Properties

Label 275.2.z.c.174.5
Level $275$
Weight $2$
Character 275.174
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(49,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 174.5
Character \(\chi\) \(=\) 275.174
Dual form 275.2.z.c.49.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.132580 + 0.0430779i) q^{2} +(-1.75502 - 2.41558i) q^{3} +(-1.60231 - 1.16415i) q^{4} +(-0.128623 - 0.395861i) q^{6} +(2.09815 - 2.88786i) q^{7} +(-0.326164 - 0.448926i) q^{8} +(-1.82787 + 5.62561i) q^{9} +(-2.45284 + 2.23239i) q^{11} +5.91361i q^{12} +(-1.13710 - 0.369466i) q^{13} +(0.402576 - 0.292489i) q^{14} +(1.20015 + 3.69369i) q^{16} +(-5.16941 + 1.67964i) q^{17} +(-0.484679 + 0.667104i) q^{18} +(3.88538 - 2.82290i) q^{19} -10.6581 q^{21} +(-0.421365 + 0.190307i) q^{22} -1.82203i q^{23} +(-0.511992 + 1.57575i) q^{24} +(-0.134841 - 0.0979678i) q^{26} +(8.27800 - 2.68969i) q^{27} +(-6.72378 + 2.18469i) q^{28} +(-3.35044 - 2.43424i) q^{29} +(0.397668 - 1.22390i) q^{31} +1.65122i q^{32} +(9.69730 + 2.00714i) q^{33} -0.757717 q^{34} +(9.47786 - 6.88607i) q^{36} +(1.85794 - 2.55724i) q^{37} +(0.636730 - 0.206886i) q^{38} +(1.10316 + 3.39517i) q^{39} +(5.18347 - 3.76601i) q^{41} +(-1.41306 - 0.459131i) q^{42} +4.23557i q^{43} +(6.52905 - 0.721514i) q^{44} +(0.0784894 - 0.241566i) q^{46} +(-4.13103 - 5.68588i) q^{47} +(6.81611 - 9.38157i) q^{48} +(-1.77436 - 5.46092i) q^{49} +(13.1297 + 9.53930i) q^{51} +(1.39187 + 1.91575i) q^{52} +(-10.2818 - 3.34076i) q^{53} +1.21337 q^{54} -1.98078 q^{56} +(-13.6379 - 4.43121i) q^{57} +(-0.339340 - 0.467062i) q^{58} +(-3.24907 - 2.36059i) q^{59} +(-4.47500 - 13.7726i) q^{61} +(0.105446 - 0.145134i) q^{62} +(12.4108 + 17.0820i) q^{63} +(2.32918 - 7.16847i) q^{64} +(1.19921 + 0.683847i) q^{66} -8.14233i q^{67} +(10.2384 + 3.32664i) q^{68} +(-4.40126 + 3.19770i) q^{69} +(2.63051 + 8.09589i) q^{71} +(3.12167 - 1.01429i) q^{72} +(-5.02032 + 6.90988i) q^{73} +(0.356488 - 0.259003i) q^{74} -9.51187 q^{76} +(1.30039 + 11.7673i) q^{77} +0.497655i q^{78} +(-0.121752 + 0.374714i) q^{79} +(-6.66892 - 4.84526i) q^{81} +(0.849457 - 0.276005i) q^{82} +(1.48710 - 0.483189i) q^{83} +(17.0777 + 12.4077i) q^{84} +(-0.182460 + 0.561553i) q^{86} +12.3654i q^{87} +(1.80221 + 0.373020i) q^{88} +6.90425 q^{89} +(-3.45277 + 2.50858i) q^{91} +(-2.12112 + 2.91946i) q^{92} +(-3.65434 + 1.18737i) q^{93} +(-0.302757 - 0.931792i) q^{94} +(3.98865 - 2.89792i) q^{96} +(8.85604 + 2.87750i) q^{97} -0.800446i