(-0.551298\pi\)
−0.160462 + 0.987042i \(0.551298\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 46.9522 + 81.3237i 1.90888 + 3.30628i
\(606\) 0 0
\(607\) 17.2668 0.700838 0.350419 0.936593i \(-0.386039\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.00000 + 5.19615i 0.121367 + 0.210214i
\(612\) 0 0
\(613\) 13.7939 + 23.8917i 0.557128 + 0.964975i 0.997735 + 0.0672742i \(0.0214302\pi\)
−0.440606 + 0.897701i \(0.645236\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.24628 14.2830i 0.331983 0.575011i −0.650918 0.759148i \(-0.725616\pi\)
0.982901 + 0.184137i \(0.0589491\pi\)
\(618\) 0 0
\(619\) −24.4884 −0.984274 −0.492137 0.870518i \(-0.663784\pi\)
−0.492137 + 0.870518i \(0.663784\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.7888 18.6867i 0.432244 0.748669i
\(624\) 0 0
\(625\) 13.8405 + 23.9724i 0.553620 + 0.958897i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.65951 2.87436i −0.0661690 0.114608i
\(630\) 0 0
\(631\) 9.83544 17.0355i 0.391543 0.678172i −0.601111 0.799166i \(-0.705275\pi\)
0.992653 + 0.120994i \(0.0386082\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 43.2918 1.71798
\(636\) 0 0
\(637\) 1.36959 2.37219i 0.0542649 0.0939896i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.06418 + 7.03936i 0.160525 + 0.278038i 0.935057 0.354497i \(-0.115348\pi\)
−0.774532 + 0.632535i \(0.782014\pi\)
\(642\) 0 0
\(643\) 3.91921 + 6.78828i 0.154559 + 0.267704i 0.932898 0.360140i \(-0.117271\pi\)
−0.778340 + 0.627844i \(0.783938\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −39.7743 −1.56369 −0.781844 0.623475i \(-0.785720\pi\)
−0.781844 + 0.623475i \(0.785720\pi\)
\(648\) 0 0
\(649\) −36.1147 62.5526i −1.41763 2.45540i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.94593 −0.350081 −0.175041 0.984561i \(-0.556006\pi\)
−0.175041 + 0.984561i \(0.556006\pi\)
\(654\) 0 0
\(655\) 8.45336 14.6417i 0.330300 0.572097i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.93676 10.2828i 0.231263 0.400560i −0.726917 0.686725i \(-0.759047\pi\)
0.958180 + 0.286166i \(0.0923808\pi\)
\(660\) 0 0
\(661\) −21.9067 + 37.9436i −0.852073 + 1.47583i 0.0272613 + 0.999628i \(0.491321\pi\)
−0.879334 + 0.476205i \(0.842012\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.9772 + 13.6089i 0.929796 + 0.527730i
\(666\) 0 0
\(667\) −5.38919 9.33434i −0.208670 0.361427i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.5476 28.6612i 0.638812 1.10645i
\(672\) 0 0
\(673\) −37.6810 −1.45249 −0.726247 0.687433i \(-0.758737\pi\)
−0.726247 + 0.687433i \(0.758737\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.1052 1.34920 0.674602 0.738182i \(-0.264315\pi\)
0.674602 + 0.738182i \(0.264315\pi\)
\(678\) 0 0
\(679\) −6.95542 12.0471i −0.266925 0.462327i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.6168 1.43937 0.719683 0.694302i \(-0.244287\pi\)
0.719683 + 0.694302i \(0.244287\pi\)
\(684\) 0 0
\(685\) 54.4635 2.08094
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.29086 9.16404i −0.201566 0.349122i
\(690\) 0 0
\(691\) 2.69997 0.102712 0.0513558 0.998680i \(-0.483646\pi\)
0.0513558 + 0.998680i \(0.483646\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −33.6168 −1.27516
\(696\) 0 0
\(697\) −7.03508 + 12.1851i −0.266473 + 0.461544i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −10.8821 18.8483i −0.411010 0.711891i 0.583990 0.811761i \(-0.301491\pi\)
−0.995000 + 0.0998700i \(0.968157\pi\)
\(702\) 0 0
