Properties

Label 275.2.a.b
Level 275275
Weight 22
Character orbit 275.a
Self dual yes
Analytic conductor 2.1962.196
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 275=5211 275 = 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.195886055592.19588605559
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 11)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q2+q3+2q4+2q6+2q72q9+q11+2q124q13+4q144q16+2q174q18+2q21+2q22+q238q265q27+4q28+2q99+O(q100) q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} + 2 q^{7} - 2 q^{9} + q^{11} + 2 q^{12} - 4 q^{13} + 4 q^{14} - 4 q^{16} + 2 q^{17} - 4 q^{18} + 2 q^{21} + 2 q^{22} + q^{23} - 8 q^{26} - 5 q^{27} + 4 q^{28}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 1.00000 2.00000 0 2.00000 2.00000 0 −2.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.2.a.b 1
3.b odd 2 1 2475.2.a.a 1
4.b odd 2 1 4400.2.a.i 1
5.b even 2 1 11.2.a.a 1
5.c odd 4 2 275.2.b.a 2
11.b odd 2 1 3025.2.a.a 1
15.d odd 2 1 99.2.a.d 1
15.e even 4 2 2475.2.c.a 2
20.d odd 2 1 176.2.a.b 1
20.e even 4 2 4400.2.b.h 2
35.c odd 2 1 539.2.a.a 1
35.i odd 6 2 539.2.e.g 2
35.j even 6 2 539.2.e.h 2
40.e odd 2 1 704.2.a.c 1
40.f even 2 1 704.2.a.h 1
45.h odd 6 2 891.2.e.b 2
45.j even 6 2 891.2.e.k 2
55.d odd 2 1 121.2.a.d 1
55.h odd 10 4 121.2.c.a 4
55.j even 10 4 121.2.c.e 4
60.h even 2 1 1584.2.a.g 1
65.d even 2 1 1859.2.a.b 1
80.k odd 4 2 2816.2.c.f 2
80.q even 4 2 2816.2.c.j 2
85.c even 2 1 3179.2.a.a 1
95.d odd 2 1 3971.2.a.b 1
105.g even 2 1 4851.2.a.t 1
115.c odd 2 1 5819.2.a.a 1
120.i odd 2 1 6336.2.a.br 1
120.m even 2 1 6336.2.a.bu 1
140.c even 2 1 8624.2.a.j 1
145.d even 2 1 9251.2.a.d 1
165.d even 2 1 1089.2.a.b 1
220.g even 2 1 1936.2.a.i 1
385.h even 2 1 5929.2.a.h 1
440.c even 2 1 7744.2.a.k 1
440.o odd 2 1 7744.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.2.a.a 1 5.b even 2 1
99.2.a.d 1 15.d odd 2 1
121.2.a.d 1 55.d odd 2 1
121.2.c.a 4 55.h odd 10 4
121.2.c.e 4 55.j even 10 4
176.2.a.b 1 20.d odd 2 1
275.2.a.b 1 1.a even 1 1 trivial
275.2.b.a 2 5.c odd 4 2
539.2.a.a 1 35.c odd 2 1
539.2.e.g 2 35.i odd 6 2
539.2.e.h 2 35.j even 6 2
704.2.a.c 1 40.e odd 2 1
704.2.a.h 1 40.f even 2 1
891.2.e.b 2 45.h odd 6 2
891.2.e.k 2 45.j even 6 2
1089.2.a.b 1 165.d even 2 1
1584.2.a.g 1 60.h even 2 1
1859.2.a.b 1 65.d even 2 1
1936.2.a.i 1 220.g even 2 1
2475.2.a.a 1 3.b odd 2 1
2475.2.c.a 2 15.e even 4 2
2816.2.c.f 2 80.k odd 4 2
2816.2.c.j 2 80.q even 4 2
3025.2.a.a 1 11.b odd 2 1
3179.2.a.a 1 85.c even 2 1
3971.2.a.b 1 95.d odd 2 1
4400.2.a.i 1 4.b odd 2 1
4400.2.b.h 2 20.e even 4 2
4851.2.a.t 1 105.g even 2 1
5819.2.a.a 1 115.c odd 2 1
5929.2.a.h 1 385.h even 2 1
6336.2.a.br 1 120.i odd 2 1
6336.2.a.bu 1 120.m even 2 1
7744.2.a.k 1 440.c even 2 1
7744.2.a.x 1 440.o odd 2 1
8624.2.a.j 1 140.c even 2 1
9251.2.a.d 1 145.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22 T_{2} - 2 acting on S2new(Γ0(275))S_{2}^{\mathrm{new}}(\Gamma_0(275)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T1 T - 1 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T2 T - 2 Copy content Toggle raw display
1111 T1 T - 1 Copy content Toggle raw display
1313 T+4 T + 4 Copy content Toggle raw display
1717 T2 T - 2 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T1 T - 1 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T7 T - 7 Copy content Toggle raw display
3737 T+3 T + 3 Copy content Toggle raw display
4141 T+8 T + 8 Copy content Toggle raw display
4343 T6 T - 6 Copy content Toggle raw display
4747 T+8 T + 8 Copy content Toggle raw display
5353 T6 T - 6 Copy content Toggle raw display
5959 T5 T - 5 Copy content Toggle raw display
6161 T12 T - 12 Copy content Toggle raw display
6767 T7 T - 7 Copy content Toggle raw display
7171 T+3 T + 3 Copy content Toggle raw display
7373 T+4 T + 4 Copy content Toggle raw display
7979 T+10 T + 10 Copy content Toggle raw display
8383 T6 T - 6 Copy content Toggle raw display
8989 T15 T - 15 Copy content Toggle raw display
9797 T7 T - 7 Copy content Toggle raw display
show more
show less