Properties

Label 8664.2.a.z.1.3
Level $8664$
Weight $2$
Character 8664.1
Self dual yes
Analytic conductor $69.182$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8664,2,Mod(1,8664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8664.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 456)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 8664.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.06418 q^{5} -2.06418 q^{7} +1.00000 q^{9} -6.45336 q^{11} -1.00000 q^{13} +3.06418 q^{15} +1.38919 q^{17} -2.06418 q^{21} +3.06418 q^{23} +4.38919 q^{25} +1.00000 q^{27} +3.51754 q^{29} -9.45336 q^{31} -6.45336 q^{33} -6.32501 q^{35} +2.38919 q^{37} -1.00000 q^{39} -10.1284 q^{41} +6.06418 q^{43} +3.06418 q^{45} -6.00000 q^{47} -2.73917 q^{49} +1.38919 q^{51} +10.5817 q^{53} -19.7743 q^{55} +11.1925 q^{59} +5.12836 q^{61} -2.06418 q^{63} -3.06418 q^{65} -3.45336 q^{67} +3.06418 q^{69} -6.73917 q^{71} -9.12836 q^{73} +4.38919 q^{75} +13.3209 q^{77} +1.58172 q^{79} +1.00000 q^{81} -17.6459 q^{83} +4.25671 q^{85} +3.51754 q^{87} -10.4534 q^{89} +2.06418 q^{91} -9.45336 q^{93} -6.73917 q^{97} -6.45336 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 3 q^{7} + 3 q^{9} - 6 q^{11} - 3 q^{13} + 3 q^{21} + 9 q^{25} + 3 q^{27} - 12 q^{29} - 15 q^{31} - 6 q^{33} - 24 q^{35} + 3 q^{37} - 3 q^{39} - 12 q^{41} + 9 q^{43} - 18 q^{47} + 6 q^{49}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.06418 1.37034 0.685171 0.728382i \(-0.259727\pi\)
0.685171 + 0.728382i \(0.259727\pi\)
\(6\) 0 0
\(7\) −2.06418 −0.780186 −0.390093 0.920775i \(-0.627557\pi\)
−0.390093 + 0.920775i \(0.627557\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −6.45336 −1.94576 −0.972881 0.231306i \(-0.925700\pi\)
−0.972881 + 0.231306i \(0.925700\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 3.06418 0.791167
\(16\) 0 0
\(17\) 1.38919 0.336927 0.168463 0.985708i \(-0.446119\pi\)
0.168463 + 0.985708i \(0.446119\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −2.06418 −0.450441
\(22\) 0 0
\(23\) 3.06418 0.638925 0.319463 0.947599i \(-0.396498\pi\)
0.319463 + 0.947599i \(0.396498\pi\)
\(24\) 0 0
\(25\) 4.38919 0.877837
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.51754 0.653191 0.326595 0.945164i \(-0.394099\pi\)
0.326595 + 0.945164i \(0.394099\pi\)
\(30\) 0 0
\(31\) −9.45336 −1.69787 −0.848937 0.528494i \(-0.822757\pi\)
−0.848937 + 0.528494i \(0.822757\pi\)
\(32\) 0 0
\(33\) −6.45336 −1.12339
\(34\) 0 0
\(35\) −6.32501 −1.06912
\(36\) 0 0
\(37\) 2.38919 0.392780 0.196390 0.980526i \(-0.437078\pi\)
0.196390 + 0.980526i \(0.437078\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −10.1284 −1.58178 −0.790892 0.611956i \(-0.790383\pi\)
−0.790892 + 0.611956i \(0.790383\pi\)
\(42\) 0 0
\(43\) 6.06418 0.924778 0.462389 0.886677i \(-0.346992\pi\)
0.462389 + 0.886677i \(0.346992\pi\)
\(44\) 0 0
\(45\) 3.06418 0.456781
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −2.73917 −0.391310
\(50\) 0 0
\(51\) 1.38919 0.194525
\(52\) 0 0
\(53\) 10.5817 1.45351 0.726755 0.686896i \(-0.241027\pi\)
0.726755 + 0.686896i \(0.241027\pi\)
\(54\) 0 0
\(55\) −19.7743 −2.66636
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.1925 1.45714 0.728572 0.684969i \(-0.240184\pi\)
0.728572 + 0.684969i \(0.240184\pi\)
\(60\) 0 0
\(61\) 5.12836 0.656619 0.328309 0.944570i \(-0.393521\pi\)
0.328309 + 0.944570i \(0.393521\pi\)
\(62\) 0 0
\(63\) −2.06418 −0.260062
\(64\) 0 0
\(65\) −3.06418 −0.380064
\(66\) 0 0
\(67\) −3.45336 −0.421895 −0.210948 0.977497i \(-0.567655\pi\)
−0.210948 + 0.977497i \(0.567655\pi\)
\(68\) 0 0
\(69\) 3.06418 0.368884
\(70\) 0 0
\(71\) −6.73917 −0.799792 −0.399896 0.916560i \(-0.630954\pi\)
−0.399896 + 0.916560i \(0.630954\pi\)
\(72\) 0 0
\(73\) −9.12836 −1.06839 −0.534197 0.845360i \(-0.679386\pi\)
−0.534197 + 0.845360i \(0.679386\pi\)
\(74\) 0 0
\(75\) 4.38919 0.506819
\(76\) 0 0
\(77\) 13.3209 1.51806
\(78\) 0 0
\(79\) 1.58172 0.177957 0.0889786 0.996034i \(-0.471640\pi\)
0.0889786 + 0.996034i \(0.471640\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −17.6459 −1.93689 −0.968444 0.249230i \(-0.919823\pi\)
