Properties

Label 275.2.h.c.201.4
Level $275$
Weight $2$
Character 275.201
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(26,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.4
Root \(-1.26407 - 0.918397i\) of defining polynomial
Character \(\chi\) \(=\) 275.201
Dual form 275.2.h.c.26.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.07308 - 1.50618i) q^{2} +(-0.553942 - 1.70486i) q^{3} +(1.41105 - 4.34277i) q^{4} +(-3.71620 - 2.69998i) q^{6} +(-1.17454 + 3.61485i) q^{7} +(-2.03208 - 6.25410i) q^{8} +(-0.172643 + 0.125433i) q^{9} +(3.19489 - 0.890336i) q^{11} -8.18545 q^{12} +(-3.63862 + 2.64361i) q^{13} +(3.00971 + 9.26295i) q^{14} +(-6.24414 - 4.53663i) q^{16} +(4.05485 + 2.94602i) q^{17} +(-0.168979 + 0.520065i) q^{18} +(-1.06936 - 3.29116i) q^{19} +6.81344 q^{21} +(5.28226 - 6.65782i) q^{22} -0.105727 q^{23} +(-9.53671 + 6.92883i) q^{24} +(-3.56139 + 10.9608i) q^{26} +(-4.04124 - 2.93613i) q^{27} +(14.0411 + 10.2015i) q^{28} +(-0.726214 + 2.23506i) q^{29} +(-3.83900 + 2.78920i) q^{31} -6.62570 q^{32} +(-3.28768 - 4.95364i) q^{33} +12.8433 q^{34} +(0.301117 + 0.926742i) q^{36} +(1.73077 - 5.32675i) q^{37} +(-7.17396 - 5.21219i) q^{38} +(6.52257 + 4.73892i) q^{39} +(0.283345 + 0.872045i) q^{41} +(14.1248 - 10.2623i) q^{42} +4.46162 q^{43} +(0.641627 - 15.1310i) q^{44} +(-0.219181 + 0.159244i) q^{46} +(-0.387384 - 1.19225i) q^{47} +(-4.27543 + 13.1584i) q^{48} +(-6.02449 - 4.37704i) q^{49} +(2.77640 - 8.54487i) q^{51} +(6.34631 + 19.5319i) q^{52} +(-4.44847 + 3.23200i) q^{53} -12.8002 q^{54} +24.9944 q^{56} +(-5.01860 + 3.64622i) q^{57} +(1.86090 + 5.72727i) q^{58} +(-0.365582 + 1.12515i) q^{59} +(5.92690 + 4.30614i) q^{61} +(-3.75752 + 11.5645i) q^{62} +(-0.250645 - 0.771405i) q^{63} +(-1.24734 + 0.906248i) q^{64} +(-14.2767 - 5.31745i) q^{66} -7.84414 q^{67} +(18.5155 - 13.4523i) q^{68} +(0.0585667 + 0.180250i) q^{69} +(1.76384 + 1.28150i) q^{71} +(1.13529 + 0.824840i) q^{72} +(-2.76651 + 8.51445i) q^{73} +(-4.43504 - 13.6496i) q^{74} -15.8017 q^{76} +(-0.534080 + 12.5948i) q^{77} +20.6595 q^{78} +(-11.6357 + 8.45380i) q^{79} +(-2.96491 + 9.12506i) q^{81} +(1.90086 + 1.38105i) q^{82} +(-3.81162 - 2.76930i) q^{83} +(9.61410 - 29.5892i) q^{84} +(9.24930 - 6.72001i) q^{86} +4.21274 q^{87} +(-12.0605 - 18.1719i) q^{88} -0.172993 q^{89} +(-5.28256 - 16.2581i) q^{91} +(-0.149186 + 0.459148i) q^{92} +(6.88177 + 4.99990i) q^{93} +(-2.59882 - 1.88815i) q^{94} +(3.67026 + 11.2959i) q^{96} +(-3.60857 + 2.62178i) q^{97} -19.0819 q^{98} +(-0.439899 + 0.554454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{3} - 2 q^{4} - 3 q^{6} + 4 q^{7} + 16 q^{8} + 8 q^{9} - 5 q^{11} - 6 q^{12} + 7 q^{13} + 3 q^{14} - 4 q^{16} + 12 q^{17} + 16 q^{18} - 13 q^{19} + 10 q^{21} + 28 q^{22} - 4 q^{23} - 43 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07308 1.50618i 1.46589 1.06503i 0.484111 0.875006i \(-0.339143\pi\)
0.981779 0.190025i \(-0.0608570\pi\)
\(3\) −0.553942 1.70486i −0.319819 0.984301i −0.973725 0.227726i \(-0.926871\pi\)
0.653906 0.756575i \(-0.273129\pi\)
\(4\) 1.41105 4.34277i 0.705525 2.17138i
\(5\) 0 0
\(6\) −3.71620 2.69998i −1.51713 1.10226i
\(7\) −1.17454 + 3.61485i −0.443933 + 1.36628i 0.439717 + 0.898136i \(0.355079\pi\)
−0.883650 + 0.468148i \(0.844921\pi\)
\(8\) −2.03208 6.25410i −0.718449 2.21116i
\(9\) −0.172643 + 0.125433i −0.0575478 + 0.0418109i
\(10\) 0 0
\(11\) 3.19489 0.890336i 0.963295 0.268446i
\(12\) −8.18545 −2.36294
\(13\) −3.63862 + 2.64361i −1.00917 + 0.733205i −0.964035 0.265776i \(-0.914372\pi\)
−0.0451354 + 0.998981i \(0.514372\pi\)
\(14\) 3.00971 + 9.26295i 0.804380 + 2.47563i
\(15\) 0 0
\(16\) −6.24414 4.53663i −1.56103 1.13416i
\(17\) 4.05485 + 2.94602i 0.983445 + 0.714515i 0.958476 0.285174i \(-0.0920512\pi\)
0.0249691 + 0.999688i \(0.492051\pi\)
\(18\) −0.168979 + 0.520065i −0.0398288 + 0.122580i
\(19\) −1.06936 3.29116i −0.245329 0.755044i −0.995582 0.0938935i \(-0.970069\pi\)
0.750254 0.661150i \(-0.229931\pi\)
\(20\) 0 0
\(21\) 6.81344 1.48681
\(22\) 5.28226 6.65782i 1.12618 1.41945i
\(23\) −0.105727 −0.0220456 −0.0110228 0.999939i \(-0.503509\pi\)
−0.0110228 + 0.999939i \(0.503509\pi\)
\(24\) −9.53671 + 6.92883i −1.94667 + 1.41434i
\(25\) 0 0
\(26\) −3.56139 + 10.9608i −0.698446 + 2.14960i
\(27\) −4.04124 2.93613i −0.777737 0.565059i
\(28\) 14.0411 + 10.2015i 2.65352 + 1.92790i
\(29\) −0.726214 + 2.23506i −0.134855 + 0.415040i −0.995567 0.0940512i \(-0.970018\pi\)
0.860713 + 0.509091i \(0.170018\pi\)
\(30\) 0 0
\(31\) −3.83900 + 2.78920i −0.689504 + 0.500954i −0.876497 0.481407i \(-0.840126\pi\)
0.186993 + 0.982361i \(0.440126\pi\)
\(32\) −6.62570 −1.17127
\(33\) −3.28768 4.95364i −0.572312 0.862318i
\(34\) 12.8433 2.20260
\(35\) 0 0
\(36\) 0.301117 + 0.926742i 0.0501861 + 0.154457i
\(37\) 1.73077 5.32675i 0.284536 0.875713i −0.702001 0.712176i \(-0.747710\pi\)
0.986537 0.163537i \(-0.0522903\pi\)
\(38\) −7.17396 5.21219i −1.16377 0.845528i
\(39\) 6.52257 + 4.73892i 1.04445 + 0.758835i
\(40\) 0 0
\(41\) 0.283345 + 0.872045i 0.0442510 + 0.136191i 0.970741 0.240129i \(-0.0771896\pi\)
−0.926490 + 0.376319i \(0.877190\pi\)
\(42\) 14.1248 10.2623i 2.17951 1.58350i
\(43\) 4.46162 0.680390 0.340195 0.940355i \(-0.389507\pi\)
0.340195 + 0.940355i \(0.389507\pi\)
\(44\) 0.641627 15.1310i 0.0967289 2.28108i
\(45\) 0 0
\(46\) −0.219181 + 0.159244i −0.0323165 + 0.0234793i
\(47\) −0.387384 1.19225i −0.0565058 0.173907i 0.918820 0.394676i \(-0.129143\pi\)
−0.975326 + 0.220769i \(0.929143\pi\)
\(48\) −4.27543 + 13.1584i −0.617105 + 1.89925i
\(49\) −6.02449 4.37704i −0.860641 0.625292i
\(50\) 0 0
\(51\) 2.77640 8.54487i 0.388773 1.19652i
\(52\) 6.34631 + 19.5319i 0.880074 + 2.70859i
\(53\) −4.44847 + 3.23200i −0.611044 + 0.443949i −0.849782 0.527135i \(-0.823266\pi\)
0.238738 + 0.971084i \(0.423266\pi\)
\(54\) −12.8002 −1.74188
\(55\) 0 0
\(56\) 24.9944 3.34002
\(57\) −5.01860 + 3.64622i −0.664730 + 0.482954i
\(58\) 1.86090 + 5.72727i 0.244348 + 0.752027i
\(59\) −0.365582 + 1.12515i −0.0475947 + 0.146481i −0.972030 0.234859i \(-0.924537\pi\)
0.924435 + 0.381340i \(0.124537\pi\)
\(60\) 0 0
\(61\) 5.92690 + 4.30614i 0.758861 + 0.551345i 0.898561 0.438849i \(-0.144614\pi\)
−0.139699 + 0.990194i \(0.544614\pi\)
\(62\) −3.75752 + 11.5645i −0.477206 + 1.46869i
\(63\) −0.250645 0.771405i −0.0315783 0.0971879i
\(64\) −1.24734 + 0.906248i −0.155918 + 0.113281i
\(65\) 0 0
\(66\) −14.2767 5.31745i −1.75734 0.654533i
\(67\) −7.84414 −0.958315 −0.479157 0.877729i \(-0.659058\pi\)
−0.479157 + 0.877729i \(0.659058\pi\)
\(68\) 18.5155 13.4523i 2.24533 1.63133i
\(69\) 0.0585667 + 0.180250i 0.00705060 + 0.0216995i
\(70\) 0 0