q^{98} +(-8.07507 - 17.8793i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} - 6 q^{6} - 16 q^{9} - 10 q^{11} - 6 q^{14} - 8 q^{16} + 26 q^{19} + 20 q^{21} + 86 q^{24} - 68 q^{26} + 22 q^{29} - 20 q^{31} - 40 q^{34} + 6 q^{36} - 6 q^{39} + 50 q^{41} + 2 q^{44} + 80 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.132580 + 0.0430779i 0.0937484 + 0.0304607i 0.355516 0.934670i \(-0.384305\pi\)
−0.261767 + 0.965131i \(0.584305\pi\)
\(3\) −1.75502 2.41558i −1.01326 1.39463i −0.916822 0.399296i \(-0.869255\pi\)
−0.0964394 0.995339i \(-0.530745\pi\)
\(4\) −1.60231 1.16415i −0.801156 0.582074i
\(5\) 0 0
\(6\) −0.128623 0.395861i −0.0525101 0.161609i
\(7\) 2.09815 2.88786i 0.793026 1.09151i −0.200698 0.979653i \(-0.564321\pi\)
0.993725 0.111854i \(-0.0356789\pi\)
\(8\) −0.326164 0.448926i −0.115316 0.158719i
\(9\) −1.82787 + 5.62561i −0.609290 + 1.87520i
\(10\) 0 0
\(11\) −2.45284 + 2.23239i −0.739560 + 0.673091i
\(12\) 5.91361i 1.70711i
\(13\) −1.13710 0.369466i −0.315375 0.102471i 0.147053 0.989129i \(-0.453021\pi\)
−0.462427 + 0.886657i \(0.653021\pi\)
\(14\) 0.402576 0.292489i 0.107593 0.0781709i
\(15\) 0 0
\(16\) 1.20015 + 3.69369i 0.300038 + 0.923423i
\(17\) −5.16941 + 1.67964i −1.25377 + 0.407373i −0.859269 0.511524i \(-0.829081\pi\)
−0.394496 + 0.918897i \(0.629081\pi\)
\(18\) −0.484679 + 0.667104i −0.114240 + 0.157238i
\(19\) 3.88538 2.82290i 0.891368 0.647617i −0.0448661 0.998993i \(-0.514286\pi\)
0.936234 + 0.351376i \(0.114286\pi\)
\(20\) 0 0
\(21\) −10.6581 −2.32580
\(22\) −0.421365 + 0.190307i −0.0898354 + 0.0405737i
\(23\) 1.82203i 0.379920i −0.981792 0.189960i \(-0.939164\pi\)
0.981792 0.189960i \(-0.0608358\pi\)
\(24\) −0.511992 + 1.57575i −0.104510 + 0.321649i
\(25\) 0 0
\(26\) −0.134841 0.0979678i −0.0264445 0.0192131i
\(27\) 8.27800 2.68969i 1.59310 0.517630i
\(28\) −6.72378 + 2.18469i −1.27068 + 0.412868i
\(29\) −3.35044 2.43424i −0.622161 0.452026i 0.231515 0.972831i \(-0.425632\pi\)
−0.853676 + 0.520805i \(0.825632\pi\)
\(30\) 0 0
\(31\) 0.397668 1.22390i 0.0714233 0.219818i −0.908973 0.416856i \(-0.863132\pi\)
0.980396 + 0.197037i \(0.0631320\pi\)
\(32\) 1.65122i 0.291897i
\(33\) 9.69730 + 2.00714i 1.68808 + 0.349399i
\(34\) −0.757717 −0.129947
\(35\) 0 0
\(36\) 9.47786 6.88607i 1.57964 1.14768i
\(37\) 1.85794 2.55724i 0.305444 0.420408i −0.628509 0.777802i \(-0.716335\pi\)
0.933954 + 0.357394i \(0.116335\pi\)
\(38\) 0.636730 0.206886i 0.103291 0.0335614i