−0.968444 + 0.249230i \(0.919823\pi\)
\(84\) 0 0
\(85\) 4.25671 0.461705
\(86\) 0 0
\(87\) 3.51754 0.377120
\(88\) 0 0
\(89\) −10.4534 −1.10805 −0.554027 0.832499i \(-0.686910\pi\)
−0.554027 + 0.832499i \(0.686910\pi\)
\(90\) 0 0
\(91\) 2.06418 0.216385
\(92\) 0 0
\(93\) −9.45336 −0.980268
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.73917 −0.684259 −0.342130 0.939653i \(-0.611148\pi\)
−0.342130 + 0.939653i \(0.611148\pi\)
\(98\) 0 0
\(99\) −6.45336 −0.648587
\(100\) 0 0
\(101\) 0.610815 0.0607783 0.0303892 0.999538i \(-0.490325\pi\)
0.0303892 + 0.999538i \(0.490325\pi\)
\(102\) 0 0
\(103\) −0.0641778 −0.00632362 −0.00316181 0.999995i \(-0.501006\pi\)
−0.00316181 + 0.999995i \(0.501006\pi\)
\(104\) 0 0
\(105\) −6.32501 −0.617258
\(106\) 0 0
\(107\) −0.610815 −0.0590497 −0.0295248 0.999564i \(-0.509399\pi\)
−0.0295248 + 0.999564i \(0.509399\pi\)
\(108\) 0 0
\(109\) −4.61081 −0.441636 −0.220818 0.975315i \(-0.570873\pi\)
−0.220818 + 0.975315i \(0.570873\pi\)
\(110\) 0 0
\(111\) 2.38919 0.226771
\(112\) 0 0
\(113\) −17.4884 −1.64517 −0.822587 0.568639i \(-0.807470\pi\)
−0.822587 + 0.568639i \(0.807470\pi\)
\(114\) 0 0
\(115\) 9.38919 0.875546
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) −2.86753 −0.262866
\(120\) 0 0
\(121\) 30.6459 2.78599
\(122\) 0 0
\(123\) −10.1284 −0.913243
\(124\) 0 0
\(125\) −1.87164 −0.167405
\(126\) 0 0
\(127\) −14.1284 −1.25369 −0.626844 0.779144i \(-0.715654\pi\)
−0.626844 + 0.779144i \(0.715654\pi\)
\(128\) 0 0
\(129\) 6.06418 0.533921
\(130\) 0 0
\(131\) 5.51754 0.482070 0.241035 0.970516i \(-0.422513\pi\)
0.241035 + 0.970516i \(0.422513\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.06418 0.263722
\(136\) 0 0
\(137\) 17.7743 1.51856 0.759278 0.650766i \(-0.225552\pi\)
0.759278 + 0.650766i \(0.225552\pi\)
\(138\) 0 0
\(139\) −10.9709 −0.930540 −0.465270 0.885169i \(-0.654043\pi\)
−0.465270 + 0.885169i \(0.654043\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) 6.45336 0.539657
\(144\) 0 0
\(145\) 10.7784 0.895095
\(146\) 0 0
\(147\) −2.73917 −0.225923
\(148\) 0 0
\(149\) 13.0642 1.07026 0.535130 0.844770i \(-0.320263\pi\)
0.535130 + 0.844770i \(0.320263\pi\)
\(150\) 0 0
\(151\) −4.90673 −0.399304 −0.199652 0.979867i \(-0.563981\pi\)
−0.199652 + 0.979867i \(0.563981\pi\)
\(152\) 0 0
\(153\) 1.38919 0.112309
\(154\) 0 0
\(155\) −28.9668 −2.32667
\(156\) 0 0
\(157\) 11.7392 0.936888 0.468444 0.883493i \(-0.344815\pi\)
0.468444 + 0.883493i \(0.344815\pi\)
\(158\) 0 0
\(159\) 10.5817 0.839185
\(160\) 0 0
\(161\) −6.32501 −0.498480
\(162\) 0 0
\(163\) −13.4534 −1.05375 −0.526874 0.849943i \(-0.676636\pi\)
−0.526874 + 0.849943i \(0.676636\pi\)
\(164\) 0 0
\(165\) −19.7743 −1.53942
\(166\) 0 0
\(167\) −13.9709 −1.08110 −0.540551 0.841312i \(-0.681784\pi\)
−0.540551 + 0.841312i \(0.681784\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.51754 −0.267434 −0.133717 0.991020i \(-0.542691\pi\)
−0.133717 + 0.991020i \(0.542691\pi\)
\(174\) 0 0
\(175\) −9.06006 −0.684876
\(176\) 0 0
\(177\) 11.1925 0.841282
\(178\) 0 0
\(179\) −11.0642 −0.826975 −0.413488 0.910510i \(-0.635690\pi\)
−0.413488 + 0.910510i \(0.635690\pi\)
\(180\) 0 0
\(181\) −21.5175 −1.59939 −0.799693 0.600409i \(-0.795004\pi\)
−0.799693 + 0.600409i \(0.795004\pi\)
\(182\) 0 0
\(183\) 5.12836 0.379099
\(184\) 0 0
\(185\) 7.32089 0.538242
\(186\) 0 0
\(187\) −8.96492 −0.655580
\(188\) 0 0
\(189\) −2.06418 −0.150147
\(190\) 0 0
\(191\) −15.2317 −1.10213 −0.551065 0.834462i \(-0.685778\pi\)
−0.551065 + 0.834462i \(0.685778\pi\)
\(192\) 0 0
\(193\) −6.26083 −0.450664 −0.225332 0.974282i \(-0.572347\pi\)
−0.225332 + 0.974282i \(0.572347\pi\)
\(194\) 0 0
\(195\) −3.06418 −0.219430
\(196\) 0 0
\(197\) −6.71007 −0.478073 −0.239036 0.971011i \(-0.576832\pi\)
−0.239036 + 0.971011i \(0.576832\pi\)
\(198\) 0 0
\(199\) −24.9317 −1.76736 −0.883681 0.468090i \(-0.844942\pi\)
−0.883681 + 0.468090i \(0.844942\pi\)
\(200\) 0 0
\(201\) −3.45336 −0.243581
\(202\) 0 0
\(203\) −7.26083 −0.509610
\(204\) 0 0
\(205\) −31.0351 −2.16758
\(206\) 0 0
\(207\) 3.06418 0.212975