\(71\) 1.76384 + 1.28150i 0.209329 + 0.152086i 0.687510 0.726175i \(-0.258704\pi\)
−0.478181 + 0.878261i \(0.658704\pi\)
\(72\) 1.13529 + 0.824840i 0.133796 + 0.0972083i
\(73\) −2.76651 + 8.51445i −0.323796 + 0.996541i 0.648185 + 0.761483i \(0.275528\pi\)
−0.971981 + 0.235059i \(0.924472\pi\)
\(74\) −4.43504 13.6496i −0.515563 1.58674i
\(75\) 0 0
\(76\) −15.8017 −1.81257
\(77\) −0.534080 + 12.5948i −0.0608640 + 1.43531i
\(78\) 20.6595 2.33923
\(79\) −11.6357 + 8.45380i −1.30911 + 0.951127i −0.309114 + 0.951025i \(0.600033\pi\)
−1.00000 0.000102366i \(0.999967\pi\)
\(80\) 0 0
\(81\) −2.96491 + 9.12506i −0.329435 + 1.01390i
\(82\) 1.90086 + 1.38105i 0.209914 + 0.152512i
\(83\) −3.81162 2.76930i −0.418380 0.303971i 0.358606 0.933489i \(-0.383252\pi\)
−0.776986 + 0.629518i \(0.783252\pi\)
\(84\) 9.61410 29.5892i 1.04898 3.22844i
\(85\) 0 0
\(86\) 9.24930 6.72001i 0.997378 0.724637i
\(87\) 4.21274 0.451653
\(88\) −12.0605 18.1719i −1.28566 1.93713i
\(89\) −0.172993 −0.0183372 −0.00916862 0.999958i \(-0.502919\pi\)
−0.00916862 + 0.999958i \(0.502919\pi\)
\(90\) 0 0
\(91\) −5.28256 16.2581i −0.553763 1.70431i
\(92\) −0.149186 + 0.459148i −0.0155537 + 0.0478695i
\(93\) 6.88177 + 4.99990i 0.713606 + 0.518465i
\(94\) −2.59882 1.88815i −0.268048 0.194748i
\(95\) 0 0
\(96\) 3.67026 + 11.2959i 0.374594 + 1.15288i
\(97\) −3.60857 + 2.62178i −0.366394 + 0.266201i −0.755714 0.654902i \(-0.772710\pi\)
0.389320 + 0.921103i \(0.372710\pi\)
\(98\) −19.0819 −1.92756
\(99\) −0.439899 + 0.554454i −0.0442115 + 0.0557247i
\(100\) 0 0
\(101\) −7.12354 + 5.17556i −0.708819 + 0.514987i −0.882793 0.469763i \(-0.844339\pi\)
0.173973 + 0.984750i \(0.444339\pi\)
\(102\) −7.11444 21.8960i −0.704434 2.16803i
\(103\) 5.09074 15.6677i 0.501605 1.54378i −0.304798 0.952417i \(-0.598589\pi\)
0.806403 0.591366i \(-0.201411\pi\)
\(104\) 23.9274 + 17.3843i 2.34627 + 1.70467i
\(105\) 0 0
\(106\) −4.35406 + 13.4004i −0.422903 + 1.30156i
\(107\) −5.30657 16.3319i −0.513005 1.57887i −0.786882 0.617103i \(-0.788306\pi\)
0.273877 0.961765i \(-0.411694\pi\)
\(108\) −18.4533 + 13.4071i −1.77567 + 1.29010i
\(109\) 17.9060 1.71508 0.857542 0.514414i \(-0.171991\pi\)
0.857542 + 0.514414i \(0.171991\pi\)
\(110\) 0 0
\(111\) −10.0401 −0.952965
\(112\) 23.7332 17.2432i 2.24258 1.62933i
\(113\) 4.42393 + 13.6155i 0.416168 + 1.28083i 0.911202 + 0.411960i \(0.135156\pi\)
−0.495034 + 0.868874i \(0.664844\pi\)
\(114\) −4.91209 + 15.1178i −0.460059 + 1.41592i
\(115\) 0 0
\(116\) 8.68161 + 6.30756i 0.806067 + 0.585642i
\(117\) 0.296588 0.912803i 0.0274195 0.0843886i
\(118\) 0.936793 + 2.88315i 0.0862388 + 0.265416i
\(119\) −15.4120 + 11.1975i −1.41281 + 1.02647i
\(120\) 0 0
\(121\) 9.41460 5.68904i 0.855873 0.517186i
\(122\) 18.7728 1.69961
\(123\) 1.32976 0.966125i 0.119900 0.0871126i
\(124\) 6.69581 + 20.6076i 0.601301 + 1.85061i
\(125\) 0 0
\(126\) −1.68148 1.22167i −0.149798 0.108835i
\(127\) −4.50622 3.27396i −0.399863 0.290517i 0.369622 0.929182i \(-0.379487\pi\)
−0.769485 + 0.638665i \(0.779487\pi\)
\(128\) 2.87404 8.84538i 0.254031 0.781828i
\(129\) −2.47148 7.60643i −0.217602 0.669709i
\(130\) 0 0
\(131\) −13.8367 −1.20892 −0.604458 0.796637i \(-0.706610\pi\)
−0.604458 + 0.796637i \(0.706610\pi\)
\(132\) −26.1516 + 7.28780i −2.27620 + 0.634321i
\(133\) 13.1530 1.14051
\(134\) −16.2616 + 11.8147i −1.40478 + 1.02064i
\(135\) 0 0
\(136\) 10.1849 31.3460i 0.873351 2.68790i
\(137\) −8.04525 5.84522i −0.687352 0.499390i 0.188437 0.982085i \(-0.439658\pi\)
−0.875789 + 0.482695i \(0.839658\pi\)
\(138\) 0.392903 + 0.285461i 0.0334461 + 0.0243000i
\(139\) 0.627493 1.93122i 0.0532232 0.163804i −0.920912 0.389771i \(-0.872554\pi\)
0.974135 + 0.225967i \(0.0725541\pi\)
\(140\) 0 0
\(141\) −1.81802 + 1.32087i −0.153105 + 0.111237i
\(142\) 5.58676 0.468830
\(143\) −9.27126 + 11.6856i −0.775302 + 0.977201i
\(144\) 1.64705 0.137254
\(145\) 0 0
\(146\) 7.08911 + 21.8180i 0.586699 + 1.80567i
\(147\) −4.12503 + 12.6955i −0.340227 + 1.04711i
\(148\) −20.6907 15.0326i −1.70076 1.23568i
\(149\) −8.59185 6.24234i −0.703872 0.511393i 0.177319 0.984153i \(-0.443258\pi\)
−0.881191 + 0.472761i \(0.843258\pi\)
\(150\) 0 0
\(151\) −1.06131 3.26639i −0.0863684 0.265815i 0.898540 0.438892i \(-0.144629\pi\)
−0.984908 + 0.173077i \(0.944629\pi\)
\(152\) −18.4102 + 13.3758i −1.49327 + 1.08492i
\(153\) −1.06957 −0.0864696
\(154\) 17.8628 + 26.9144i 1.43943 + 2.16883i
\(155\) 0 0
\(156\) 29.7837 21.6391i 2.38460 1.73252i
\(157\) 0.0922677 + 0.283971i 0.00736377 + 0.0226633i 0.954671 0.297663i \(-0.0962073\pi\)
−0.947307 + 0.320327i \(0.896207\pi\)
\(158\) −11.3887 + 35.0509i −0.906038 + 2.78850i
\(159\) 7.97430 + 5.79367i 0.632403 + 0.459468i
\(160\) 0 0
\(161\) 0.124180 0.382187i 0.00978677 0.0301206i
\(162\) 7.59750 + 23.3827i 0.596916 + 1.83712i
\(163\) 11.5364 8.38166i 0.903597 0.656502i −0.0357901 0.999359i \(-0.511395\pi\)
0.939387 + 0.342857i \(0.111395\pi\)
\(164\) 4.18690 0.326942
\(165\) 0 0
\(166\) −12.0729 −0.937037
\(167\) 14.5604 10.5788i 1.12672 0.818611i 0.141507 0.989937i \(-0.454805\pi\)
0.985214 + 0.171326i \(0.0548053\pi\)
\(168\) −13.8455 42.6119i −1.06820 3.28758i
\(169\) 2.23363 6.87441i 0.171818 0.528801i
\(170\) 0 0
\(171\) 0.597437 + 0.434064i 0.0456872 + 0.0331937i
\(172\) 6.29557 19.3758i 0.480033 1.47739i
\(173\) 2.70499 + 8.32510i 0.205657 + 0.632946i 0.999686 + 0.0250663i \(0.00797969\pi\)
−0.794029 + 0.607880i \(0.792020\pi\)
\(174\) 8.73335 6.34515i 0.662074 0.481025i
\(175\) 0 0
\(176\) −23.9884 8.93465i −1.80820 0.673474i
\(177\) 2.12073 0.159404
\(178\) −0.358629 + 0.260559i −0.0268804 + 0.0195297i
\(179\) −7.07647 21.7791i −0.528920 1.62785i −0.756431 0.654073i \(-0.773059\pi\)
0.227511 0.973776i \(-0.426941\pi\)
\(180\) 0 0
\(181\) −13.9721 10.1513i −1.03854 0.754542i −0.0685389 0.997648i \(-0.521834\pi\)
−0.970000 + 0.243106i \(0.921834\pi\)
\(182\) −35.4388 25.7478i −2.62690 1.90855i
\(183\) 4.05821 12.4899i 0.299991 0.923279i
\(184\) 0.214846 + 0.661228i 0.0158387 + 0.0487464i
\(185\) 0 0
\(186\) 21.7972 1.59825
\(187\) 15.5777 + 5.80202i 1.13916 + 0.424286i
\(188\) −5.72427 −0.417485
\(189\) 15.3603 11.1599i 1.11729 0.811762i
\(190\) 0 0
\(191\) −5.62462 + 17.3108i −0.406984 + 1.25257i 0.512244 + 0.858840i \(0.328814\pi\)
−0.919228 + 0.393727i \(0.871186\pi\)
\(192\) 2.23598 + 1.62454i 0.161368 + 0.117241i
\(193\) −8.92841 6.48687i −0.642681 0.466935i 0.218089 0.975929i \(-0.430018\pi\)
−0.860770 + 0.508994i \(0.830018\pi\)
\(194\) −3.53198 + 10.8703i −0.253581 + 0.780443i
\(195\) 0 0
\(196\) −27.5093 + 19.9867i −1.96495 + 1.42762i
\(197\) 15.7213 1.12009 0.560047 0.828461i \(-0.310783\pi\)
0.560047 + 0.828461i \(0.310783\pi\)
\(198\) −0.0768375 + 1.81200i −0.00546060 + 0.128773i