\(39\) 1.10316 + 3.39517i 0.176647 + 0.543663i
\(40\) 0 0
\(41\) 5.18347 3.76601i 0.809522 0.588152i −0.104170 0.994559i \(-0.533219\pi\)
0.913692 + 0.406408i \(0.133219\pi\)
\(42\) −1.41306 0.459131i −0.218040 0.0708454i
\(43\) 4.23557i 0.645919i 0.946413 + 0.322959i \(0.104678\pi\)
−0.946413 + 0.322959i \(0.895322\pi\)
\(44\) 6.52905 0.721514i 0.984291 0.108772i
\(45\) 0 0
\(46\) 0.0784894 0.241566i 0.0115726 0.0356169i
\(47\) −4.13103 5.68588i −0.602573 0.829371i 0.393368 0.919381i \(-0.371310\pi\)
−0.995941 + 0.0900107i \(0.971310\pi\)
\(48\) 6.81611 9.38157i 0.983821 1.35411i
\(49\) −1.77436 5.46092i −0.253480 0.780131i
\(50\) 0 0
\(51\) 13.1297 + 9.53930i 1.83853 + 1.33577i
\(52\) 1.39187 + 1.91575i 0.193018 + 0.265667i
\(53\) −10.2818 3.34076i −1.41232 0.458889i −0.499164 0.866508i \(-0.666359\pi\)
−0.913152 + 0.407618i \(0.866359\pi\)
\(54\) 1.21337 0.165118
\(55\) 0 0
\(56\) −1.98078 −0.264692
\(57\) −13.6379 4.43121i −1.80638 0.586928i
\(58\) −0.339340 0.467062i −0.0445575 0.0613282i
\(59\) −3.24907 2.36059i −0.422993 0.307323i 0.355848 0.934544i \(-0.384192\pi\)
−0.778841 + 0.627221i \(0.784192\pi\)
\(60\) 0 0
\(61\) −4.47500 13.7726i −0.572964 1.76340i −0.643008 0.765859i \(-0.722314\pi\)
0.0700436 0.997544i \(-0.477686\pi\)
\(62\) 0.105446 0.145134i 0.0133916 0.0184320i
\(63\) 12.4108 + 17.0820i 1.56361 + 2.15213i
\(64\) 2.32918 7.16847i 0.291147 0.896058i
\(65\) 0 0
\(66\) 1.19921 + 0.683847i 0.147612 + 0.0841758i
\(67\) 8.14233i 0.994744i −0.867537 0.497372i \(-0.834298\pi\)
0.867537 0.497372i \(-0.165702\pi\)
\(68\) 10.2384 + 3.32664i 1.24158 + 0.403415i
\(69\) −4.40126 + 3.19770i −0.529850 + 0.384958i
\(70\) 0 0
\(71\) 2.63051 + 8.09589i 0.312185 + 0.960806i 0.976898 + 0.213707i \(0.0685538\pi\)
−0.664713 + 0.747099i \(0.731446\pi\)
\(72\) 3.12167 1.01429i 0.367892 0.119535i
\(73\) −5.02032 + 6.90988i −0.587584 + 0.808740i −0.994501 0.104725i \(-0.966604\pi\)
0.406917 + 0.913465i \(0.366604\pi\)
\(74\) 0.356488 0.259003i 0.0414408 0.0301085i
\(75\) 0 0
\(76\) −9.51187 −1.09109
\(77\) 1.30039 + 11.7673i 0.148193 + 1.34101i
\(78\) 0.497655i 0.0563483i
\(79\) −0.121752 + 0.374714i −0.0136982 + 0.0421586i −0.957672 0.287862i \(-0.907056\pi\)
0.943974 + 0.330020i \(0.107056\pi\)
\(80\) 0 0
\(81\) −6.66892 4.84526i −0.740992 0.538362i
\(82\) 0.849457 0.276005i 0.0938069 0.0304797i
\(83\) 1.48710 0.483189i 0.163231 0.0530369i −0.226262 0.974067i \(-0.572650\pi\)
0.389492 + 0.921030i \(0.372650\pi\)