\(703\) −8.98040 + 5.27336i −0.338702 + 0.198889i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.630415 1.09191i 0.0237092 0.0410655i
\(708\) 0 0
\(709\) 13.3033 23.0421i 0.499618 0.865363i −0.500382 0.865805i \(-0.666807\pi\)
1.00000 0.000441366i \(0.000140491\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.4834 25.0860i 0.542407 0.939477i
\(714\) 0 0
\(715\) 19.7743 0.739515
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.81790 + 6.61279i 0.142383 + 0.246615i 0.928394 0.371598i \(-0.121190\pi\)
−0.786010 + 0.618214i \(0.787857\pi\)
\(720\) 0 0
\(721\) −0.132474 −0.00493360
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.71957 13.3707i −0.286698 0.496575i
\(726\) 0 0
\(727\) 20.3726 + 35.2863i 0.755577 + 1.30870i 0.945087 + 0.326819i \(0.105977\pi\)
−0.189510 + 0.981879i \(0.560690\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.21213 + 7.29563i −0.155791 + 0.269839i
\(732\) 0 0
\(733\) 48.4742 1.79044 0.895218 0.445628i \(-0.147020\pi\)
0.895218 + 0.445628i \(0.147020\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.1429 + 19.3001i −0.410454 + 0.710927i
\(738\) 0 0
\(739\) −5.30840 9.19442i −0.195273 0.338222i 0.751717 0.659486i \(-0.229226\pi\)
−0.946990 + 0.321263i \(0.895893\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.7793 41.1870i −0.872378 1.51100i −0.859530 0.511086i \(-0.829243\pi\)
−0.0128483 0.999917i \(-0.504090\pi\)
\(744\) 0 0
\(745\) −20.0155 + 34.6678i −0.733311 + 1.27013i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.26083 0.0460697
\(750\) 0 0
\(751\) −7.96791 + 13.8008i −0.290753 + 0.503599i −0.973988 0.226599i \(-0.927239\pi\)
0.683235 + 0.730199i \(0.260573\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.51754 13.0208i −0.273591 0.473874i
\(756\) 0 0
\(757\) 9.17499 + 15.8916i 0.333471 + 0.577588i 0.983190 0.182586i \(-0.0584468\pi\)
−0.649719 + 0.760174i \(0.725113\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.7802 1.33328 0.666641 0.745379i \(-0.267731\pi\)
0.666641 + 0.745379i \(0.267731\pi\)
\(762\) 0 0
\(763\) −4.75877 8.24243i −0.172279 0.298396i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.1925 −0.404139
\(768\) 0 0
\(769\) −21.0175 + 36.4034i −0.757912 + 1.31274i 0.186002 + 0.982549i \(0.440447\pi\)
−0.943914 + 0.330193i \(0.892886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.9709 39.7868i 0.826206 1.43103i −0.0747881 0.997199i \(-0.523828\pi\)
0.900994 0.433831i \(-0.142839\pi\)
\(774\) 0 0
\(775\) 20.7463 35.9336i 0.745228 1.29077i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 38.3952 + 21.7922i 1.37565 + 0.780786i
\(780\) 0 0
\(781\) 21.7452 + 37.6637i 0.778103 + 1.34771i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.9855 31.1517i 0.641928 1.11185i
\(786\) 0 0
\(787\) 17.3250 0.617570 0.308785 0.951132i \(-0.400078\pi\)
0.308785 + 0.951132i \(0.400078\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −36.0993 −1.28354
\(792\) 0 0
\(793\) −2.56418 4.44129i −0.0910566 0.157715i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.8324 0.773345 0.386672 0.922217i \(-0.373624\pi\)
0.386672 + 0.922217i \(0.373624\pi\)
\(798\) 0 0
\(799\) 8.33511 0.294875
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −29.4543 51.0163i −1.03942 1.80033i
\(804\) 0 0
\(805\) −19.3809 −0.683089
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.6709 1.21896 0.609482 0.792800i \(-0.291378\pi\)
0.609482 + 0.792800i \(0.291378\pi\)
\(810\) 0 0
\(811\) −14.4534 + 25.0340i −0.507526 + 0.879061i 0.492436 + 0.870349i \(0.336107\pi\)