\(199\) 4.44523 0.315114 0.157557 0.987510i \(-0.449638\pi\)
0.157557 + 0.987510i \(0.449638\pi\)
\(200\) 0 0
\(201\) 4.34521 + 13.3732i 0.306487 + 0.943270i
\(202\) −6.97236 + 21.4587i −0.490573 + 1.50983i
\(203\) −7.22643 5.25031i −0.507196 0.368499i
\(204\) −33.1908 24.1145i −2.32382 1.68835i
\(205\) 0 0
\(206\) −13.0449 40.1480i −0.908879 2.79724i
\(207\) 0.0182531 0.0132616i 0.00126868 0.000921747i
\(208\) 34.7131 2.40692
\(209\) −6.34673 9.56279i −0.439012 0.661472i
\(210\) 0 0
\(211\) −1.87055 + 1.35903i −0.128774 + 0.0935597i −0.650308 0.759671i \(-0.725360\pi\)
0.521534 + 0.853231i \(0.325360\pi\)
\(212\) 7.75881 + 23.8792i 0.532877 + 1.64003i
\(213\) 1.20772 3.71698i 0.0827515 0.254683i
\(214\) −35.5998 25.8648i −2.43355 1.76808i
\(215\) 0 0
\(216\) −10.1508 + 31.2408i −0.690671 + 2.12567i
\(217\) −5.57348 17.1534i −0.378353 1.16445i
\(218\) 37.1206 26.9697i 2.51413 1.82662i
\(219\) 16.0484 1.08445
\(220\) 0 0
\(221\) −22.5422 −1.51635
\(222\) −20.8140 + 15.1222i −1.39694 + 1.01494i
\(223\) −3.18203 9.79327i −0.213084 0.655806i −0.999284 0.0378334i \(-0.987954\pi\)
0.786200 0.617972i \(-0.212046\pi\)
\(224\) 7.78212 23.9509i 0.519965 1.60029i
\(225\) 0 0
\(226\) 29.6785 + 21.5627i 1.97419 + 1.43433i
\(227\) 2.21823 6.82700i 0.147229 0.453124i −0.850062 0.526682i \(-0.823436\pi\)
0.997291 + 0.0735589i \(0.0234357\pi\)
\(228\) 8.75321 + 26.9396i 0.579696 + 1.78412i
\(229\) −1.66606 + 1.21047i −0.110097 + 0.0799899i −0.641471 0.767147i \(-0.721676\pi\)
0.531375 + 0.847137i \(0.321676\pi\)
\(230\) 0 0
\(231\) 21.7682 6.06625i 1.43224 0.399130i
\(232\) 15.4540 1.01461
\(233\) 14.2278 10.3371i 0.932093 0.677205i −0.0144113 0.999896i \(-0.504587\pi\)
0.946504 + 0.322691i \(0.104587\pi\)
\(234\) −0.759997 2.33903i −0.0496826 0.152907i
\(235\) 0 0
\(236\) 4.37039 + 3.17527i 0.284488 + 0.206693i
\(237\) 20.8580 + 15.1543i 1.35488 + 0.984374i
\(238\) −15.0849 + 46.4265i −0.977808 + 3.00938i
\(239\) 5.77519 + 17.7742i 0.373566 + 1.14972i 0.944441 + 0.328680i \(0.106604\pi\)
−0.570875 + 0.821037i \(0.693396\pi\)
\(240\) 0 0
\(241\) 30.1916 1.94481 0.972406 0.233296i \(-0.0749510\pi\)
0.972406 + 0.233296i \(0.0749510\pi\)
\(242\) 10.9485 25.9740i 0.703797 1.66967i
\(243\) 2.21359 0.142002
\(244\) 27.0637 19.6629i 1.73258 1.25879i
\(245\) 0 0
\(246\) 1.30154 4.00571i 0.0829829 0.255395i
\(247\) 12.5915 + 9.14828i 0.801180 + 0.582091i
\(248\) 25.2451 + 18.3416i 1.60306 + 1.16469i
\(249\) −2.60986 + 8.03231i −0.165393 + 0.509027i
\(250\) 0 0
\(251\) 20.6391 14.9952i 1.30273 0.946489i 0.302752 0.953069i \(-0.402094\pi\)
0.999978 + 0.00657998i \(0.00209449\pi\)
\(252\) −3.70370 −0.233311
\(253\) −0.337786 + 0.0941326i −0.0212364 + 0.00591806i
\(254\) −14.2730 −0.895565
\(255\) 0 0
\(256\) −8.31752 25.5987i −0.519845 1.59992i
\(257\) −7.39839 + 22.7699i −0.461499 + 1.42035i 0.401834 + 0.915713i \(0.368373\pi\)
−0.863333 + 0.504635i \(0.831627\pi\)
\(258\) −16.5803 12.0463i −1.03224 0.749967i
\(259\) 17.2226 + 12.5129i 1.07016 + 0.777515i
\(260\) 0 0
\(261\) −0.154973 0.476959i −0.00959260 0.0295230i
\(262\) −28.6846 + 20.8406i −1.77214 + 1.28753i
\(263\) −26.7696 −1.65069 −0.825343 0.564631i \(-0.809018\pi\)
−0.825343 + 0.564631i \(0.809018\pi\)
\(264\) −24.2997 + 30.6277i −1.49555 + 1.88500i
\(265\) 0 0
\(266\) 27.2673 19.8109i 1.67187 1.21468i
\(267\) 0.0958283 + 0.294929i 0.00586459 + 0.0180494i
\(268\) −11.0685 + 34.0653i −0.676115 + 2.08087i
\(269\) 4.82647 + 3.50664i 0.294275 + 0.213803i 0.725120 0.688623i \(-0.241784\pi\)
−0.430845 + 0.902426i \(0.641784\pi\)
\(270\) 0 0
\(271\) −2.31566 + 7.12688i −0.140667 + 0.432927i −0.996428 0.0844429i \(-0.973089\pi\)
0.855762 + 0.517370i \(0.173089\pi\)
\(272\) −11.9540 36.7907i −0.724819 2.23076i
\(273\) −24.7915 + 18.0121i −1.50045 + 1.09014i
\(274\) −25.4824 −1.53945
\(275\) 0 0
\(276\) 0.865424 0.0520924
\(277\) 1.16704 0.847908i 0.0701209 0.0509458i −0.552173 0.833730i \(-0.686201\pi\)
0.622293 + 0.782784i \(0.286201\pi\)
\(278\) −1.60793 4.94871i −0.0964373 0.296804i
\(279\) 0.312921 0.963072i 0.0187341 0.0576576i
\(280\) 0 0
\(281\) 0.193576 + 0.140641i 0.0115478 + 0.00838994i 0.593544 0.804801i \(-0.297728\pi\)
−0.581996 + 0.813191i \(0.697728\pi\)
\(282\) −1.77944 + 5.47655i −0.105964 + 0.326124i
\(283\) −1.63126 5.02049i −0.0969680 0.298437i 0.890794 0.454408i \(-0.150149\pi\)
−0.987762 + 0.155971i \(0.950149\pi\)
\(284\) 8.05414 5.85167i 0.477925 0.347233i
\(285\) 0 0
\(286\) −1.61942 + 38.1895i −0.0957583 + 2.25819i
\(287\) −3.48511 −0.205720
\(288\) 1.14388 0.831079i 0.0674039 0.0489718i
\(289\) 2.50947 + 7.72336i 0.147616 + 0.454315i
\(290\) 0 0
\(291\) 6.46870 + 4.69979i 0.379202 + 0.275506i
\(292\) 33.0726 + 24.0287i 1.93543 + 1.40617i
\(293\) −4.63398 + 14.2619i −0.270720 + 0.833191i 0.719600 + 0.694389i \(0.244325\pi\)
−0.990320 + 0.138802i \(0.955675\pi\)
\(294\) 10.5703 + 32.5319i 0.616470 + 1.89730i
\(295\) 0 0
\(296\) −36.8311 −2.14077
\(297\) −15.5255 5.78255i −0.900878 0.335538i
\(298\) −27.2137 −1.57645
\(299\) 0.384700 0.279501i 0.0222478 0.0161640i
\(300\) 0 0
\(301\) −5.24033 + 16.1281i −0.302048 + 0.929607i
\(302\) −7.11996 5.17296i −0.409708 0.297670i
\(303\) 12.7696 + 9.27768i 0.733596 + 0.532989i
\(304\) −8.25353 + 25.4018i −0.473372 + 1.45689i
\(305\) 0 0
\(306\) −2.21731 + 1.61097i −0.126755 + 0.0920929i
\(307\) 2.11034 0.120443 0.0602217 0.998185i \(-0.480819\pi\)
0.0602217 + 0.998185i \(0.480819\pi\)
\(308\) 53.9425 + 20.0912i 3.07366 + 1.14480i
\(309\) −29.5312 −1.67997
\(310\) 0 0
\(311\) −5.14858 15.8457i −0.291949 0.898528i −0.984229 0.176898i \(-0.943394\pi\)
0.692280 0.721629i \(-0.256606\pi\)
\(312\) 16.3833 50.4227i 0.927523 2.85462i
\(313\) 23.5261 + 17.0927i 1.32977 + 0.966137i 0.999754 + 0.0221632i \(0.00705535\pi\)
0.330020 + 0.943974i \(0.392945\pi\)
\(314\) 0.618991 + 0.449723i 0.0349317 + 0.0253793i
\(315\) 0 0
\(316\) 20.2944 + 62.4597i 1.14165 + 3.51363i
\(317\) 14.8184 10.7662i 0.832282 0.604689i −0.0879217 0.996127i \(-0.528023\pi\)
0.920204 + 0.391439i \(0.128023\pi\)
\(318\) 25.2577 1.41638
\(319\) −0.330221 + 7.78733i −0.0184888 + 0.436007i
\(320\) 0 0
\(321\) −24.9041 + 18.0939i −1.39001 + 1.00990i
\(322\) −0.318208 0.979344i −0.0177330 0.0545767i
\(323\) 5.35972 16.4955i 0.298223 0.917835i
\(324\) 35.4444 + 25.7518i 1.96913 + 1.43066i
\(325\) 0 0
\(326\) 11.2915 34.7517i 0.625379 1.92472i
\(327\) −9.91890 30.5272i −0.548516 1.68816i
\(328\) 4.87808 3.54413i 0.269347 0.195692i
\(329\) 4.76479 0.262691
\(330\) 0 0
\(331\) 21.5599 1.18504 0.592520 0.805556i \(-0.298133\pi\)
0.592520 + 0.805556i \(0.298133\pi\)
\(332\) −17.4048 + 12.6454i −0.955214 + 0.694004i