\(84\) 17.0777 + 12.4077i 1.86333 + 1.35379i
\(85\) 0 0
\(86\) −0.182460 + 0.561553i −0.0196751 + 0.0605538i
\(87\) 12.3654i 1.32571i
\(88\) 1.80221 + 0.373020i 0.192116 + 0.0397641i
\(89\) 6.90425 0.731849 0.365925 0.930645i \(-0.380753\pi\)
0.365925 + 0.930645i \(0.380753\pi\)
\(90\) 0 0
\(91\) −3.45277 + 2.50858i −0.361949 + 0.262971i
\(92\) −2.12112 + 2.91946i −0.221142 + 0.304375i
\(93\) −3.65434 + 1.18737i −0.378937 + 0.123124i
\(94\) −0.302757 0.931792i −0.0312270 0.0961070i
\(95\) 0 0
\(96\) 3.98865 2.89792i 0.407089 0.295768i
\(97\) 8.85604 + 2.87750i 0.899195 + 0.292166i 0.721905 0.691993i \(-0.243267\pi\)
0.177290 + 0.984159i \(0.443267\pi\)
\(98\) 0.800446i 0.0808572i
\(99\) −8.07507 17.8793i −0.811575 1.79693i
\(100\) 0 0
\(101\) −0.810256 + 2.49371i −0.0806235 + 0.248134i −0.983241 0.182309i \(-0.941643\pi\)
0.902618 + 0.430443i \(0.141643\pi\)
\(102\) 1.32981 + 1.83032i 0.131671 + 0.181229i
\(103\) 3.88267 5.34404i 0.382571 0.526564i −0.573692 0.819071i \(-0.694490\pi\)
0.956263 + 0.292507i \(0.0944895\pi\)
\(104\) 0.205018 + 0.630980i 0.0201037 + 0.0618727i
\(105\) 0 0
\(106\) −1.21925 0.885839i −0.118424 0.0860403i
\(107\) −8.26556 11.3766i −0.799062 1.09981i −0.992920 0.118785i \(-0.962100\pi\)
0.193858 0.981030i \(-0.437900\pi\)
\(108\) −16.3951 5.32710i −1.57762 0.512601i
\(109\) −12.3514 −1.18305 −0.591525 0.806286i \(-0.701474\pi\)
−0.591525 + 0.806286i \(0.701474\pi\)
\(110\) 0 0
\(111\) −9.43795 −0.895810
\(112\) 13.1850 + 4.28405i 1.24586 + 0.404805i
\(113\) 2.09760 + 2.88710i 0.197326 + 0.271596i 0.896201 0.443648i \(-0.146316\pi\)
−0.698875 + 0.715243i \(0.746316\pi\)
\(114\) −1.61722 1.17498i −0.151467 0.110047i
\(115\) 0 0
\(116\) 2.53464 + 7.80081i 0.235335 + 0.724287i
\(117\) 4.15694 5.72154i 0.384309 0.528956i
\(118\) −0.329074 0.452931i −0.0302937 0.0416957i
\(119\) −5.99563 + 18.4526i −0.549618 + 1.69155i
\(120\) 0 0
\(121\) 1.03287 10.9514i 0.0938974 0.995582i
\(122\) 2.01875i 0.182769i
\(123\) −18.1942 5.91165i −1.64051 0.533035i
\(124\) −2.06199 + 1.49812i −0.185172 + 0.134535i
\(125\) 0 0
\(126\) 0.909570 + 2.79937i 0.0810309 + 0.249388i
\(127\) 5.97215 1.94047i 0.529943 0.172189i −0.0318100 0.999494i \(-0.510127\pi\)
0.561753 + 0.827305i \(0.310127\pi\)
\(128\) 2.55873 3.52179i 0.226162 0.311285i
\(129\) 10.2314 7.43352i 0.900821 0.654485i
\(130\) 0 0
\(131\) 18.4755 1.61421 0.807105 0.590408i \(-0.201033\pi\)
0.807105 + 0.590408i \(0.201033\pi\)
\(132\) −13.2015 14.5052i −1.14904 1.26251i