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.97090 −0.617583 −0.308791 0.951130i \(-0.599924\pi\)
−0.308791 + 0.951130i \(0.599924\pi\)
\(212\) 0 0
\(213\) −6.73917 −0.461760
\(214\) 0 0
\(215\) 18.5817 1.26726
\(216\) 0 0
\(217\) 19.5134 1.32466
\(218\) 0 0
\(219\) −9.12836 −0.616837
\(220\) 0 0
\(221\) −1.38919 −0.0934467
\(222\) 0 0
\(223\) −25.1385 −1.68340 −0.841698 0.539949i \(-0.818444\pi\)
−0.841698 + 0.539949i \(0.818444\pi\)
\(224\) 0 0
\(225\) 4.38919 0.292612
\(226\) 0 0
\(227\) 22.8384 1.51584 0.757920 0.652348i \(-0.226216\pi\)
0.757920 + 0.652348i \(0.226216\pi\)
\(228\) 0 0
\(229\) −6.03508 −0.398809 −0.199405 0.979917i \(-0.563901\pi\)
−0.199405 + 0.979917i \(0.563901\pi\)
\(230\) 0 0
\(231\) 13.3209 0.876450
\(232\) 0 0
\(233\) 4.61081 0.302065 0.151032 0.988529i \(-0.451740\pi\)
0.151032 + 0.988529i \(0.451740\pi\)
\(234\) 0 0
\(235\) −18.3851 −1.19931
\(236\) 0 0
\(237\) 1.58172 0.102744
\(238\) 0 0
\(239\) 9.36009 0.605454 0.302727 0.953077i \(-0.402103\pi\)
0.302727 + 0.953077i \(0.402103\pi\)
\(240\) 0 0
\(241\) 20.1634 1.29884 0.649421 0.760429i \(-0.275011\pi\)
0.649421 + 0.760429i \(0.275011\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −8.39330 −0.536229
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −17.6459 −1.11826
\(250\) 0 0
\(251\) 12.1284 0.765535 0.382768 0.923845i \(-0.374971\pi\)
0.382768 + 0.923845i \(0.374971\pi\)
\(252\) 0 0
\(253\) −19.7743 −1.24320
\(254\) 0 0
\(255\) 4.25671 0.266566
\(256\) 0 0
\(257\) −30.8384 −1.92365 −0.961824 0.273668i \(-0.911763\pi\)
−0.961824 + 0.273668i \(0.911763\pi\)
\(258\) 0 0
\(259\) −4.93170 −0.306441
\(260\) 0 0
\(261\) 3.51754 0.217730
\(262\) 0 0
\(263\) −10.4825 −0.646376 −0.323188 0.946335i \(-0.604755\pi\)
−0.323188 + 0.946335i \(0.604755\pi\)
\(264\) 0 0
\(265\) 32.4243 1.99181
\(266\) 0 0
\(267\) −10.4534 −0.639735
\(268\) 0 0
\(269\) 1.80335 0.109952 0.0549760 0.998488i \(-0.482492\pi\)
0.0549760 + 0.998488i \(0.482492\pi\)
\(270\) 0 0
\(271\) 28.2567 1.71647 0.858236 0.513254i \(-0.171560\pi\)
0.858236 + 0.513254i \(0.171560\pi\)
\(272\) 0 0
\(273\) 2.06418 0.124930
\(274\) 0 0
\(275\) −28.3250 −1.70806
\(276\) 0 0
\(277\) 6.48246 0.389493 0.194747 0.980854i \(-0.437612\pi\)
0.194747 + 0.980854i \(0.437612\pi\)
\(278\) 0 0
\(279\) −9.45336 −0.565958
\(280\) 0 0
\(281\) −5.84255 −0.348537 −0.174269 0.984698i \(-0.555756\pi\)
−0.174269 + 0.984698i \(0.555756\pi\)
\(282\) 0 0
\(283\) 16.2567 0.966361 0.483181 0.875521i \(-0.339481\pi\)
0.483181 + 0.875521i \(0.339481\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 20.9067 1.23409
\(288\) 0 0
\(289\) −15.0702 −0.886480
\(290\) 0 0
\(291\) −6.73917 −0.395057
\(292\) 0 0
\(293\) −26.2567 −1.53393 −0.766967 0.641687i \(-0.778235\pi\)
−0.766967 + 0.641687i \(0.778235\pi\)
\(294\) 0 0
\(295\) 34.2959 1.99679
\(296\) 0 0
\(297\) −6.45336 −0.374462
\(298\) 0 0
\(299\) −3.06418 −0.177206
\(300\) 0 0
\(301\) −12.5175 −0.721499
\(302\) 0 0
\(303\) 0.610815 0.0350904
\(304\) 0 0
\(305\) 15.7142 0.899792
\(306\) 0 0
\(307\) −14.2959 −0.815911 −0.407955 0.913002i \(-0.633758\pi\)
−0.407955 + 0.913002i \(0.633758\pi\)
\(308\) 0 0
\(309\) −0.0641778 −0.00365095
\(310\) 0 0
\(311\) 22.2276 1.26041 0.630206 0.776428i \(-0.282970\pi\)
0.630206 + 0.776428i \(0.282970\pi\)
\(312\) 0 0
\(313\) 3.13247 0.177058 0.0885290 0.996074i \(-0.471783\pi\)
0.0885290 + 0.996074i \(0.471783\pi\)
\(314\) 0 0
\(315\) −6.32501 −0.356374
\(316\) 0 0
\(317\) 6.09926 0.342569 0.171284 0.985222i \(-0.445208\pi\)
0.171284 + 0.985222i \(0.445208\pi\)
\(318\) 0 0
\(319\) −22.7000 −1.27095
\(320\) 0 0
\(321\) −0.610815 −0.0340923
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4.38919 −0.243468
\(326\) 0 0
\(327\) −4.61081 −0.254979
\(328\) 0 0
\(329\) 12.3851 0.682811
\(330\) 0 0
\(331\) 1.93582 0.106402 0.0532012 0.998584i \(-0.483058\pi\)
0.0532012 + 0.998584i \(0.483058\pi\)
\(332\) 0 0
\(333\) 2.38919 0.130927
\(334\) 0 0
\(335\) −10.5817 −0.578141
\(336\) 0 0
\(337\) 7.16756 0.390442 0.195221 0.980759i \(-0.437458\pi\)
0.195221 + 0.980759i \(0.437458\pi\)
\(338\) 0 0
\(339\) −17.4884 −0.949842
\(340\) 0 0
\(341\) 61.0060 3.30366