\(333\) 0.369344 + 1.13672i 0.0202399 + 0.0622921i
\(334\) 14.2514 43.8614i 0.779803 2.39999i
\(335\) 0 0
\(336\) −42.5440 30.9101i −2.32097 1.68628i
\(337\) 4.34521 13.3732i 0.236699 0.728484i −0.760193 0.649697i \(-0.774896\pi\)
0.996892 0.0787861i \(-0.0251044\pi\)
\(338\) −5.72362 17.6155i −0.311324 0.958156i
\(339\) 20.7618 15.0844i 1.12763 0.819270i
\(340\) 0 0
\(341\) −9.78185 + 12.3292i −0.529717 + 0.667662i
\(342\) 1.89232 0.102325
\(343\) 1.37351 0.997912i 0.0741625 0.0538822i
\(344\) −9.06637 27.9034i −0.488826 1.50445i
\(345\) 0 0
\(346\) 18.1468 + 13.1844i 0.975578 + 0.708799i
\(347\) 23.1781 + 16.8399i 1.24427 + 0.904013i 0.997875 0.0651572i \(-0.0207549\pi\)
0.246392 + 0.969170i \(0.420755\pi\)
\(348\) 5.94439 18.2949i 0.318653 0.980712i
\(349\) −5.53826 17.0450i −0.296456 0.912399i −0.982728 0.185054i \(-0.940754\pi\)
0.686272 0.727345i \(-0.259246\pi\)
\(350\) 0 0
\(351\) 22.4665 1.19917
\(352\) −21.1684 + 5.89910i −1.12828 + 0.314423i
\(353\) −24.7757 −1.31868 −0.659339 0.751845i \(-0.729164\pi\)
−0.659339 + 0.751845i \(0.729164\pi\)
\(354\) 4.39644 3.19420i 0.233668 0.169770i
\(355\) 0 0
\(356\) −0.244102 + 0.751269i −0.0129374 + 0.0398172i
\(357\) 27.6274 + 20.0725i 1.46220 + 1.06235i
\(358\) −47.4735 34.4915i −2.50905 1.82293i
\(359\) −3.22994 + 9.94073i −0.170470 + 0.524652i −0.999398 0.0347037i \(-0.988951\pi\)
0.828928 + 0.559355i \(0.188951\pi\)
\(360\) 0 0
\(361\) 5.68314 4.12904i 0.299112 0.217318i
\(362\) −44.2551 −2.32600
\(363\) −14.9142 12.8992i −0.782791 0.677031i
\(364\) −78.0589 −4.09140
\(365\) 0 0
\(366\) −10.3990 32.0050i −0.543567 1.67293i
\(367\) 4.69553 14.4514i 0.245105 0.754355i −0.750514 0.660854i \(-0.770194\pi\)
0.995619 0.0935010i \(-0.0298058\pi\)
\(368\) 0.660174 + 0.479645i 0.0344140 + 0.0250032i
\(369\) −0.158300 0.115012i −0.00824079 0.00598729i
\(370\) 0 0
\(371\) −6.45831 19.8766i −0.335299 1.03194i
\(372\) 31.4239 22.8308i 1.62925 1.18372i
\(373\) 21.1774 1.09653 0.548263 0.836306i \(-0.315289\pi\)
0.548263 + 0.836306i \(0.315289\pi\)
\(374\) 41.0328 11.4348i 2.12176 0.591281i
\(375\) 0 0
\(376\) −6.66924 + 4.84548i −0.343940 + 0.249887i
\(377\) −3.26620 10.0523i −0.168218 0.517722i
\(378\) 15.0343 46.2707i 0.773279 2.37991i
\(379\) 28.4486 + 20.6691i 1.46131 + 1.06170i 0.983020 + 0.183498i \(0.0587422\pi\)
0.478287 + 0.878204i \(0.341258\pi\)
\(380\) 0 0
\(381\) −3.08546 + 9.49606i −0.158073 + 0.486498i
\(382\) 14.4129 + 44.3584i 0.737430 + 2.26958i
\(383\) −1.60983 + 1.16961i −0.0822584 + 0.0597642i −0.628154 0.778089i \(-0.716189\pi\)
0.545896 + 0.837853i \(0.316189\pi\)
\(384\) −16.6722 −0.850799
\(385\) 0 0
\(386\) −28.2797 −1.43940
\(387\) −0.770268 + 0.559633i −0.0391549 + 0.0284477i
\(388\) 6.29390 + 19.3706i 0.319524 + 0.983394i
\(389\) −1.87218 + 5.76197i −0.0949231 + 0.292143i −0.987234 0.159279i \(-0.949083\pi\)
0.892311 + 0.451422i \(0.149083\pi\)
\(390\) 0 0
\(391\) −0.428707 0.311474i −0.0216807 0.0157519i
\(392\) −15.1322 + 46.5723i −0.764294 + 2.35226i
\(393\) 7.66473 + 23.5896i 0.386634 + 1.18994i
\(394\) 32.5915 23.6791i 1.64194 1.19294i
\(395\) 0 0
\(396\) 1.78714 + 2.69274i 0.0898074 + 0.135315i
\(397\) −35.0663 −1.75993 −0.879964 0.475040i \(-0.842434\pi\)
−0.879964 + 0.475040i \(0.842434\pi\)
\(398\) 9.21534 6.69533i 0.461923 0.335607i
\(399\) −7.28603 22.4241i −0.364758 1.12261i
\(400\) 0 0
\(401\) −13.3283 9.68359i −0.665585 0.483576i 0.202960 0.979187i \(-0.434944\pi\)
−0.868544 + 0.495612i \(0.834944\pi\)
\(402\) 29.1504 + 21.1790i 1.45389 + 1.05631i
\(403\) 6.59510 20.2976i 0.328525 1.01110i
\(404\) 12.4246 + 38.2389i 0.618145 + 1.90245i
\(405\) 0 0
\(406\) −22.8889 −1.13596
\(407\) 0.787007 18.5593i 0.0390105 0.919952i
\(408\) −59.0824 −2.92501
\(409\) −3.48714 + 2.53356i −0.172428 + 0.125276i −0.670652 0.741772i \(-0.733986\pi\)
0.498224 + 0.867048i \(0.333986\pi\)
\(410\) 0 0
\(411\) −5.50867 + 16.9539i −0.271722 + 0.836276i
\(412\) −60.8578 44.2158i −2.99825 2.17836i
\(413\) −3.63784 2.64305i −0.179007 0.130056i
\(414\) 0.0178657 0.0549849i 0.000878050 0.00270236i
\(415\) 0 0
\(416\) 24.1084 17.5158i 1.18201 0.858781i
\(417\) −3.64006 −0.178255
\(418\) −27.5606 10.2651i −1.34803 0.502083i
\(419\) −18.7114 −0.914110 −0.457055 0.889438i \(-0.651096\pi\)
−0.457055 + 0.889438i \(0.651096\pi\)
\(420\) 0 0
\(421\) −9.42742 29.0146i −0.459465 1.41409i −0.865813 0.500368i \(-0.833198\pi\)
0.406348 0.913718i \(-0.366802\pi\)
\(422\) −1.83085 + 5.63477i −0.0891244 + 0.274297i
\(423\) 0.216426 + 0.157243i 0.0105230 + 0.00764540i
\(424\) 29.2529 + 21.2535i 1.42065 + 1.03216i
\(425\) 0 0
\(426\) −3.09474 9.52464i −0.149941 0.461470i
\(427\) −22.5274 + 16.3671i −1.09018 + 0.792061i
\(428\) −78.4136 −3.79027
\(429\) 25.0581 + 9.33304i 1.20982 + 0.450604i
\(430\) 0 0
\(431\) −6.72568 + 4.88649i −0.323965 + 0.235374i −0.737865 0.674948i \(-0.764166\pi\)
0.413901 + 0.910322i \(0.364166\pi\)
\(432\) 11.9139 + 36.6673i 0.573208 + 1.76415i
\(433\) 8.48242 26.1062i 0.407639 1.25458i −0.511032 0.859561i \(-0.670737\pi\)
0.918671 0.395023i \(-0.129263\pi\)
\(434\) −37.3905 27.1658i −1.79480 1.30400i
\(435\) 0 0
\(436\) 25.2663 77.7616i 1.21004 3.72411i
\(437\) 0.113061 + 0.347964i 0.00540842 + 0.0166454i
\(438\) 33.2697 24.1719i 1.58969 1.15498i
\(439\) −23.1527 −1.10502 −0.552510 0.833506i \(-0.686330\pi\)
−0.552510 + 0.833506i \(0.686330\pi\)
\(440\) 0 0
\(441\) 1.58911 0.0756720
\(442\) −46.7317 + 33.9526i −2.22280 + 1.61496i
\(443\) 6.23705 + 19.1957i 0.296331 + 0.912013i 0.982771 + 0.184827i \(0.0591724\pi\)
−0.686440 + 0.727186i \(0.740828\pi\)
\(444\) −14.1671 + 43.6019i −0.672341 + 2.06925i
\(445\) 0 0
\(446\) −21.3471 15.5095i −1.01081 0.734398i
\(447\) −5.88293 + 18.1058i −0.278253 + 0.856375i
\(448\) −1.81090 5.57338i −0.0855570 0.263317i
\(449\) −11.3539 + 8.24906i −0.535822 + 0.389297i −0.822531 0.568720i \(-0.807439\pi\)
0.286709 + 0.958018i \(0.407439\pi\)
\(450\) 0 0
\(451\) 1.68167 + 2.53381i 0.0791866 + 0.119313i
\(452\) 65.3711 3.07480
\(453\) −4.98082 + 3.61878i −0.234019 + 0.170025i
\(454\) −5.68414 17.4940i −0.266770 0.821033i
\(455\) 0 0
\(456\) 33.0021 + 23.9774i 1.54546 + 1.12285i
\(457\) −12.6398 9.18334i −0.591264 0.429579i 0.251503 0.967856i \(-0.419075\pi\)
−0.842767 + 0.538278i \(0.819075\pi\)
\(458\) −1.63071 + 5.01879i −0.0761979 + 0.234513i
\(459\) −7.73671 23.8111i −0.361119 1.11141i
\(460\) 0 0
\(461\) 29.6082 1.37899 0.689496 0.724289i \(-0.257832\pi\)
0.689496 + 0.724289i \(0.257832\pi\)
\(462\) 35.9903 45.3626i 1.67442 2.11046i
\(463\) −1.31629 −0.0611730 −0.0305865 0.999532i \(-0.509738\pi\)
−0.0305865 + 0.999532i \(0.509738\pi\)
\(464\) 14.6742 10.6614i 0.681233 0.494945i