\(133\) 17.1433i 1.48651i
\(134\) 0.350755 1.07951i 0.0303006 0.0932557i
\(135\) 0 0
\(136\) 2.44011 + 1.77284i 0.209238 + 0.152020i
\(137\) −3.97216 + 1.29063i −0.339364 + 0.110266i −0.473741 0.880664i \(-0.657097\pi\)
0.134377 + 0.990930i \(0.457097\pi\)
\(138\) −0.721271 + 0.234355i −0.0613987 + 0.0199496i
\(139\) −2.20927 1.60513i −0.187388 0.136145i 0.490136 0.871646i \(-0.336947\pi\)
−0.677524 + 0.735501i \(0.736947\pi\)
\(140\) 0 0
\(141\) −6.48464 + 19.9577i −0.546105 + 1.68074i
\(142\) 1.18667i 0.0995834i
\(143\) 3.61392 1.63221i 0.302211 0.136492i
\(144\) −22.9730 −1.91442
\(145\) 0 0
\(146\) −0.963258 + 0.699848i −0.0797198 + 0.0579199i
\(147\) −10.0772 + 13.8701i −0.831156 + 1.14399i
\(148\) −5.95401 + 1.93458i −0.489417 + 0.159021i
\(149\) 5.48466 + 16.8800i 0.449321 + 1.38287i 0.877675 + 0.479256i \(0.159094\pi\)
−0.428354 + 0.903611i \(0.640906\pi\)
\(150\) 0 0
\(151\) 1.17615 0.854522i 0.0957136 0.0695400i −0.538899 0.842370i \(-0.681160\pi\)
0.634613 + 0.772830i \(0.281160\pi\)
\(152\) −2.53455 0.823524i −0.205579 0.0667966i
\(153\) 32.1512i 2.59927i
\(154\) −0.334507 + 1.61614i −0.0269554 + 0.130232i
\(155\) 0 0
\(156\) 2.18488 6.72437i 0.174930 0.538380i
\(157\) 1.97318 + 2.71585i 0.157477 + 0.216749i 0.880464 0.474113i \(-0.157231\pi\)
−0.722987 + 0.690862i \(0.757231\pi\)
\(158\) −0.0322838 + 0.0444348i −0.00256836 + 0.00353504i
\(159\) 9.97492 + 30.6996i 0.791062 + 2.43464i
\(160\) 0 0
\(161\) −5.26177 3.82290i −0.414685 0.301287i
\(162\) −0.675444 0.929669i −0.0530679 0.0730417i
\(163\) 6.47640 + 2.10431i 0.507271 + 0.164822i 0.551461 0.834201i \(-0.314071\pi\)
−0.0441897 + 0.999023i \(0.514071\pi\)
\(164\) −12.6897 −0.990901
\(165\) 0 0
\(166\) 0.217975 0.0169182
\(167\) 18.6804 + 6.06962i 1.44553 + 0.469681i 0.923616 0.383318i \(-0.125219\pi\)
0.521913 + 0.852999i \(0.325219\pi\)
\(168\) 3.47630 + 4.78472i 0.268203 + 0.369149i
\(169\) −9.36073 6.80097i −0.720056 0.523152i
\(170\) 0 0
\(171\) 8.77853 + 27.0175i 0.671311 + 2.06608i
\(172\) 4.93083 6.78671i 0.375972 0.517482i
\(173\) −0.137634 0.189438i −0.0104642 0.0144027i 0.803753 0.594963i \(-0.202833\pi\)
−0.814217 + 0.580561i \(0.802833\pi\)
\(174\) −0.532675 + 1.63941i −0.0403820 + 0.124283i
\(175\) 0 0
\(176\) −11.1895 6.38084i −0.843444 0.480974i
\(177\) 11.9913i 0.901319i
\(178\) 0.915367 + 0.297421i 0.0686097 + 0.0222926i
\(179\) 13.7416 9.98383i 1.02709 0.746227i 0.0593679 0.998236i \(-0.481091\pi\)