\(342\) 0 0
\(343\) 20.1034 1.08548
\(344\) 0 0
\(345\) 9.38919 0.505497
\(346\) 0 0
\(347\) −9.61680 −0.516257 −0.258128 0.966111i \(-0.583106\pi\)
−0.258128 + 0.966111i \(0.583106\pi\)
\(348\) 0 0
\(349\) 31.5134 1.68687 0.843437 0.537227i \(-0.180528\pi\)
0.843437 + 0.537227i \(0.180528\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −25.8425 −1.37546 −0.687730 0.725967i \(-0.741393\pi\)
−0.687730 + 0.725967i \(0.741393\pi\)
\(354\) 0 0
\(355\) −20.6500 −1.09599
\(356\) 0 0
\(357\) −2.86753 −0.151766
\(358\) 0 0
\(359\) 32.2567 1.70244 0.851222 0.524806i \(-0.175862\pi\)
0.851222 + 0.524806i \(0.175862\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 30.6459 1.60849
\(364\) 0 0
\(365\) −27.9709 −1.46406
\(366\) 0 0
\(367\) 29.2668 1.52772 0.763858 0.645385i \(-0.223303\pi\)
0.763858 + 0.645385i \(0.223303\pi\)
\(368\) 0 0
\(369\) −10.1284 −0.527261
\(370\) 0 0
\(371\) −21.8425 −1.13401
\(372\) 0 0
\(373\) −8.03920 −0.416254 −0.208127 0.978102i \(-0.566737\pi\)
−0.208127 + 0.978102i \(0.566737\pi\)
\(374\) 0 0
\(375\) −1.87164 −0.0966513
\(376\) 0 0
\(377\) −3.51754 −0.181163
\(378\) 0 0
\(379\) −8.19253 −0.420822 −0.210411 0.977613i \(-0.567480\pi\)
−0.210411 + 0.977613i \(0.567480\pi\)
\(380\) 0 0
\(381\) −14.1284 −0.723818
\(382\) 0 0
\(383\) 5.48845 0.280446 0.140223 0.990120i \(-0.455218\pi\)
0.140223 + 0.990120i \(0.455218\pi\)
\(384\) 0 0
\(385\) 40.8176 2.08026
\(386\) 0 0
\(387\) 6.06418 0.308259
\(388\) 0 0
\(389\) 8.45336 0.428603 0.214301 0.976768i \(-0.431253\pi\)
0.214301 + 0.976768i \(0.431253\pi\)
\(390\) 0 0
\(391\) 4.25671 0.215271
\(392\) 0 0
\(393\) 5.51754 0.278323
\(394\) 0 0
\(395\) 4.84667 0.243862
\(396\) 0 0
\(397\) 25.0702 1.25824 0.629118 0.777310i \(-0.283416\pi\)
0.629118 + 0.777310i \(0.283416\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.7452 1.28565 0.642826 0.766012i \(-0.277762\pi\)
0.642826 + 0.766012i \(0.277762\pi\)
\(402\) 0 0
\(403\) 9.45336 0.470906
\(404\) 0 0
\(405\) 3.06418 0.152260
\(406\) 0 0
\(407\) −15.4183 −0.764256
\(408\) 0 0
\(409\) 6.42427 0.317660 0.158830 0.987306i \(-0.449228\pi\)
0.158830 + 0.987306i \(0.449228\pi\)
\(410\) 0 0
\(411\) 17.7743 0.876739
\(412\) 0 0
\(413\) −23.1034 −1.13684
\(414\) 0 0
\(415\) −54.0702 −2.65420
\(416\) 0 0
\(417\) −10.9709 −0.537247
\(418\) 0 0
\(419\) 16.2668 0.794686 0.397343 0.917670i \(-0.369932\pi\)
0.397343 + 0.917670i \(0.369932\pi\)
\(420\) 0 0
\(421\) 29.4593 1.43576 0.717880 0.696166i \(-0.245112\pi\)
0.717880 + 0.696166i \(0.245112\pi\)
\(422\) 0 0
\(423\) −6.00000 −0.291730
\(424\) 0 0
\(425\) 6.09739 0.295767
\(426\) 0 0
\(427\) −10.5858 −0.512285
\(428\) 0 0
\(429\) 6.45336 0.311571
\(430\) 0 0
\(431\) 17.0351 0.820551 0.410276 0.911962i \(-0.365433\pi\)
0.410276 + 0.911962i \(0.365433\pi\)
\(432\) 0 0
\(433\) 13.6810 0.657466 0.328733 0.944423i \(-0.393378\pi\)
0.328733 + 0.944423i \(0.393378\pi\)
\(434\) 0 0
\(435\) 10.7784 0.516783
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.41416 −0.0674943 −0.0337471 0.999430i \(-0.510744\pi\)
−0.0337471 + 0.999430i \(0.510744\pi\)
\(440\) 0 0
\(441\) −2.73917 −0.130437
\(442\) 0 0
\(443\) 0.739170 0.0351190 0.0175595 0.999846i \(-0.494410\pi\)
0.0175595 + 0.999846i \(0.494410\pi\)
\(444\) 0 0
\(445\) −32.0310 −1.51841
\(446\) 0 0
\(447\) 13.0642 0.617914
\(448\) 0 0
\(449\) −7.51754 −0.354775 −0.177387 0.984141i \(-0.556765\pi\)
−0.177387 + 0.984141i \(0.556765\pi\)
\(450\) 0 0
\(451\) 65.3620 3.07777
\(452\) 0 0
\(453\) −4.90673 −0.230538
\(454\) 0 0
\(455\) 6.32501 0.296521
\(456\) 0 0
\(457\) −15.6810 −0.733525 −0.366763 0.930315i \(-0.619534\pi\)
−0.366763 + 0.930315i \(0.619534\pi\)
\(458\) 0 0
\(459\) 1.38919 0.0648416
\(460\) 0 0
\(461\) 21.4884 1.00082 0.500408 0.865790i \(-0.333183\pi\)
0.500408 + 0.865790i \(0.333183\pi\)
\(462\) 0 0
\(463\) −9.62092 −0.447122 −0.223561 0.974690i \(-0.571768\pi\)
−0.223561 + 0.974690i \(0.571768\pi\)
\(464\) 0 0
\(465\) −28.9668 −1.34330
\(466\) 0 0
\(467\) 1.87164 0.0866094 0.0433047 0.999062i \(-0.486211\pi\)
0.0433047 + 0.999062i \(0.486211\pi\)
\(468\) 0 0
\(469\) 7.12836 0.329157
\(470\) 0 0