\(465\) 0 0
\(466\) 13.9258 42.8593i 0.645101 1.98542i
\(467\) 9.78870 + 7.11191i 0.452967 + 0.329100i 0.790766 0.612118i \(-0.209682\pi\)
−0.337799 + 0.941218i \(0.609682\pi\)
\(468\) −3.54559 2.57602i −0.163895 0.119077i
\(469\) 9.21323 28.3554i 0.425427 1.30933i
\(470\) 0 0
\(471\) 0.433019 0.314607i 0.0199525 0.0144963i
\(472\) 7.77967 0.358088
\(473\) 14.2544 3.97234i 0.655416 0.182648i
\(474\) 66.0655 3.03449
\(475\) 0 0
\(476\) 26.8809 + 82.7308i 1.23208 + 3.79196i
\(477\) 0.362599 1.11597i 0.0166023 0.0510966i
\(478\) 38.7436 + 28.1489i 1.77209 + 1.28750i
\(479\) −2.47074 1.79509i −0.112891 0.0820200i 0.529907 0.848055i \(-0.322227\pi\)
−0.642798 + 0.766036i \(0.722227\pi\)
\(480\) 0 0
\(481\) 7.78426 + 23.9575i 0.354932 + 1.09237i
\(482\) 62.5897 45.4741i 2.85088 2.07129i
\(483\) −0.720365 −0.0327777
\(484\) −11.4217 48.9130i −0.519168 2.22332i
\(485\) 0 0
\(486\) 4.58896 3.33408i 0.208160 0.151237i
\(487\) 7.49051 + 23.0534i 0.339427 + 1.04465i 0.964500 + 0.264083i \(0.0850693\pi\)
−0.625073 + 0.780566i \(0.714931\pi\)
\(488\) 14.8871 45.8179i 0.673909 2.07408i
\(489\) −20.6800 15.0249i −0.935183 0.679450i
\(490\) 0 0
\(491\) −10.0985 + 31.0801i −0.455741 + 1.40263i 0.414522 + 0.910039i \(0.363949\pi\)
−0.870263 + 0.492587i \(0.836051\pi\)
\(492\) −2.31930 7.13808i −0.104562 0.321809i
\(493\) −9.52921 + 6.92337i −0.429174 + 0.311813i
\(494\) 39.8823 1.79439
\(495\) 0 0
\(496\) 36.6248 1.64450
\(497\) −6.70413 + 4.87084i −0.300721 + 0.218487i
\(498\) 6.68768 + 20.5826i 0.299682 + 0.922327i
\(499\) −9.27234 + 28.5373i −0.415087 + 1.27751i 0.497086 + 0.867701i \(0.334403\pi\)
−0.912173 + 0.409805i \(0.865597\pi\)
\(500\) 0 0
\(501\) −26.1010 18.9635i −1.16611 0.847226i
\(502\) 20.2011 62.1726i 0.901619 2.77490i
\(503\) 4.18767 + 12.8883i 0.186719 + 0.574662i 0.999974 0.00724562i \(-0.00230637\pi\)
−0.813255 + 0.581908i \(0.802306\pi\)
\(504\) −4.31512 + 3.13512i −0.192211 + 0.139649i
\(505\) 0 0
\(506\) −0.558477 + 0.703912i −0.0248273 + 0.0312927i
\(507\) −12.9572 −0.575450
\(508\) −20.5766 + 14.9497i −0.912937 + 0.663288i
\(509\) 11.7687 + 36.2203i 0.521638 + 1.60544i 0.770870 + 0.636993i \(0.219822\pi\)
−0.249232 + 0.968444i \(0.580178\pi\)
\(510\) 0 0
\(511\) −27.5291 20.0011i −1.21782 0.884795i
\(512\) −40.7506 29.6070i −1.80094 1.30846i
\(513\) −5.34173 + 16.4402i −0.235843 + 0.725851i
\(514\) 18.9582 + 58.3472i 0.836209 + 2.57359i
\(515\) 0 0
\(516\) −36.5203 −1.60772
\(517\) −2.29915 3.46419i −0.101116 0.152355i
\(518\) 54.5505 2.39681
\(519\) 12.6947 9.22326i 0.557237 0.404856i
\(520\) 0 0
\(521\) 0.682532 2.10062i 0.0299023 0.0920298i −0.934992 0.354670i \(-0.884593\pi\)
0.964894 + 0.262640i \(0.0845932\pi\)
\(522\) −1.03966 0.755356i −0.0455046 0.0330610i
\(523\) 1.94375 + 1.41222i 0.0849944 + 0.0617521i 0.629471 0.777024i \(-0.283272\pi\)
−0.544477 + 0.838776i \(0.683272\pi\)
\(524\) −19.5243 + 60.0895i −0.852921 + 2.62502i
\(525\) 0 0
\(526\) −55.4957 + 40.3200i −2.41973 + 1.75803i
\(527\) −23.7836 −1.03603
\(528\) −1.94410 + 45.8462i −0.0846063 + 1.99520i
\(529\) −22.9888 −0.999514
\(530\) 0 0
\(531\) −0.0780148 0.240105i −0.00338555 0.0104197i
\(532\) 18.5596 57.1206i 0.804661 2.47649i
\(533\) −3.33633 2.42398i −0.144512 0.104994i
\(534\) 0.642877 + 0.467077i 0.0278200 + 0.0202124i
\(535\) 0 0
\(536\) 15.9399 + 49.0581i 0.688501 + 2.11899i
\(537\) −33.2104 + 24.1288i −1.43314 + 1.04123i
\(538\) 15.2873 0.659083
\(539\) −23.1446 8.62035i −0.996908 0.371305i
\(540\) 0 0
\(541\) 19.0200 13.8189i 0.817735 0.594119i −0.0983277 0.995154i \(-0.531349\pi\)
0.916063 + 0.401035i \(0.131349\pi\)
\(542\) 5.93382 + 18.2624i 0.254879 + 0.784438i
\(543\) −9.56685 + 29.4437i −0.410553 + 1.26355i
\(544\) −26.8662 19.5194i −1.15188 0.836889i
\(545\) 0 0
\(546\) −24.2653 + 74.6810i −1.03846 + 3.19605i
\(547\) −0.437026 1.34503i −0.0186859 0.0575093i 0.941279 0.337630i \(-0.109625\pi\)
−0.959965 + 0.280121i \(0.909625\pi\)
\(548\) −36.7367 + 26.6907i −1.56931 + 1.14017i
\(549\) −1.56337 −0.0667230
\(550\) 0 0
\(551\) 8.13251 0.346457
\(552\) 1.00829 0.732565i 0.0429156 0.0311800i
\(553\) −16.8927 51.9905i −0.718352 2.21086i
\(554\) 1.14228 3.51556i 0.0485307 0.149362i
\(555\) 0 0
\(556\) −7.50143 5.45011i −0.318132 0.231136i
\(557\) −1.53415 + 4.72163i −0.0650041 + 0.200062i −0.978283 0.207272i \(-0.933542\pi\)
0.913279 + 0.407334i \(0.133542\pi\)
\(558\) −0.801851 2.46784i −0.0339451 0.104472i
\(559\) −16.2341 + 11.7948i −0.686630 + 0.498866i
\(560\) 0 0
\(561\) 1.26247 29.7718i 0.0533016 1.25697i
\(562\) 0.613129 0.0258633
\(563\) 13.4316 9.75863i 0.566075 0.411277i −0.267603 0.963529i \(-0.586231\pi\)
0.833677 + 0.552252i \(0.186231\pi\)
\(564\) 3.17091 + 9.75907i 0.133520 + 0.410931i
\(565\) 0 0
\(566\) −10.9435 7.95091i −0.459989 0.334202i
\(567\) −29.5033 21.4354i −1.23902 0.900203i
\(568\) 4.43039 13.6353i 0.185895 0.572126i
\(569\) −8.37027 25.7610i −0.350900 1.07996i −0.958349 0.285600i \(-0.907807\pi\)
0.607449 0.794359i \(-0.292193\pi\)
\(570\) 0 0
\(571\) −25.9648 −1.08659 −0.543296 0.839541i \(-0.682824\pi\)
−0.543296 + 0.839541i \(0.682824\pi\)
\(572\) 37.6657 + 56.7519i 1.57488 + 2.37292i
\(573\) 32.6282 1.36306
\(574\) −7.22492 + 5.24921i −0.301562 + 0.219098i
\(575\) 0 0
\(576\) 0.101672 0.312915i 0.00423635 0.0130381i
\(577\) −0.603937 0.438786i −0.0251422 0.0182669i 0.575143 0.818053i \(-0.304946\pi\)
−0.600285 + 0.799786i \(0.704946\pi\)
\(578\) 16.8351 + 12.2314i 0.700249 + 0.508761i
\(579\) −6.11338 + 18.8150i −0.254063 + 0.781926i
\(580\) 0 0
\(581\) 14.4875 10.5258i 0.601043 0.436683i
\(582\) 20.4889 0.849291
\(583\) −11.3348 + 14.2865i −0.469439 + 0.591687i
\(584\) 58.8721 2.43614
\(585\) 0 0
\(586\) 11.8744 + 36.5458i 0.490529 + 1.50969i
\(587\) −5.53146 + 17.0241i −0.228308 + 0.702659i 0.769631 + 0.638488i \(0.220440\pi\)
−0.997939 + 0.0641701i \(0.979560\pi\)
\(588\) 49.3131 + 35.8281i 2.03364 + 1.47753i
\(589\) 13.2850 + 9.65209i 0.547397 + 0.397708i
\(590\) 0 0
\(591\) −8.70868 26.8026i −0.358227 1.10251i
\(592\) −34.9727 + 25.4091i −1.43737 + 1.04431i
\(593\) −11.1992 −0.459895 −0.229948 0.973203i \(-0.573855\pi\)
−0.229948 + 0.973203i \(0.573855\pi\)
\(594\) −40.8951 + 11.3965i −1.67795 + 0.467602i
\(595\) 0 0
\(596\) −39.2326 + 28.5041i −1.60703 + 1.16758i
\(597\) −2.46240 7.57850i −0.100780 0.310167i
\(598\) 0.376535 1.15886i 0.0153977 0.0473892i
\(599\) 1.46910 + 1.06736i 0.0600257 + 0.0436112i 0.617393 0.786654i \(-0.288189\pi\)
−0.557368 + 0.830266i \(0.688189\pi\)
\(600\) 0 0
\(601\) 14.4659 44.5214i 0.590075 1.81606i 0.0122187 0.999925i \(-0.496111\pi\)
0.577856 0.816139i \(-0.303889\pi\)
\(602\) 13.4282 + 41.3277i 0.547292 + 1.68439i