−0.999962 + 0.00871245i \(0.997227\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.6117 + 35.7006i 0.721998 + 1.25054i
\(816\) 0 0
\(817\) 22.9884 + 13.0477i 0.804264 + 0.456481i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13.7588 + 23.8309i −0.480184 + 0.831704i −0.999742 0.0227319i \(-0.992764\pi\)
0.519557 + 0.854436i \(0.326097\pi\)
\(822\) 0 0
\(823\) −21.9709 + 38.0547i −0.765858 + 1.32650i 0.173934 + 0.984757i \(0.444352\pi\)
−0.939792 + 0.341747i \(0.888981\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.980400 + 1.69810i −0.0340918 + 0.0590488i −0.882568 0.470185i \(-0.844187\pi\)
0.848476 + 0.529234i \(0.177521\pi\)
\(828\) 0 0
\(829\) −10.4284 −0.362193 −0.181096 0.983465i \(-0.557965\pi\)
−0.181096 + 0.983465i \(0.557965\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.90261 3.29541i −0.0659214 0.114179i
\(834\) 0 0
\(835\) −42.8093 −1.48148
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.1976 28.0550i −0.559203 0.968568i −0.997563 0.0697683i \(-0.977774\pi\)
0.438360 0.898799i \(-0.355559\pi\)
\(840\) 0 0
\(841\) 8.31345 + 14.3993i 0.286671 + 0.496528i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −18.3851 + 31.8439i −0.632466 + 1.09546i
\(846\) 0 0
\(847\) 63.2586 2.17359
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.66044 6.34008i 0.125478 0.217335i
\(852\) 0 0
\(853\) 14.5838 + 25.2598i 0.499339 + 0.864881i 1.00000 0.000763028i \(-0.000242879\pi\)
−0.500661 + 0.865644i \(0.666910\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.77837 + 13.4725i 0.265704 + 0.460213i 0.967748 0.251921i \(-0.0810623\pi\)
−0.702044 + 0.712134i \(0.747729\pi\)
\(858\) 0 0
\(859\) 15.0767 26.1136i 0.514409 0.890983i −0.485451 0.874264i \(-0.661345\pi\)
0.999860 0.0167190i \(-0.00532208\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −19.7351 −0.671789 −0.335894 0.941900i \(-0.609039\pi\)
−0.335894 + 0.941900i \(0.609039\pi\)
\(864\) 0 0
\(865\) −5.38919 + 9.33434i −0.183238 + 0.317377i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.10370 + 8.83987i 0.173131 + 0.299872i
\(870\) 0 0
\(871\) 1.72668 + 2.99070i 0.0585064 + 0.101336i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.86341 0.130607
\(876\) 0 0
\(877\) 5.32295 + 9.21962i 0.179743 + 0.311324i 0.941793 0.336195i \(-0.109140\pi\)
−0.762049 + 0.647519i \(0.775807\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −39.9709 −1.34665 −0.673327 0.739345i \(-0.735135\pi\)
−0.673327 + 0.739345i \(0.735135\pi\)
\(882\) 0 0
\(883\) 14.5496 25.2007i 0.489634 0.848071i −0.510295 0.860000i \(-0.670464\pi\)
0.999929 + 0.0119285i \(0.00379705\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.72462 + 16.8435i −0.326521 + 0.565551i −0.981819 0.189820i \(-0.939210\pi\)
0.655298 + 0.755370i \(0.272543\pi\)
\(888\) 0 0
\(889\) 14.5817 25.2563i 0.489055 0.847068i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.192533 26.1527i −0.00644288 0.875166i
\(894\) 0 0
\(895\) 16.9513 + 29.3605i 0.566620 + 0.981414i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.6263 28.7976i 0.554518 0.960453i
\(900\) 0 0
\(901\) −14.7000 −0.489727
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −65.9336 −2.19171
\(906\) 0 0
\(907\) 0.778371 + 1.34818i 0.0258454 + 0.0447655i 0.878659 0.477450i \(-0.158439\pi\)
−0.852813 + 0.522216i \(0.825106\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 43.9418 1.45586 0.727929 0.685653i \(-0.240483\pi\)
0.727929 + 0.685653i \(0.240483\pi\)
\(912\) 0 0
\(913\) 113.875 3.76872
