Properties

Label 275.2.b.c
Level 275275
Weight 22
Character orbit 275.b
Analytic conductor 2.1962.196
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(199,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 275=5211 275 = 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 275.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.195886055592.19588605559
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,13)\Q(i, \sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+7x2+9 x^{4} + 7x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+β1)q3+(β32)q43q6+(2β2+β1)q7+3β2q8β3q9q11+(2β2β1)q12+5β2q13++β3q99+O(q100) q + \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{3} + (\beta_{3} - 2) q^{4} - 3 q^{6} + ( - 2 \beta_{2} + \beta_1) q^{7} + 3 \beta_{2} q^{8} - \beta_{3} q^{9} - q^{11} + (2 \beta_{2} - \beta_1) q^{12} + 5 \beta_{2} q^{13}+ \cdots + \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q412q62q94q1118q146q16+4q198q216q24+10q26+18q29+12q31+36q3410q3610q398q41+6q44+2q46++2q99+O(q100) 4 q - 6 q^{4} - 12 q^{6} - 2 q^{9} - 4 q^{11} - 18 q^{14} - 6 q^{16} + 4 q^{19} - 8 q^{21} - 6 q^{24} + 10 q^{26} + 18 q^{29} + 12 q^{31} + 36 q^{34} - 10 q^{36} - 10 q^{39} - 8 q^{41} + 6 q^{44} + 2 q^{46}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+7x2+9 x^{4} + 7x^{2} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+4ν)/3 ( \nu^{3} + 4\nu ) / 3 Copy content Toggle raw display
β3\beta_{3}== ν2+4 \nu^{2} + 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β34 \beta_{3} - 4 Copy content Toggle raw display
ν3\nu^{3}== 3β24β1 3\beta_{2} - 4\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/275Z)×\left(\mathbb{Z}/275\mathbb{Z}\right)^\times.

nn 101101 177177
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
199.1
2.30278i
1.30278i
1.30278i
2.30278i
2.30278i 1.30278i −3.30278 0 −3.00000 4.30278i 3.00000i 1.30278 0
199.2 1.30278i 2.30278i 0.302776 0 −3.00000 0.697224i 3.00000i −2.30278 0
199.3 1.30278i 2.30278i 0.302776 0 −3.00000 0.697224i 3.00000i −2.30278 0
199.4 2.30278i 1.30278i −3.30278 0 −3.00000 4.30278i 3.00000i 1.30278 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.2.b.c 4
3.b odd 2 1 2475.2.c.k 4
4.b odd 2 1 4400.2.b.y 4
5.b even 2 1 inner 275.2.b.c 4
5.c odd 4 1 275.2.a.e 2
5.c odd 4 1 275.2.a.f yes 2
15.d odd 2 1 2475.2.c.k 4
15.e even 4 1 2475.2.a.o 2
15.e even 4 1 2475.2.a.t 2
20.d odd 2 1 4400.2.b.y 4
20.e even 4 1 4400.2.a.bh 2
20.e even 4 1 4400.2.a.bs 2
55.e even 4 1 3025.2.a.h 2
55.e even 4 1 3025.2.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
275.2.a.e 2 5.c odd 4 1
275.2.a.f yes 2 5.c odd 4 1
275.2.b.c 4 1.a even 1 1 trivial
275.2.b.c 4 5.b even 2 1 inner
2475.2.a.o 2 15.e even 4 1
2475.2.a.t 2 15.e even 4 1
2475.2.c.k 4 3.b odd 2 1
2475.2.c.k 4 15.d odd 2 1
3025.2.a.h 2 55.e even 4 1
3025.2.a.n 2 55.e even 4 1
4400.2.a.bh 2 20.e even 4 1
4400.2.a.bs 2 20.e even 4 1
4400.2.b.y 4 4.b odd 2 1
4400.2.b.y 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+7T22+9 T_{2}^{4} + 7T_{2}^{2} + 9 acting on S2new(275,[χ])S_{2}^{\mathrm{new}}(275, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+7T2+9 T^{4} + 7T^{2} + 9 Copy content Toggle raw display
33 T4+7T2+9 T^{4} + 7T^{2} + 9 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+19T2+9 T^{4} + 19T^{2} + 9 Copy content Toggle raw display
1111 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1313 (T2+25)2 (T^{2} + 25)^{2} Copy content Toggle raw display
1717 T4+63T2+729 T^{4} + 63T^{2} + 729 Copy content Toggle raw display
1919 (T1)4 (T - 1)^{4} Copy content Toggle raw display
2323 T4+67T2+729 T^{4} + 67T^{2} + 729 Copy content Toggle raw display
2929 (T29T9)2 (T^{2} - 9 T - 9)^{2} Copy content Toggle raw display
3131 (T26T43)2 (T^{2} - 6 T - 43)^{2} Copy content Toggle raw display
3737 T4+98T2+529 T^{4} + 98T^{2} + 529 Copy content Toggle raw display
4141 (T2+4T9)2 (T^{2} + 4 T - 9)^{2} Copy content Toggle raw display
4343 (T2+52)2 (T^{2} + 52)^{2} Copy content Toggle raw display
4747 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
5353 T4+7T2+9 T^{4} + 7T^{2} + 9 Copy content Toggle raw display
5959 (T214T3)2 (T^{2} - 14 T - 3)^{2} Copy content Toggle raw display
6161 (T2+5T23)2 (T^{2} + 5 T - 23)^{2} Copy content Toggle raw display
6767 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
7171 (T22T12)2 (T^{2} - 2 T - 12)^{2} Copy content Toggle raw display
7373 T4+71T2+529 T^{4} + 71T^{2} + 529 Copy content Toggle raw display
7979 (T211T+1)2 (T^{2} - 11 T + 1)^{2} Copy content Toggle raw display
8383 T4+223T2+2601 T^{4} + 223T^{2} + 2601 Copy content Toggle raw display
8989 (T2+7T+9)2 (T^{2} + 7 T + 9)^{2} Copy content Toggle raw display
9797 T4+371T2+32041 T^{4} + 371 T^{2} + 32041 Copy content Toggle raw display
show more
show less