\(603\) 1.35424 0.983912i 0.0551489 0.0400680i
\(604\) −15.6827 −0.638121
\(605\) 0 0
\(606\) 40.4464 1.64302
\(607\) 26.6166 19.3381i 1.08033 0.784908i 0.102593 0.994723i \(-0.467286\pi\)
0.977741 + 0.209815i \(0.0672862\pi\)
\(608\) 7.08527 + 21.8062i 0.287346 + 0.884359i
\(609\) −4.94801 + 15.2284i −0.200504 + 0.617087i
\(610\) 0 0
\(611\) 4.56137 + 3.31403i 0.184533 + 0.134071i
\(612\) −1.50922 + 4.64489i −0.0610065 + 0.187759i
\(613\) −4.60003 14.1574i −0.185793 0.571813i 0.814168 0.580630i \(-0.197194\pi\)
−0.999961 + 0.00881636i \(0.997194\pi\)
\(614\) 4.37490 3.17855i 0.176557 0.128276i
\(615\) 0 0
\(616\) 79.8543 22.2534i 3.21742 0.896615i
\(617\) −37.4741 −1.50865 −0.754324 0.656502i \(-0.772035\pi\)
−0.754324 + 0.656502i \(0.772035\pi\)
\(618\) −61.2206 + 44.4793i −2.46265 + 1.78922i
\(619\) −3.82934 11.7855i −0.153914 0.473700i 0.844135 0.536131i \(-0.180115\pi\)
−0.998049 + 0.0624311i \(0.980115\pi\)
\(620\) 0 0
\(621\) 0.427269 + 0.310429i 0.0171457 + 0.0124571i
\(622\) −34.5400 25.0948i −1.38493 1.00621i
\(623\) 0.203187 0.625344i 0.00814050 0.0250539i
\(624\) −19.2291 59.1810i −0.769778 2.36913i
\(625\) 0 0
\(626\) 74.5163 2.97827
\(627\) −12.7875 + 16.1175i −0.510683 + 0.643671i
\(628\) 1.36341 0.0544061
\(629\) 22.7107 16.5003i 0.905536 0.657910i
\(630\) 0 0
\(631\) 0.476748 1.46728i 0.0189790 0.0584114i −0.941118 0.338077i \(-0.890224\pi\)
0.960097 + 0.279666i \(0.0902236\pi\)
\(632\) 76.5156 + 55.5918i 3.04363 + 2.21132i
\(633\) 3.35314 + 2.43620i 0.133275 + 0.0968301i
\(634\) 14.5039 44.6383i 0.576022 1.77281i
\(635\) 0 0
\(636\) 36.4127 26.4554i 1.44386 1.04902i
\(637\) 33.4920 1.32700
\(638\) 11.0446 + 16.6411i 0.437258 + 0.658829i
\(639\) −0.465257 −0.0184053
\(640\) 0 0
\(641\) 9.64663 + 29.6893i 0.381019 + 1.17266i 0.939327 + 0.343023i \(0.111451\pi\)
−0.558308 + 0.829634i \(0.688549\pi\)
\(642\) −24.3756 + 75.0203i −0.962027 + 2.96082i
\(643\) 16.4378 + 11.9428i 0.648245 + 0.470978i 0.862673 0.505762i \(-0.168789\pi\)
−0.214428 + 0.976740i \(0.568789\pi\)
\(644\) −1.48453 1.07857i −0.0584985 0.0425017i
\(645\) 0 0
\(646\) −13.7341 42.2693i −0.540361 1.66306i
\(647\) −17.9348 + 13.0304i −0.705092 + 0.512279i −0.881586 0.472023i \(-0.843524\pi\)
0.176495 + 0.984302i \(0.443524\pi\)
\(648\) 63.0940 2.47857
\(649\) −0.166236 + 3.92020i −0.00652533 + 0.153881i
\(650\) 0 0
\(651\) −26.1568 + 19.0040i −1.02516 + 0.744826i
\(652\) −20.1212 61.9267i −0.788007 2.42524i
\(653\) 3.66862 11.2908i 0.143564 0.441845i −0.853259 0.521487i \(-0.825378\pi\)
0.996824 + 0.0796417i \(0.0253776\pi\)
\(654\) −66.5423 48.3458i −2.60201 1.89047i
\(655\) 0 0
\(656\) 2.18690 6.73060i 0.0853843 0.262786i
\(657\) −0.590371 1.81697i −0.0230326 0.0708869i
\(658\) 9.87780 7.17664i 0.385077 0.279774i
\(659\) 13.3368 0.519527 0.259764 0.965672i \(-0.416355\pi\)
0.259764 + 0.965672i \(0.416355\pi\)
\(660\) 0 0
\(661\) −44.8817 −1.74570 −0.872848 0.487992i \(-0.837730\pi\)
−0.872848 + 0.487992i \(0.837730\pi\)
\(662\) 44.6955 32.4732i 1.73714 1.26211i
\(663\) 12.4871 + 38.4312i 0.484957 + 1.49254i
\(664\) −9.57400 + 29.4657i −0.371543 + 1.14349i
\(665\) 0 0
\(666\) 2.47779 + 1.80022i 0.0960125 + 0.0697572i
\(667\) 0.0767805 0.236306i 0.00297295 0.00914980i
\(668\) −25.3957 78.1598i −0.982588 3.02409i
\(669\) −14.9335 + 10.8498i −0.577362 + 0.419478i
\(670\) 0 0
\(671\) 22.7697 + 8.48071i 0.879014 + 0.327394i
\(672\) −45.1438 −1.74146
\(673\) 4.76086 3.45897i 0.183518 0.133333i −0.492233 0.870463i \(-0.663819\pi\)
0.675751 + 0.737130i \(0.263819\pi\)
\(674\) −11.1345 34.2684i −0.428884 1.31997i
\(675\) 0 0
\(676\) −26.7022 19.4003i −1.02701 0.746165i
\(677\) 23.9475 + 17.3989i 0.920379 + 0.668694i 0.943618 0.331035i \(-0.107398\pi\)
−0.0232393 + 0.999730i \(0.507398\pi\)
\(678\) 20.3212 62.5422i 0.780431 2.40192i
\(679\) −5.23894 16.1238i −0.201052 0.618774i
\(680\) 0 0
\(681\) −12.8678 −0.493097
\(682\) −1.70860 + 40.2926i −0.0654258 + 1.54288i
\(683\) −13.1257 −0.502239 −0.251120 0.967956i \(-0.580799\pi\)
−0.251120 + 0.967956i \(0.580799\pi\)
\(684\) 2.72805 1.98204i 0.104310 0.0757854i
\(685\) 0 0
\(686\) 1.34436 4.13751i 0.0513278 0.157971i
\(687\) 2.98658 + 2.16988i 0.113945 + 0.0827860i
\(688\) −27.8590 20.2407i −1.06211 0.771670i
\(689\) 7.64211 23.5200i 0.291141 0.896041i
\(690\) 0 0
\(691\) 5.69772 4.13963i 0.216751 0.157479i −0.474112 0.880465i \(-0.657231\pi\)
0.690863 + 0.722986i \(0.257231\pi\)
\(692\) 39.9709 1.51946
\(693\) −1.48759 2.24139i −0.0565089 0.0851435i
\(694\) 73.4141 2.78676
\(695\) 0 0
\(696\) −8.56063 26.3469i −0.324490 0.998677i
\(697\) −1.42014 + 4.37075i −0.0537917 + 0.165554i
\(698\) −37.1542 26.9941i −1.40631 1.02174i
\(699\) −25.5047 18.5302i −0.964675 0.700877i
\(700\) 0 0
\(701\) 13.7090 + 42.1921i 0.517783 + 1.59357i 0.778161 + 0.628065i \(0.216153\pi\)
−0.260377 + 0.965507i \(0.583847\pi\)
\(702\) 46.5749 33.8387i 1.75786 1.27716i
\(703\) −19.3820 −0.731006
\(704\) −3.17826 + 4.00591i −0.119785 + 0.150979i
\(705\) 0 0
\(706\) −51.3621 + 37.3168i −1.93304 + 1.40443i
\(707\) −10.3420 31.8294i −0.388951 1.19707i
\(708\) 2.99245 9.20982i 0.112463 0.346126i
\(709\) 15.7889 + 11.4713i 0.592963 + 0.430813i 0.843374 0.537327i \(-0.180566\pi\)
−0.250411 + 0.968140i \(0.580566\pi\)
\(710\) 0 0
\(711\) 0.948436 2.91899i 0.0355691 0.109471i
\(712\) 0.351536 + 1.08192i 0.0131744 + 0.0405466i
\(713\) 0.405886 0.294893i 0.0152006 0.0110438i
\(714\) 87.5068 3.27486
\(715\) 0 0
\(716\) −104.567 −3.90785
\(717\) 27.1034 19.6918i 1.01219 0.735402i
\(718\) 8.27662 + 25.4728i 0.308881 + 0.950638i
\(719\) 14.6482 45.0824i 0.546284 1.68129i −0.171634 0.985161i \(-0.554905\pi\)
0.717918 0.696128i \(-0.245095\pi\)
\(720\) 0 0
\(721\) 50.6571 + 36.8045i 1.88657 + 1.37067i
\(722\) 5.56252 17.1197i 0.207016 0.637128i
\(723\) −16.7244 51.4724i −0.621987 1.91428i
\(724\) −63.8002 + 46.3536i −2.37112 + 1.72272i
\(725\) 0 0
\(726\) −50.3468 4.27760i −1.86855 0.158756i
\(727\) 37.2483 1.38146 0.690731 0.723112i \(-0.257289\pi\)
0.690731 + 0.723112i \(0.257289\pi\)
\(728\) −90.9450 + 66.0754i −3.37065 + 2.44892i
\(729\) 7.66853 + 23.6013i 0.284020 + 0.874123i
\(730\) 0 0
\(731\) 18.0912 + 13.1440i 0.669126 + 0.486149i
\(732\) −48.5143 35.2477i −1.79314 1.30279i
\(733\) 3.59105 11.0521i 0.132638 0.408219i −0.862577 0.505926i \(-0.831151\pi\)
0.995215 + 0.0977073i \(0.0311509\pi\)
\(734\) −12.0322 37.0312i −0.444115 1.36685i
\(735\) 0 0
\(736\) 0.700516 0.0258214
\(737\) −25.0612 + 6.98392i −0.923140 + 0.257256i
\(738\) −0.501399 −0.0184568
\(739\) −30.7265 + 22.3241i −1.13029 + 0.821207i −0.985738 0.168290i \(-0.946176\pi\)
−0.144556 + 0.989497i \(0.546176\pi\)
\(740\) 0 0