0.967725 + 0.252010i \(0.0810915\pi\)
\(180\) 0 0
\(181\) −5.36003 16.4965i −0.398408 1.22617i −0.926275 0.376847i \(-0.877008\pi\)
0.527867 0.849327i \(-0.322992\pi\)
\(182\) −0.565834 + 0.183851i −0.0419424 + 0.0136279i
\(183\) −25.4151 + 34.9809i −1.87874 + 2.58586i
\(184\) −0.817958 + 0.594282i −0.0603007 + 0.0438110i
\(185\) 0 0
\(186\) −0.535642 −0.0392752
\(187\) 8.93012 15.6600i 0.653035 1.14517i
\(188\) 13.9197i 1.01520i
\(189\) 9.60107 29.5490i 0.698375 2.14938i
\(190\) 0 0
\(191\) −16.8029 12.2080i −1.21582 0.883342i −0.220070 0.975484i \(-0.570629\pi\)
−0.995746 + 0.0921420i \(0.970629\pi\)
\(192\) −21.4037 + 6.95450i −1.54468 + 0.501898i
\(193\) 8.09586 2.63050i 0.582752 0.189348i −0.00278083 0.999996i \(-0.500885\pi\)
0.585533 + 0.810648i \(0.300885\pi\)
\(194\) 1.05018 + 0.763000i 0.0753985 + 0.0547802i
\(195\) 0 0
\(196\) −3.51424 + 10.8157i −0.251017 + 0.772551i
\(197\) 2.60251i 0.185421i −0.995693 0.0927106i \(-0.970447\pi\)
0.995693 0.0927106i \(-0.0295531\pi\)
\(198\) −0.300394 2.71829i −0.0213481 0.193181i
\(199\) 8.77731 0.622207 0.311104 0.950376i \(-0.399301\pi\)
0.311104 + 0.950376i \(0.399301\pi\)
\(200\) 0 0
\(201\) −19.6684 + 14.2900i −1.38730 + 1.00794i
\(202\) −0.214848 + 0.295713i −0.0151167 + 0.0208063i
\(203\) −14.0594 + 4.56819i −0.986780 + 0.320624i
\(204\) −9.93275 30.5699i −0.695432 2.14032i
\(205\) 0 0
\(206\) 0.744976 0.541256i 0.0519049 0.0377111i
\(207\) 10.2500 + 3.33044i 0.712427 + 0.231482i
\(208\) 4.64351i 0.321970i
\(209\) −3.22843 + 15.5978i −0.223315 + 1.07892i
\(210\) 0 0
\(211\) 3.34024 10.2802i 0.229952 0.707718i −0.767799 0.640690i \(-0.778648\pi\)
0.997751 0.0670281i \(-0.0213517\pi\)
\(212\) 12.5855 + 17.3225i 0.864378 + 1.18971i
\(213\) 14.9397 20.5627i 1.02365 1.40893i
\(214\) −0.605771 1.86437i −0.0414097 0.127446i
\(215\) 0 0
\(216\) −3.90746 2.83893i −0.265869 0.193165i
\(217\) −2.70007 3.71633i −0.183293 0.252281i
\(218\) −1.63755 0.532073i −0.110909 0.0360366i
\(219\) 25.5021 1.72327
\(220\) 0 0
\(221\) 6.49870 0.437150
\(222\) −1.25129 0.406567i −0.0839808 0.0272870i
\(223\) 4.73085 + 6.51146i 0.316801 + 0.436040i 0.937487 0.348020i \(-0.113146\pi\)
−0.620686 + 0.784059i \(0.713146\pi\)
\(224\) 4.76848 + 3.46450i 0.318607 + 0.231482i
\(225\) 0 0
\(226\) 0.153730 + 0.473133i 0.0102260 + 0.0314724i
\(227\) −12.1786 + 16.7624i −0.808323 + 1.11256i 0.183257 + 0.983065i \(0.441336\pi\)
−0.991580 + 0.129496i \(0.958664\pi\)
\(228\) 16.6935 + 22.9767i 1.10556 + 1.52167i