\(471\) 11.7392 0.540912
\(472\) 0 0
\(473\) −39.1343 −1.79940
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.5817 0.484504
\(478\) 0 0
\(479\) 6.73917 0.307921 0.153960 0.988077i \(-0.450797\pi\)
0.153960 + 0.988077i \(0.450797\pi\)
\(480\) 0 0
\(481\) −2.38919 −0.108937
\(482\) 0 0
\(483\) −6.32501 −0.287798
\(484\) 0 0
\(485\) −20.6500 −0.937669
\(486\) 0 0
\(487\) 2.38507 0.108078 0.0540388 0.998539i \(-0.482791\pi\)
0.0540388 + 0.998539i \(0.482791\pi\)
\(488\) 0 0
\(489\) −13.4534 −0.608382
\(490\) 0 0
\(491\) −10.7392 −0.484652 −0.242326 0.970195i \(-0.577910\pi\)
−0.242326 + 0.970195i \(0.577910\pi\)
\(492\) 0 0
\(493\) 4.88652 0.220078
\(494\) 0 0
\(495\) −19.7743 −0.888787
\(496\) 0 0
\(497\) 13.9108 0.623987
\(498\) 0 0
\(499\) 28.5466 1.27792 0.638961 0.769239i \(-0.279364\pi\)
0.638961 + 0.769239i \(0.279364\pi\)
\(500\) 0 0
\(501\) −13.9709 −0.624174
\(502\) 0 0
\(503\) 3.51754 0.156839 0.0784197 0.996920i \(-0.475013\pi\)
0.0784197 + 0.996920i \(0.475013\pi\)
\(504\) 0 0
\(505\) 1.87164 0.0832871
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) −7.22163 −0.320093 −0.160047 0.987109i \(-0.551164\pi\)
−0.160047 + 0.987109i \(0.551164\pi\)
\(510\) 0 0
\(511\) 18.8425 0.833545
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.196652 −0.00866553
\(516\) 0 0
\(517\) 38.7202 1.70291
\(518\) 0 0
\(519\) −3.51754 −0.154403
\(520\) 0 0
\(521\) −16.8075 −0.736348 −0.368174 0.929757i \(-0.620017\pi\)
−0.368174 + 0.929757i \(0.620017\pi\)
\(522\) 0 0
\(523\) 7.76827 0.339683 0.169841 0.985471i \(-0.445674\pi\)
0.169841 + 0.985471i \(0.445674\pi\)
\(524\) 0 0
\(525\) −9.06006 −0.395413
\(526\) 0 0
\(527\) −13.1325 −0.572060
\(528\) 0 0
\(529\) −13.6108 −0.591775
\(530\) 0 0
\(531\) 11.1925 0.485715
\(532\) 0 0
\(533\) 10.1284 0.438708
\(534\) 0 0
\(535\) −1.87164 −0.0809182
\(536\) 0 0
\(537\) −11.0642 −0.477455
\(538\) 0 0
\(539\) 17.6769 0.761396
\(540\) 0 0
\(541\) −36.3310 −1.56199 −0.780996 0.624536i \(-0.785288\pi\)
−0.780996 + 0.624536i \(0.785288\pi\)
\(542\) 0 0
\(543\) −21.5175 −0.923406
\(544\) 0 0
\(545\) −14.1284 −0.605192
\(546\) 0 0
\(547\) −31.6209 −1.35201 −0.676006 0.736896i \(-0.736291\pi\)
−0.676006 + 0.736896i \(0.736291\pi\)
\(548\) 0 0
\(549\) 5.12836 0.218873
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −3.26495 −0.138840
\(554\) 0 0
\(555\) 7.32089 0.310754
\(556\) 0 0
\(557\) 4.03920 0.171146 0.0855732 0.996332i \(-0.472728\pi\)
0.0855732 + 0.996332i \(0.472728\pi\)
\(558\) 0 0
\(559\) −6.06418 −0.256487
\(560\) 0 0
\(561\) −8.96492 −0.378499
\(562\) 0 0
\(563\) 8.61081 0.362903 0.181451 0.983400i \(-0.441921\pi\)
0.181451 + 0.983400i \(0.441921\pi\)
\(564\) 0 0
\(565\) −53.5877 −2.25445
\(566\) 0 0
\(567\) −2.06418 −0.0866873
\(568\) 0 0
\(569\) 27.6851 1.16062 0.580310 0.814396i \(-0.302931\pi\)
0.580310 + 0.814396i \(0.302931\pi\)
\(570\) 0 0
\(571\) 24.1533 1.01079 0.505393 0.862889i \(-0.331348\pi\)
0.505393 + 0.862889i \(0.331348\pi\)
\(572\) 0 0
\(573\) −15.2317 −0.636315
\(574\) 0 0
\(575\) 13.4492 0.560872
\(576\) 0 0
\(577\) 28.8675 1.20177 0.600885 0.799335i \(-0.294815\pi\)
0.600885 + 0.799335i \(0.294815\pi\)
\(578\) 0 0
\(579\) −6.26083 −0.260191
\(580\) 0 0
\(581\) 36.4243 1.51113
\(582\) 0 0
\(583\) −68.2877 −2.82819
\(584\) 0 0
\(585\) −3.06418 −0.126688
\(586\) 0 0
\(587\) 10.2858 0.424541 0.212270 0.977211i \(-0.431914\pi\)
0.212270 + 0.977211i \(0.431914\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −6.71007 −0.276016
\(592\) 0 0
\(593\) −15.9317 −0.654237 −0.327118 0.944983i \(-0.606078\pi\)
−0.327118 + 0.944983i \(0.606078\pi\)
\(594\) 0 0
\(595\) −8.78661 −0.360216
\(596\) 0 0
\(597\) −24.9317 −1.02039
\(598\) 0 0
\(599\) 18.0601 0.737914 0.368957 0.929446i \(-0.379715\pi\)
0.368957 + 0.929446i \(0.379715\pi\)
\(600\) 0 0
\(601\) 7.86753 0.320923 0.160462 0.987042i \(-0.448702\pi\)
0.160462 + 0.987042i \(0.448702\pi\)
\(602\) 0 0
\(603\) −3.45336 −0.140632
\(604\) 0 0
\(605\) 93.9045 3.81776
\(606\) 0 0
\(607\) 17.2668 0.700838 0.350419 0.936593i \(-0.386039\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(608\) 0 0