\(741\) 8.62156 26.5344i 0.316721 0.974766i
\(742\) −43.3265 31.4785i −1.59056 1.15561i
\(743\) 6.24321 + 4.53596i 0.229041 + 0.166408i 0.696387 0.717666i \(-0.254790\pi\)
−0.467346 + 0.884075i \(0.654790\pi\)
\(744\) 17.2856 53.1995i 0.633720 1.95039i
\(745\) 0 0
\(746\) 43.9025 31.8971i 1.60739 1.16783i
\(747\) 1.00541 0.0367861
\(748\) 47.1778 59.4635i 1.72499 2.17420i
\(749\) 65.2703 2.38492
\(750\) 0 0
\(751\) 4.95293 + 15.2435i 0.180735 + 0.556245i 0.999849 0.0173860i \(-0.00553442\pi\)
−0.819114 + 0.573631i \(0.805534\pi\)
\(752\) −2.98990 + 9.20197i −0.109030 + 0.335561i
\(753\) −36.9976 26.8803i −1.34827 0.979574i
\(754\) −21.9118 15.9198i −0.797979 0.579766i
\(755\) 0 0
\(756\) −26.7907 82.4532i −0.974367 2.99879i
\(757\) 5.15833 3.74775i 0.187483 0.136214i −0.490085 0.871675i \(-0.663034\pi\)
0.677568 + 0.735461i \(0.263034\pi\)
\(758\) 90.1078 3.27286
\(759\) 0.347597 + 0.523734i 0.0126170 + 0.0190103i
\(760\) 0 0
\(761\) 12.8347 9.32499i 0.465259 0.338031i −0.330332 0.943865i \(-0.607161\pi\)
0.795591 + 0.605834i \(0.207161\pi\)
\(762\) 7.90640 + 24.3334i 0.286419 + 0.881506i
\(763\) −21.0312 + 64.7275i −0.761382 + 2.34329i
\(764\) 67.2402 + 48.8529i 2.43267 + 1.76743i
\(765\) 0 0
\(766\) −1.57566 + 4.84939i −0.0569310 + 0.175216i
\(767\) −1.64423 5.06043i −0.0593698 0.182721i
\(768\) −39.0348 + 28.3604i −1.40855 + 1.02337i
\(769\) −51.7503 −1.86616 −0.933082 0.359663i \(-0.882892\pi\)
−0.933082 + 0.359663i \(0.882892\pi\)
\(770\) 0 0
\(771\) 42.9178 1.54565
\(772\) −40.7694 + 29.6207i −1.46732 + 1.06607i
\(773\) 2.99315 + 9.21198i 0.107656 + 0.331332i 0.990345 0.138627i \(-0.0442688\pi\)
−0.882688 + 0.469959i \(0.844269\pi\)
\(774\) −0.753921 + 2.32033i −0.0270991 + 0.0834025i
\(775\) 0 0
\(776\) 23.7298 + 17.2407i 0.851849 + 0.618905i
\(777\) 11.7925 36.2935i 0.423053 1.30202i
\(778\) 4.79740 + 14.7649i 0.171995 + 0.529346i
\(779\) 2.56704 1.86506i 0.0919737 0.0668228i
\(780\) 0 0
\(781\) 6.77623 + 2.52385i 0.242473 + 0.0903105i
\(782\) −1.35788 −0.0485578
\(783\) 9.49723 6.90014i 0.339403 0.246591i
\(784\) 17.7607 + 54.6617i 0.634310 + 1.95221i
\(785\) 0 0
\(786\) 51.4199 + 37.3587i 1.83409 + 1.33254i
\(787\) 14.7424 + 10.7110i 0.525510 + 0.381805i 0.818675 0.574256i \(-0.194709\pi\)
−0.293166 + 0.956062i \(0.594709\pi\)
\(788\) 22.1835 68.2739i 0.790255 2.43216i
\(789\) 14.8288 + 45.6385i 0.527921 + 1.62477i
\(790\) 0 0
\(791\) −54.4139 −1.93473
\(792\) 4.36152 + 1.62448i 0.154980 + 0.0577233i
\(793\) −32.9495 −1.17007
\(794\) −72.6954 + 52.8163i −2.57986 + 1.87438i
\(795\) 0 0
\(796\) 6.27245 19.3046i 0.222321 0.684234i
\(797\) 16.1910 + 11.7634i 0.573514 + 0.416682i 0.836380 0.548150i \(-0.184668\pi\)
−0.262866 + 0.964832i \(0.584668\pi\)
\(798\) −48.8793 35.5129i −1.73031 1.25714i
\(799\) 1.94160 5.97562i 0.0686887 0.211402i
\(800\) 0 0
\(801\) 0.0298661 0.0216990i 0.00105527 0.000766696i
\(802\) −42.2160 −1.49070
\(803\) −1.25798 + 29.6658i −0.0443930 + 1.04688i
\(804\) 64.2079 2.26444
\(805\) 0 0
\(806\) −16.8997 52.0121i −0.595268 1.83205i
\(807\) 3.30474 10.1709i 0.116332 0.358034i
\(808\) 46.8441 + 34.0342i 1.64797 + 1.19732i
\(809\) 25.7317 + 18.6952i 0.904679 + 0.657288i 0.939664 0.342100i \(-0.111138\pi\)
−0.0349842 + 0.999388i \(0.511138\pi\)
\(810\) 0 0
\(811\) 1.12941 + 3.47596i 0.0396589 + 0.122057i 0.968926 0.247351i \(-0.0795602\pi\)
−0.929267 + 0.369409i \(0.879560\pi\)
\(812\) −32.9977 + 23.9742i −1.15799 + 0.841331i
\(813\) 13.4331 0.471119
\(814\) −26.3222 39.6604i −0.922593 1.39010i
\(815\) 0 0
\(816\) −56.1012 + 40.7599i −1.96393 + 1.42688i
\(817\) −4.77108 14.6839i −0.166919 0.513724i
\(818\) −3.41313 + 10.5045i −0.119337 + 0.367283i
\(819\) 2.95129 + 2.14424i 0.103126 + 0.0749258i
\(820\) 0 0
\(821\) 4.25449 13.0940i 0.148483 0.456983i −0.848960 0.528458i \(-0.822770\pi\)
0.997442 + 0.0714746i \(0.0227705\pi\)
\(822\) 14.1158 + 43.4440i 0.492345 + 1.51528i
\(823\) 32.8267 23.8500i 1.14427 0.831358i 0.156558 0.987669i \(-0.449960\pi\)
0.987708 + 0.156311i \(0.0499602\pi\)
\(824\) −108.332 −3.77393
\(825\) 0 0
\(826\) −11.5225 −0.400918
\(827\) −12.5658 + 9.12955i −0.436954 + 0.317466i −0.784423 0.620226i \(-0.787041\pi\)
0.347469 + 0.937691i \(0.387041\pi\)
\(828\) −0.0318362 0.0979817i −0.00110638 0.00340510i
\(829\) −9.00201 + 27.7053i −0.312653 + 0.962247i 0.664057 + 0.747682i \(0.268833\pi\)
−0.976710 + 0.214565i \(0.931167\pi\)
\(830\) 0 0
\(831\) −2.09204 1.51996i −0.0725720 0.0527267i
\(832\) 2.14284 6.59497i 0.0742895 0.228640i
\(833\) −11.5335 35.4965i −0.399612 1.22988i
\(834\) −7.54615 + 5.48260i −0.261302 + 0.189847i
\(835\) 0 0
\(836\) −50.4845 + 14.0688i −1.74604 + 0.486579i
\(837\) 23.7038 0.819322
\(838\) −38.7902 + 28.1827i −1.33999 + 0.973557i
\(839\) 6.73139 + 20.7171i 0.232393 + 0.715233i 0.997456 + 0.0712779i \(0.0227077\pi\)
−0.765063 + 0.643955i \(0.777292\pi\)
\(840\) 0 0
\(841\) 18.9934 + 13.7995i 0.654945 + 0.475845i
\(842\) −63.2451 45.9503i −2.17957 1.58355i
\(843\) 0.132543 0.407927i 0.00456504 0.0140497i
\(844\) 3.26253 + 10.0410i 0.112301 + 0.345626i
\(845\) 0 0
\(846\) 0.685505 0.0235681
\(847\) 9.50725 + 40.7144i 0.326673 + 1.39896i
\(848\) 42.4392 1.45737
\(849\) −7.65560 + 5.56212i −0.262740 + 0.190892i
\(850\) 0 0
\(851\) −0.182989 + 0.563182i −0.00627278 + 0.0193056i
\(852\) −14.4378 10.4897i −0.494631 0.359371i
\(853\) −7.08127 5.14484i −0.242458 0.176156i 0.459920 0.887961i \(-0.347878\pi\)
−0.702378 + 0.711804i \(0.747878\pi\)
\(854\) −22.0493 + 67.8608i −0.754512 + 2.32215i
\(855\) 0 0
\(856\) −91.3583 + 66.3757i −3.12256 + 2.26867i
\(857\) 14.0273 0.479163 0.239582 0.970876i \(-0.422990\pi\)
0.239582 + 0.970876i \(0.422990\pi\)
\(858\) 66.0047 18.3939i 2.25336 0.627957i
\(859\) 31.8774 1.08764 0.543822 0.839201i \(-0.316977\pi\)
0.543822 + 0.839201i \(0.316977\pi\)
\(860\) 0 0
\(861\) 1.93055 + 5.94162i 0.0657930 + 0.202490i
\(862\) −6.58294 + 20.2602i −0.224216 + 0.690065i
\(863\) −2.80343 2.03681i −0.0954298 0.0693338i 0.539047 0.842276i \(-0.318784\pi\)
−0.634477 + 0.772942i \(0.718784\pi\)
\(864\) 26.7761 + 19.4539i 0.910940 + 0.661836i
\(865\) 0 0
\(866\) −21.7360 66.8964i −0.738618 2.27323i
\(867\) 11.7771 8.55659i 0.399973 0.290597i
\(868\) −82.3577 −2.79540
\(869\) −29.6479 + 37.3686i −1.00574 + 1.26764i
\(870\) 0 0
\(871\) 28.5418 20.7368i 0.967103 0.702641i
\(872\) −36.3865 111.986i −1.23220 3.79233i
\(873\) 0.294138 0.905265i 0.00995507 0.0306386i
\(874\) 0.758482 + 0.551069i 0.0256560 + 0.0186402i
\(875\) 0 0
\(876\) 22.6452 69.6946i 0.765109 2.35476i
\(877\) 6.11122 + 18.8084i 0.206361 + 0.635114i 0.999655 + 0.0262750i \(0.00836456\pi\)
−0.793294 + 0.608839i \(0.791635\pi\)