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.69459 9.86332i −0.188052 0.325716i
\(918\) 0 0
\(919\) −43.4843 −1.43442 −0.717208 0.696859i \(-0.754580\pi\)
−0.717208 + 0.696859i \(0.754580\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.73917 0.221822
\(924\) 0 0
\(925\) 5.24329 9.08164i 0.172398 0.298603i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.63547 + 14.9571i 0.283320 + 0.490725i 0.972201 0.234150i \(-0.0752307\pi\)
−0.688880 + 0.724875i \(0.741897\pi\)
\(930\) 0 0
\(931\) −10.2959 + 6.04584i −0.337435 + 0.198144i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 13.7351 23.7898i 0.449184 0.778010i
\(936\) 0 0
\(937\) −14.6088 + 25.3031i −0.477247 + 0.826616i −0.999660 0.0260763i \(-0.991699\pi\)
0.522413 + 0.852693i \(0.325032\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.6459 + 23.6354i −0.444844 + 0.770492i −0.998041 0.0625584i \(-0.980074\pi\)
0.553198 + 0.833050i \(0.313407\pi\)
\(942\) 0 0
\(943\) −31.0351 −1.01064
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25.6655 + 44.4539i 0.834017 + 1.44456i 0.894829 + 0.446410i \(0.147298\pi\)
−0.0608120 + 0.998149i \(0.519369\pi\)
\(948\) 0 0
\(949\) −9.12836 −0.296319
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.5672 47.7477i −0.892988 1.54670i −0.836275 0.548311i \(-0.815271\pi\)
−0.0567134 0.998390i \(-0.518062\pi\)
\(954\) 0 0
\(955\) −23.3364 40.4198i −0.755147 1.30795i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.3446 31.7738i 0.592378 1.02603i
\(960\) 0 0
\(961\) 58.3661 1.88278
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.59215 16.6141i 0.308782 0.534826i
\(966\) 0 0
\(967\) 25.1759 + 43.6060i 0.809603 + 1.40227i 0.913139 + 0.407648i \(0.133651\pi\)
−0.103536 + 0.994626i \(0.533016\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −27.9959 48.4903i −0.898431 1.55613i −0.829501 0.558506i \(-0.811375\pi\)
−0.0689300 0.997621i \(-0.521959\pi\)
\(972\) 0 0
\(973\) −11.3229 + 19.6119i −0.362997 + 0.628729i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.8283 0.474400 0.237200 0.971461i \(-0.423770\pi\)
0.237200 + 0.971461i \(0.423770\pi\)
\(978\) 0 0
\(979\) −33.7297 + 58.4215i −1.07801 + 1.86716i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.41921 14.5825i −0.268531 0.465110i 0.699952 0.714190i \(-0.253205\pi\)
−0.968483 + 0.249081i \(0.919872\pi\)
\(984\) 0 0
\(985\) 10.2804 + 17.8062i 0.327562 + 0.567354i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −18.5817 −0.590864
\(990\) 0 0
\(991\) 27.2050 + 47.1205i 0.864196 + 1.49683i 0.867843 + 0.496838i \(0.165506\pi\)
−0.00364729 + 0.999993i \(0.501161\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −76.3952 −2.42189
\(996\) 0 0
\(997\) −27.1614 + 47.0449i −0.860209 + 1.48993i 0.0115170 + 0.999934i \(0.496334\pi\)
−0.871726 + 0.489993i \(0.836999\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.s.x.577.3 6
3.2 odd 2 912.2.q.k.577.1 6
4.3 odd 2 1368.2.s.j.577.3 6
12.11 even 2 456.2.q.f.121.1 yes 6
19.11 even 3 inner 2736.2.s.x.1873.3 6
57.11 odd 6 912.2.q.k.49.1 6
76.11 odd 6 1368.2.s.j.505.3 6
228.11 even 6 456.2.q.f.49.1 6
228.83 even 6 8664.2.a.x.1.3 3
228.107 odd 6 8664.2.a.z.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.q.f.49.1 6 228.11 even 6
456.2.q.f.121.1 yes 6 12.11 even 2
912.2.q.k.49.1 6 57.11 odd 6
912.2.q.k.577.1 6 3.2 odd 2
1368.2.s.j.505.3 6 76.11 odd 6
1368.2.s.j.577.3 6 4.3 odd 2
2736.2.s.x.577.3 6 1.1 even 1 trivial
2736.2.s.x.1873.3 6 19.11 even 3 inner
8664.2.a.x.1.3 3 228.83 even 6
8664.2.a.z.1.3 3 228.107 odd 6