Properties

Label 9251.2.a.d
Level $9251$
Weight $2$
Character orbit 9251.a
Self dual yes
Analytic conductor $73.870$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9251,2,Mod(1,9251)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9251, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9251.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9251 = 11 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9251.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8696069099\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + q^{3} + 2 q^{4} + q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{9} + 2 q^{10} - q^{11} + 2 q^{12} + 4 q^{13} - 4 q^{14} + q^{15} - 4 q^{16} + 2 q^{17} - 4 q^{18} + 2 q^{20} - 2 q^{21} - 2 q^{22} - q^{23}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 1.00000 2.00000 1.00000 2.00000 −2.00000 0 −2.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9251.2.a.d 1
29.b even 2 1 11.2.a.a 1
87.d odd 2 1 99.2.a.d 1
116.d odd 2 1 176.2.a.b 1
145.d even 2 1 275.2.a.b 1
145.h odd 4 2 275.2.b.a 2
203.c odd 2 1 539.2.a.a 1
203.i odd 6 2 539.2.e.g 2
203.j even 6 2 539.2.e.h 2
232.b odd 2 1 704.2.a.c 1
232.g even 2 1 704.2.a.h 1
261.h odd 6 2 891.2.e.b 2
261.i even 6 2 891.2.e.k 2
319.d odd 2 1 121.2.a.d 1
319.i odd 10 4 121.2.c.a 4
319.k even 10 4 121.2.c.e 4
348.b even 2 1 1584.2.a.g 1
377.d even 2 1 1859.2.a.b 1
435.b odd 2 1 2475.2.a.a 1
435.p even 4 2 2475.2.c.a 2
464.m even 4 2 2816.2.c.j 2
464.p odd 4 2 2816.2.c.f 2
493.c even 2 1 3179.2.a.a 1
551.d odd 2 1 3971.2.a.b 1
580.e odd 2 1 4400.2.a.i 1
580.o even 4 2 4400.2.b.h 2
609.h even 2 1 4851.2.a.t 1
667.b odd 2 1 5819.2.a.a 1
696.l even 2 1 6336.2.a.bu 1
696.n odd 2 1 6336.2.a.br 1
812.c even 2 1 8624.2.a.j 1
957.b even 2 1 1089.2.a.b 1
1276.h even 2 1 1936.2.a.i 1
1595.e odd 2 1 3025.2.a.a 1
2233.h even 2 1 5929.2.a.h 1
2552.e even 2 1 7744.2.a.k 1
2552.k odd 2 1 7744.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.2.a.a 1 29.b even 2 1
99.2.a.d 1 87.d odd 2 1
121.2.a.d 1 319.d odd 2 1
121.2.c.a 4 319.i odd 10 4
121.2.c.e 4 319.k even 10 4
176.2.a.b 1 116.d odd 2 1
275.2.a.b 1 145.d even 2 1
275.2.b.a 2 145.h odd 4 2
539.2.a.a 1 203.c odd 2 1
539.2.e.g 2 203.i odd 6 2
539.2.e.h 2 203.j even 6 2
704.2.a.c 1 232.b odd 2 1
704.2.a.h 1 232.g even 2 1
891.2.e.b 2 261.h odd 6 2
891.2.e.k 2 261.i even 6 2
1089.2.a.b 1 957.b even 2 1
1584.2.a.g 1 348.b even 2 1
1859.2.a.b 1 377.d even 2 1
1936.2.a.i 1 1276.h even 2 1
2475.2.a.a 1 435.b odd 2 1
2475.2.c.a 2 435.p even 4 2
2816.2.c.f 2 464.p odd 4 2
2816.2.c.j 2 464.m even 4 2
3025.2.a.a 1 1595.e odd 2 1
3179.2.a.a 1 493.c even 2 1
3971.2.a.b 1 551.d odd 2 1
4400.2.a.i 1 580.e odd 2 1
4400.2.b.h 2 580.o even 4 2
4851.2.a.t 1 609.h even 2 1
5819.2.a.a 1 667.b odd 2 1
5929.2.a.h 1 2233.h even 2 1
6336.2.a.br 1 696.n odd 2 1
6336.2.a.bu 1 696.l even 2 1
7744.2.a.k 1 2552.e even 2 1
7744.2.a.x 1 2552.k odd 2 1
8624.2.a.j 1 812.c even 2 1
9251.2.a.d 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9251))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 7 \) Copy content Toggle raw display
$37$ \( T + 3 \) Copy content Toggle raw display
$41$ \( T - 8 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 5 \) Copy content Toggle raw display
$61$ \( T + 12 \) Copy content Toggle raw display
$67$ \( T + 7 \) Copy content Toggle raw display
$71$ \( T + 3 \) Copy content Toggle raw display
$73$ \( T + 4 \) Copy content Toggle raw display
$79$ \( T - 10 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T + 15 \) Copy content Toggle raw display
$97$ \( T - 7 \) Copy content Toggle raw display
show more
show less