\(878\) −47.9975 + 34.8723i −1.61984 + 1.17688i
\(879\) 26.8816 0.906692
\(880\) 0 0
\(881\) 57.2097 1.92744 0.963722 0.266910i \(-0.0860025\pi\)
0.963722 + 0.266910i \(0.0860025\pi\)
\(882\) 3.29436 2.39349i 0.110927 0.0805931i
\(883\) 17.6885 + 54.4396i 0.595265 + 1.83204i 0.553402 + 0.832915i \(0.313329\pi\)
0.0418636 + 0.999123i \(0.486671\pi\)
\(884\) −31.8081 + 97.8953i −1.06982 + 3.29258i
\(885\) 0 0
\(886\) 41.8421 + 30.4000i 1.40571 + 1.02131i
\(887\) −12.2757 + 37.7809i −0.412179 + 1.26856i 0.502571 + 0.864536i \(0.332388\pi\)
−0.914750 + 0.404021i \(0.867612\pi\)
\(888\) 20.4023 + 62.7919i 0.684657 + 2.10716i
\(889\) 17.1276 12.4439i 0.574441 0.417356i
\(890\) 0 0
\(891\) −1.34819 + 31.7933i −0.0451661 + 1.06512i
\(892\) −47.0199 −1.57434
\(893\) −3.50962 + 2.54989i −0.117445 + 0.0853287i
\(894\) 15.0748 + 46.3956i 0.504178 + 1.55170i
\(895\) 0 0
\(896\) 28.5990 + 20.7784i 0.955427 + 0.694158i
\(897\) −0.689612 0.501032i −0.0230255 0.0167290i
\(898\) −11.1129 + 34.2020i −0.370842 + 1.14133i
\(899\) −3.44608 10.6059i −0.114933 0.353728i
\(900\) 0 0
\(901\) −27.5594 −0.918136
\(902\) 7.30262 + 2.71991i 0.243151 + 0.0905630i
\(903\) 30.3989 1.01161
\(904\) 76.1627 55.3354i 2.53313 1.84043i
\(905\) 0 0
\(906\) −4.87511 + 15.0041i −0.161965 + 0.498476i
\(907\) −21.5295 15.6421i −0.714875 0.519387i 0.169867 0.985467i \(-0.445666\pi\)
−0.884743 + 0.466080i \(0.845666\pi\)
\(908\) −26.5180 19.2665i −0.880032 0.639380i
\(909\) 0.580648 1.78705i 0.0192589 0.0592727i
\(910\) 0 0
\(911\) −6.30044 + 4.57754i −0.208743 + 0.151661i −0.687245 0.726426i \(-0.741180\pi\)
0.478502 + 0.878087i \(0.341180\pi\)
\(912\) 47.8784 1.58541
\(913\) −14.6433 5.45399i −0.484623 0.180501i
\(914\) −40.0351 −1.32424
\(915\) 0 0
\(916\) 2.90587 + 8.94336i 0.0960128 + 0.295497i
\(917\) 16.2517 50.0175i 0.536678 1.65172i
\(918\) −51.9028 37.7096i −1.71305 1.24460i
\(919\) 12.9266 + 9.39169i 0.426408 + 0.309803i 0.780211 0.625517i \(-0.215112\pi\)
−0.353803 + 0.935320i \(0.615112\pi\)
\(920\) 0 0
\(921\) −1.16901 3.59783i −0.0385201 0.118553i
\(922\) 61.3803 44.5954i 2.02145 1.46867i
\(923\) −9.80572 −0.322759
\(924\) 4.37168 103.094i 0.143818 3.39154i
\(925\) 0 0
\(926\) −2.72877 + 1.98257i −0.0896730 + 0.0651512i
\(927\) 1.08636 + 3.34347i 0.0356807 + 0.109814i
\(928\) 4.81167 14.8088i 0.157951 0.486123i
\(929\) −8.02976 5.83396i −0.263448 0.191406i 0.448218 0.893924i \(-0.352059\pi\)
−0.711666 + 0.702518i \(0.752059\pi\)
\(930\) 0 0
\(931\) −7.96319 + 24.5082i −0.260983 + 0.803223i
\(932\) −24.8155 76.3741i −0.812857 2.50172i
\(933\) −24.1627 + 17.5552i −0.791051 + 0.574732i
\(934\) 31.0046 1.01450
\(935\) 0 0
\(936\) −6.31145 −0.206296
\(937\) −7.21488 + 5.24192i −0.235700 + 0.171246i −0.699365 0.714764i \(-0.746534\pi\)
0.463666 + 0.886010i \(0.346534\pi\)
\(938\) −23.6086 72.6599i −0.770849 2.37243i
\(939\) 16.1086 49.5771i 0.525683 1.61789i
\(940\) 0 0
\(941\) −30.1937 21.9370i −0.984287 0.715126i −0.0256241 0.999672i \(-0.508157\pi\)
−0.958663 + 0.284546i \(0.908157\pi\)
\(942\) 0.423829 1.30441i 0.0138091 0.0425001i
\(943\) −0.0299572 0.0921987i −0.000975540 0.00300240i
\(944\) 7.38712 5.36705i 0.240430 0.174683i
\(945\) 0 0
\(946\) 23.5674 29.7047i 0.766242 0.965782i
\(947\) 1.62118 0.0526814 0.0263407 0.999653i \(-0.491615\pi\)
0.0263407 + 0.999653i \(0.491615\pi\)
\(948\) 95.2431 69.1982i 3.09335 2.24745i
\(949\) −12.4426 38.2944i −0.403904 1.24309i
\(950\) 0 0
\(951\) −26.5633 19.2994i −0.861375 0.625826i
\(952\) 101.348 + 73.6340i 3.28472 + 2.38649i
\(953\) −7.83110 + 24.1017i −0.253674 + 0.780729i 0.740414 + 0.672152i \(0.234630\pi\)
−0.994088 + 0.108578i \(0.965370\pi\)
\(954\) −0.929151 2.85963i −0.0300824 0.0925840i
\(955\) 0 0
\(956\) 85.3383 2.76004
\(957\) 13.4592 3.75075i 0.435075 0.121245i
\(958\) −7.82578 −0.252839
\(959\) 30.5790 22.2169i 0.987448 0.717423i
\(960\) 0 0
\(961\) −2.62123 + 8.06732i −0.0845558 + 0.260236i
\(962\) 52.2217 + 37.9413i 1.68370 + 1.22328i
\(963\) 2.96470 + 2.15398i 0.0955362 + 0.0694111i
\(964\) 42.6019 131.115i 1.37211 4.22293i
\(965\) 0 0
\(966\) −1.49338 + 1.08500i −0.0480486 + 0.0349093i
\(967\) 6.70594 0.215648 0.107824 0.994170i \(-0.465612\pi\)
0.107824 + 0.994170i \(0.465612\pi\)
\(968\) −54.7111 47.3193i −1.75848 1.52090i
\(969\) −31.0915 −0.998803
\(970\) 0 0
\(971\) 1.79835 + 5.53476i 0.0577119 + 0.177619i 0.975757 0.218857i \(-0.0702329\pi\)
−0.918045 + 0.396476i \(0.870233\pi\)
\(972\) 3.12349 9.61312i 0.100186 0.308341i
\(973\) 6.24407 + 4.53658i 0.200176 + 0.145436i
\(974\) 50.2511 + 36.5095i 1.61015 + 1.16984i
\(975\) 0 0
\(976\) −17.4730 53.7763i −0.559296 1.72134i
\(977\) 4.23279 3.07530i 0.135419 0.0983875i −0.518014 0.855372i \(-0.673328\pi\)
0.653432 + 0.756985i \(0.273328\pi\)
\(978\) −65.5017 −2.09451
\(979\) −0.552694 + 0.154022i −0.0176642 + 0.00492256i
\(980\) 0 0
\(981\) −3.09135 + 2.24600i −0.0986993 + 0.0717092i
\(982\) 25.8772 + 79.6419i 0.825775 + 2.54148i
\(983\) 4.57075 14.0673i 0.145784 0.448678i −0.851327 0.524636i \(-0.824201\pi\)
0.997111 + 0.0759580i \(0.0242015\pi\)
\(984\) −8.74443 6.35320i −0.278762 0.202533i
\(985\) 0 0
\(986\) −9.32696 + 28.7054i −0.297031 + 0.914168i
\(987\) −2.63942 8.12329i −0.0840136 0.258567i
\(988\) 57.4962 41.7734i 1.82920 1.32899i
\(989\) −0.471714 −0.0149996
\(990\) 0 0
\(991\) 24.9189 0.791575 0.395788 0.918342i \(-0.370472\pi\)
0.395788 + 0.918342i \(0.370472\pi\)
\(992\) 25.4361 18.4804i 0.807595 0.586752i
\(993\) −11.9430 36.7566i −0.378998 1.16644i
\(994\) −6.56185 + 20.1953i −0.208129 + 0.640556i
\(995\) 0 0
\(996\) 31.1998 + 22.6680i 0.988604 + 0.718263i
\(997\) −4.58532 + 14.1122i −0.145219 + 0.446937i −0.997039 0.0768969i \(-0.975499\pi\)
0.851820 + 0.523834i \(0.175499\pi\)
\(998\) 23.7601 + 73.1261i 0.752113 + 2.31477i
\(999\) −22.6345 + 16.4449i −0.716124 + 0.520295i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.c.201.4 yes 16
5.2 odd 4 275.2.z.c.124.8 32
5.3 odd 4 275.2.z.c.124.1 32
5.4 even 2 275.2.h.e.201.1 yes 16
11.2 odd 10 3025.2.a.bm.1.7 8
11.4 even 5 inner 275.2.h.c.26.4 16
11.9 even 5 3025.2.a.bi.1.2 8
55.4 even 10 275.2.h.e.26.1 yes 16
55.9 even 10 3025.2.a.bn.1.7 8
55.24 odd 10 3025.2.a.bj.1.2 8
55.37 odd 20 275.2.z.c.224.1 32
55.48 odd 20 275.2.z.c.224.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.4 16 11.4 even 5 inner
275.2.h.c.201.4 yes 16 1.1 even 1 trivial
275.2.h.e.26.1 yes 16 55.4 even 10
275.2.h.e.201.1 yes 16 5.4 even 2
275.2.z.c.124.1 32 5.3 odd 4
275.2.z.c.124.8 32 5.2 odd 4
275.2.z.c.224.1 32 55.37 odd 20
275.2.z.c.224.8 32 55.48 odd 20
3025.2.a.bi.1.2 8 11.9 even 5
3025.2.a.bj.1.2 8 55.24 odd 10
3025.2.a.bm.1.7 8 11.2 odd 10
3025.2.a.bn.1.7 8 55.9 even 10