\(609\) −7.26083 −0.294224
\(610\) 0 0
\(611\) 6.00000 0.242734
\(612\) 0 0
\(613\) −27.5877 −1.11426 −0.557128 0.830426i \(-0.688097\pi\)
−0.557128 + 0.830426i \(0.688097\pi\)
\(614\) 0 0
\(615\) −31.0351 −1.25146
\(616\) 0 0
\(617\) 16.4926 0.663966 0.331983 0.943285i \(-0.392282\pi\)
0.331983 + 0.943285i \(0.392282\pi\)
\(618\) 0 0
\(619\) 24.4884 0.984274 0.492137 0.870518i \(-0.336216\pi\)
0.492137 + 0.870518i \(0.336216\pi\)
\(620\) 0 0
\(621\) 3.06418 0.122961
\(622\) 0 0
\(623\) 21.5776 0.864488
\(624\) 0 0
\(625\) −27.6810 −1.10724
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.31902 0.132338
\(630\) 0 0
\(631\) 19.6709 0.783085 0.391543 0.920160i \(-0.371942\pi\)
0.391543 + 0.920160i \(0.371942\pi\)
\(632\) 0 0
\(633\) −8.97090 −0.356561
\(634\) 0 0
\(635\) −43.2918 −1.71798
\(636\) 0 0
\(637\) 2.73917 0.108530
\(638\) 0 0
\(639\) −6.73917 −0.266597
\(640\) 0 0
\(641\) −8.12836 −0.321051 −0.160525 0.987032i \(-0.551319\pi\)
−0.160525 + 0.987032i \(0.551319\pi\)
\(642\) 0 0
\(643\) 7.83843 0.309117 0.154559 0.987984i \(-0.450604\pi\)
0.154559 + 0.987984i \(0.450604\pi\)
\(644\) 0 0
\(645\) 18.5817 0.731654
\(646\) 0 0
\(647\) −39.7743 −1.56369 −0.781844 0.623475i \(-0.785720\pi\)
−0.781844 + 0.623475i \(0.785720\pi\)
\(648\) 0 0
\(649\) −72.2295 −2.83526
\(650\) 0 0
\(651\) 19.5134 0.764791
\(652\) 0 0
\(653\) 8.94593 0.350081 0.175041 0.984561i \(-0.443994\pi\)
0.175041 + 0.984561i \(0.443994\pi\)
\(654\) 0 0
\(655\) 16.9067 0.660600
\(656\) 0 0
\(657\) −9.12836 −0.356131
\(658\) 0 0
\(659\) 11.8735 0.462526 0.231263 0.972891i \(-0.425714\pi\)
0.231263 + 0.972891i \(0.425714\pi\)
\(660\) 0 0
\(661\) −43.8135 −1.70415 −0.852073 0.523423i \(-0.824655\pi\)
−0.852073 + 0.523423i \(0.824655\pi\)
\(662\) 0 0
\(663\) −1.38919 −0.0539515
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.7784 0.417340
\(668\) 0 0
\(669\) −25.1385 −0.971909
\(670\) 0 0
\(671\) −33.0951 −1.27762
\(672\) 0 0
\(673\) 37.6810 1.45249 0.726247 0.687433i \(-0.241263\pi\)
0.726247 + 0.687433i \(0.241263\pi\)
\(674\) 0 0
\(675\) 4.38919 0.168940
\(676\) 0 0
\(677\) 35.1052 1.34920 0.674602 0.738182i \(-0.264315\pi\)
0.674602 + 0.738182i \(0.264315\pi\)
\(678\) 0 0
\(679\) 13.9108 0.533849
\(680\) 0 0
\(681\) 22.8384 0.875171
\(682\) 0 0
\(683\) −37.6168 −1.43937 −0.719683 0.694302i \(-0.755713\pi\)
−0.719683 + 0.694302i \(0.755713\pi\)
\(684\) 0 0
\(685\) 54.4635 2.08094
\(686\) 0 0
\(687\) −6.03508 −0.230253
\(688\) 0 0
\(689\) −10.5817 −0.403131
\(690\) 0 0
\(691\) −2.69997 −0.102712 −0.0513558 0.998680i \(-0.516354\pi\)
−0.0513558 + 0.998680i \(0.516354\pi\)
\(692\) 0 0
\(693\) 13.3209 0.506019
\(694\) 0 0
\(695\) −33.6168 −1.27516
\(696\) 0 0
\(697\) −14.0702 −0.532945
\(698\) 0 0
\(699\) 4.61081 0.174397
\(700\) 0 0
\(701\) −21.7641 −0.822020 −0.411010 0.911631i \(-0.634824\pi\)
−0.411010 + 0.911631i \(0.634824\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −18.3851 −0.692422
\(706\) 0 0
\(707\) −1.26083 −0.0474184
\(708\) 0 0
\(709\) −26.6067 −0.999235 −0.499618 0.866246i \(-0.666526\pi\)
−0.499618 + 0.866246i \(0.666526\pi\)
\(710\) 0 0
\(711\) 1.58172 0.0593191
\(712\) 0 0
\(713\) −28.9668 −1.08481
\(714\) 0 0
\(715\) 19.7743 0.739515
\(716\) 0 0
\(717\) 9.36009 0.349559
\(718\) 0 0
\(719\) −7.63579 −0.284767 −0.142383 0.989812i \(-0.545477\pi\)
−0.142383 + 0.989812i \(0.545477\pi\)
\(720\) 0 0
\(721\) 0.132474 0.00493360
\(722\) 0 0
\(723\) 20.1634 0.749886
\(724\) 0 0
\(725\) 15.4391 0.573395
\(726\) 0 0
\(727\) 40.7452 1.51115 0.755577 0.655060i \(-0.227357\pi\)
0.755577 + 0.655060i \(0.227357\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.42427 0.311583
\(732\) 0 0
\(733\) 48.4742 1.79044 0.895218 0.445628i \(-0.147020\pi\)
0.895218 + 0.445628i \(0.147020\pi\)
\(734\) 0 0
\(735\) −8.39330 −0.309592
\(736\) 0 0
\(737\) 22.2858 0.820908
\(738\) 0 0
\(739\) −10.6168 −0.390545 −0.195273 0.980749i \(-0.562559\pi\)
−0.195273 + 0.980749i \(0.562559\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −47.5586 −1.74476 −0.872378 0.488832i \(-0.837423\pi\)
−0.872378 + 0.488832i \(0.837423\pi\)
\(744\) 0 0
\(745\) 40.0310 1.46662
\(746\) 0 0
\(747\) −17.6459 −0.645630
\(748\) 0 0
\(749\) 1.26083 0.0460697
\(750\) 0 0
\(751\) 15.9358 0.581506 0.290753 0.956798i \(-0.406094\pi\)
0.290753 + 0.956798i \(0.406094\pi\)
\(752\) 0 0
\(753\) 12.1284 0.441982
\(754\) 0 0
\(755\) −15.0351 −0.547183
\(756\) 0 0
\(757\) −18.3500 −0.666942 −0.333471 0.942760i \(-0.608220\pi\)
−0.333471 + 0.942760i \(0.608220\pi\)
\(758\) 0 0
\(759\) −19.7743 −0.717760
\(760\) 0 0
\(761\) −36.7802 −1.33328 −0.666641 0.745379i \(-0.732269\pi\)
−0.666641 + 0.745379i \(0.732269\pi\)
\(762\) 0 0
\(763\) 9.51754 0.344558
\(764\) 0 0
\(765\) 4.25671 0.153902
\(766\) 0 0
\(767\) −11.1925 −0.404139
\(768\) 0 0
\(769\) 42.0351 1.51582 0.757912 0.652357i \(-0.226220\pi\)
0.757912 + 0.652357i \(0.226220\pi\)
\(770\) 0 0
\(771\) −30.8384 −1.11062
\(772\) 0 0
\(773\) −45.9418 −1.65241 −0.826206 0.563368i \(-0.809505\pi\)
−0.826206 + 0.563368i \(0.809505\pi\)
\(774\) 0 0
\(775\) −41.4926 −1.49046
\(776\) 0 0
\(777\) −4.93170 −0.176924
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 43.4903 1.55621
\(782\) 0 0
\(783\) 3.51754 0.125707
\(784\) 0 0
\(785\) 35.9709 1.28386
\(786\) 0 0
\(787\) 17.3250 0.617570 0.308785 0.951132i \(-0.400078\pi\)
0.308785 + 0.951132i \(0.400078\pi\)
\(788\) 0 0
\(789\) −10.4825 −0.373185
\(790\) 0 0
\(791\) 36.0993 1.28354
\(792\) 0 0
\(793\) −5.12836 −0.182113
\(794\) 0 0
\(795\) 32.4243 1.14997
\(796\) 0 0
\(797\) 21.8324 0.773345 0.386672 0.922217i \(-0.373624\pi\)
0.386672 + 0.922217i \(0.373624\pi\)
\(798\) 0 0
\(799\) −8.33511 −0.294875
\(800\) 0 0
\(801\) −10.4534 −0.369351
\(802\) 0 0
\(803\) 58.9086 2.07884
\(804\) 0 0
\(805\) −19.3809 −0.683089
\(806\) 0 0
\(807\) 1.80335 0.0634809
\(808\) 0 0
\(809\) −34.6709 −1.21896 −0.609482 0.792800i \(-0.708622\pi\)
−0.609482 + 0.792800i \(0.708622\pi\)
\(810\) 0 0
\(811\) 28.9067 1.01505 0.507526 0.861636i \(-0.330560\pi\)
0.507526 + 0.861636i \(0.330560\pi\)
\(812\) 0 0
\(813\) 28.2567 0.991006
\(814\) 0 0
\(815\) −41.2235 −1.44400
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 2.06418 0.0721282
\(820\) 0 0
\(821\) −27.5175 −0.960369 −0.480184 0.877168i \(-0.659430\pi\)
−0.480184 + 0.877168i \(0.659430\pi\)
\(822\) 0 0
\(823\) −43.9418 −1.53172 −0.765858 0.643010i \(-0.777685\pi\)
−0.765858 + 0.643010i \(0.777685\pi\)
\(824\) 0 0
\(825\) −28.3250 −0.986150
\(826\) 0 0
\(827\) −1.96080 −0.0681837 −0.0340918 0.999419i \(-0.510854\pi\)
−0.0340918 + 0.999419i \(0.510854\pi\)
\(828\) 0 0
\(829\) 10.4284 0.362193 0.181096 0.983465i \(-0.442035\pi\)
0.181096 + 0.983465i \(0.442035\pi\)
\(830\) 0 0
\(831\) 6.48246 0.224874
\(832\) 0 0
\(833\) −3.80522 −0.131843
\(834\) 0 0
\(835\) −42.8093 −1.48148
\(836\) 0 0
\(837\) −9.45336 −0.326756
\(838\) 0 0
\(839\) −32.3952 −1.11841 −0.559203 0.829031i \(-0.688893\pi\)
−0.559203 + 0.829031i \(0.688893\pi\)
\(840\) 0 0
\(841\) −16.6269 −0.573342
\(842\) 0 0
\(843\) −5.84255 −0.201228
\(844\) 0 0
\(845\) −36.7701 −1.26493
\(846\) 0 0
\(847\) −63.2586 −2.17359
\(848\) 0 0
\(849\) 16.2567 0.557929
\(850\) 0 0
\(851\) 7.32089 0.250957
\(852\) 0 0
\(853\) −29.1676 −0.998678 −0.499339 0.866407i \(-0.666424\pi\)
−0.499339 + 0.866407i \(0.666424\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.5567 −0.531408 −0.265704 0.964055i \(-0.585604\pi\)
−0.265704 + 0.964055i \(0.585604\pi\)
\(858\) 0 0
\(859\) 30.1533 1.02882 0.514409 0.857545i \(-0.328011\pi\)
0.514409 + 0.857545i \(0.328011\pi\)
\(860\) 0 0
\(861\) 20.9067 0.712499
\(862\) 0 0
\(863\) 19.7351 0.671789 0.335894 0.941900i \(-0.390961\pi\)
0.335894 + 0.941900i \(0.390961\pi\)
\(864\) 0 0
\(865\) −10.7784 −0.366476
\(866\) 0 0
\(867\) −15.0702 −0.511810
\(868\) 0 0
\(869\) −10.2074 −0.346263
\(870\) 0 0
\(871\) 3.45336 0.117013
\(872\) 0 0
\(873\) −6.73917 −0.228086
\(874\) 0 0
\(875\) 3.86341 0.130607
\(876\) 0 0
\(877\) 10.6459 0.359486 0.179743 0.983714i \(-0.442473\pi\)
0.179743 + 0.983714i \(0.442473\pi\)
\(878\) 0 0
\(879\) −26.2567 −0.885617
\(880\) 0 0
\(881\) 39.9709 1.34665 0.673327 0.739345i \(-0.264865\pi\)
0.673327 + 0.739345i \(0.264865\pi\)
\(882\) 0 0
\(883\) 29.0993 0.979268 0.489634 0.871928i \(-0.337130\pi\)
0.489634 + 0.871928i \(0.337130\pi\)
\(884\) 0 0
\(885\) 34.2959 1.15284
\(886\) 0 0
\(887\) −19.4492 −0.653042 −0.326521 0.945190i \(-0.605876\pi\)
−0.326521 + 0.945190i \(0.605876\pi\)
\(888\) 0 0
\(889\) 29.1634 0.978110
\(890\) 0 0
\(891\) −6.45336 −0.216196
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −33.9026 −1.13324
\(896\) 0 0
\(897\) −3.06418 −0.102310
\(898\) 0 0
\(899\) −33.2526 −1.10904
\(900\) 0 0
\(901\) 14.7000 0.489727
\(902\) 0 0
\(903\) −12.5175 −0.416558
\(904\) 0 0
\(905\) −65.9336 −2.19171
\(906\) 0 0
\(907\) −1.55674 −0.0516908 −0.0258454 0.999666i \(-0.508228\pi\)
−0.0258454 + 0.999666i \(0.508228\pi\)
\(908\) 0 0
\(909\) 0.610815 0.0202594
\(910\) 0 0
\(911\) −43.9418 −1.45586 −0.727929 0.685653i \(-0.759517\pi\)
−0.727929 + 0.685653i \(0.759517\pi\)
\(912\) 0 0
\(913\) 113.875 3.76872
\(914\) 0 0
\(915\) 15.7142 0.519495
\(916\) 0 0
\(917\) −11.3892 −0.376104
\(918\) 0 0
\(919\) 43.4843 1.43442 0.717208 0.696859i \(-0.245420\pi\)
0.717208 + 0.696859i \(0.245420\pi\)
\(920\) 0 0
\(921\) −14.2959 −0.471066
\(922\) 0 0
\(923\) 6.73917 0.221822
\(924\) 0 0
\(925\) 10.4866 0.344797
\(926\) 0 0
\(927\) −0.0641778 −0.00210787
\(928\) 0 0
\(929\) 17.2709 0.566641 0.283320 0.959025i \(-0.408564\pi\)
0.283320 + 0.959025i \(0.408564\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 22.2276 0.727699
\(934\) 0 0
\(935\) −27.4701 −0.898368
\(936\) 0 0
\(937\) 29.2175 0.954494 0.477247 0.878769i \(-0.341635\pi\)
0.477247 + 0.878769i \(0.341635\pi\)
\(938\) 0 0
\(939\) 3.13247 0.102224
\(940\) 0 0
\(941\) 27.2918 0.889687 0.444844 0.895608i \(-0.353259\pi\)
0.444844 + 0.895608i \(0.353259\pi\)
\(942\) 0 0
\(943\) −31.0351 −1.01064
\(944\) 0 0
\(945\) −6.32501 −0.205753
\(946\) 0 0
\(947\) −51.3310 −1.66803 −0.834017 0.551739i \(-0.813964\pi\)
−0.834017 + 0.551739i \(0.813964\pi\)
\(948\) 0 0
\(949\) 9.12836 0.296319
\(950\) 0 0
\(951\) 6.09926 0.197782
\(952\) 0 0
\(953\) 55.1343 1.78598 0.892988 0.450080i \(-0.148605\pi\)
0.892988 + 0.450080i \(0.148605\pi\)
\(954\) 0 0
\(955\) −46.6727 −1.51029
\(956\) 0 0
\(957\) −22.7000 −0.733786
\(958\) 0 0
\(959\) −36.6892 −1.18476
\(960\) 0 0
\(961\) 58.3661 1.88278
\(962\) 0 0
\(963\) −0.610815 −0.0196832
\(964\) 0 0
\(965\) −19.1843 −0.617564
\(966\) 0 0
\(967\) 50.3519 1.61921 0.809603 0.586978i \(-0.199682\pi\)
0.809603 + 0.586978i \(0.199682\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −55.9918 −1.79686 −0.898431 0.439116i \(-0.855292\pi\)
−0.898431 + 0.439116i \(0.855292\pi\)
\(972\) 0 0
\(973\) 22.6459 0.725994
\(974\) 0 0
\(975\) −4.38919 −0.140566
\(976\) 0 0
\(977\) 14.8283 0.474400 0.237200 0.971461i \(-0.423770\pi\)
0.237200 + 0.971461i \(0.423770\pi\)
\(978\) 0 0
\(979\) 67.4593 2.15601
\(980\) 0 0
\(981\) −4.61081 −0.147212
\(982\) 0 0
\(983\) −16.8384 −0.537063 −0.268531 0.963271i \(-0.586538\pi\)
−0.268531 + 0.963271i \(0.586538\pi\)
\(984\) 0 0
\(985\) −20.5609 −0.655123
\(986\) 0 0
\(987\) 12.3851 0.394221
\(988\) 0 0
\(989\) 18.5817 0.590864
\(990\) 0 0
\(991\) −54.4100 −1.72839 −0.864196 0.503155i \(-0.832172\pi\)
−0.864196 + 0.503155i \(0.832172\pi\)
\(992\) 0 0
\(993\) 1.93582 0.0614315
\(994\) 0 0
\(995\) −76.3952 −2.42189
\(996\) 0 0
\(997\) 54.3228 1.72042 0.860209 0.509941i \(-0.170333\pi\)
0.860209 + 0.509941i \(0.170333\pi\)
\(998\) 0 0
\(999\) 2.38919 0.0755905
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8664.2.a.z.1.3 3
19.8 odd 6 456.2.q.f.121.1 yes 6
19.12 odd 6 456.2.q.f.49.1 6
19.18 odd 2 8664.2.a.x.1.3 3
57.8 even 6 1368.2.s.j.577.3 6
57.50 even 6 1368.2.s.j.505.3 6
76.27 even 6 912.2.q.k.577.1 6
76.31 even 6 912.2.q.k.49.1 6
228.107 odd 6 2736.2.s.x.1873.3 6
228.179 odd 6 2736.2.s.x.577.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.q.f.49.1 6 19.12 odd 6
456.2.q.f.121.1 yes 6 19.8 odd 6
912.2.q.k.49.1 6 76.31 even 6
912.2.q.k.577.1 6 76.27 even 6
1368.2.s.j.505.3 6 57.50 even 6
1368.2.s.j.577.3 6 57.8 even 6
2736.2.s.x.577.3 6 228.179 odd 6
2736.2.s.x.1873.3 6 228.107 odd 6
8664.2.a.x.1.3 3 19.18 odd 2
8664.2.a.z.1.3 3 1.1 even 1 trivial