\(229\) −2.47597 + 7.62024i −0.163616 + 0.503560i −0.998932 0.0462117i \(-0.985285\pi\)
0.835315 + 0.549771i \(0.185285\pi\)
\(230\) 0 0
\(231\) 26.1427 23.7931i 1.72007 1.56547i
\(232\) 2.29806i 0.150875i
\(233\) 24.2133 + 7.86737i 1.58626 + 0.515408i 0.963661 0.267129i \(-0.0860750\pi\)
0.622603 + 0.782538i \(0.286075\pi\)
\(234\) 0.797601 0.579491i 0.0521408 0.0378825i
\(235\) 0 0
\(236\) 2.45795 + 7.56480i 0.159999 + 0.492427i
\(237\) 1.11883 0.363529i 0.0726756 0.0236137i
\(238\) −1.58980 + 2.18818i −0.103052 + 0.141838i
\(239\) 0.442580 0.321553i 0.0286281 0.0207995i −0.573379 0.819290i \(-0.694368\pi\)
0.602007 + 0.798491i \(0.294368\pi\)
\(240\) 0 0
\(241\) 21.9600 1.41457 0.707285 0.706929i \(-0.249920\pi\)
0.707285 + 0.706929i \(0.249920\pi\)
\(242\) 0.608702 1.40745i 0.0391289 0.0904740i
\(243\) 1.49919i 0.0961728i
\(244\) −8.86303 + 27.2776i −0.567397 + 1.74627i
\(245\) 0 0
\(246\) −2.15753 1.56754i −0.137559 0.0999424i
\(247\) −5.46103 + 1.77440i −0.347477 + 0.112902i
\(248\) −0.679145 + 0.220668i −0.0431257 + 0.0140124i
\(249\) −3.77708 2.74421i −0.239362 0.173907i
\(250\) 0 0
\(251\) 1.87041 5.75652i 0.118059 0.363348i −0.874514 0.485001i \(-0.838819\pi\)
0.992573 + 0.121653i \(0.0388194\pi\)
\(252\) 41.8187i 2.63433i
\(253\) 4.06749 + 4.46916i 0.255721 + 0.280974i
\(254\) 0.875381 0.0549263
\(255\) 0 0
\(256\) −11.7048 + 8.50402i −0.731548 + 0.531501i
\(257\) 1.79724 2.47369i 0.112109 0.154305i −0.749275 0.662259i \(-0.769598\pi\)
0.861384 + 0.507954i \(0.169598\pi\)
\(258\) 1.67670 0.544792i 0.104387 0.0339172i
\(259\) −3.48670 10.7310i −0.216653 0.666789i
\(260\) 0 0
\(261\) 19.8182 14.3988i 1.22672 0.891263i
\(262\) 2.44948 + 0.795885i 0.151330 + 0.0491699i
\(263\) 18.1365i 1.11835i −0.829050 0.559174i \(-0.811118\pi\)
0.829050 0.559174i \(-0.188882\pi\)
\(264\) −2.26185 5.00803i −0.139207 0.308223i
\(265\) 0 0
\(266\) 0.738498 2.27286i 0.0452802 0.139358i
\(267\) −12.1171 16.6778i −0.741555 1.02066i
\(268\) −9.47888 + 13.0466i −0.579015 + 0.796945i
\(269\) −5.38987 16.5883i −0.328626 1.01141i −0.969777 0.243993i \(-0.921543\pi\)
0.641151 0.767415i \(-0.278457\pi\)
\(270\) 0 0
\(271\) 5.70006 + 4.14134i 0.346254 + 0.251568i 0.747296 0.664492i \(-0.231352\pi\)
−0.401042 + 0.916060i \(0.631352\pi\)
\(272\) −12.4082 17.0784i −0.752355 1.03553i
\(273\) 12.1194 + 3.93782i 0.733497 + 0.238328i
\(274\) −0.582227 −0.0351736
\(275\) 0 0
\(276\) 10.7748 0.648567
\(277\) −17.6181 5.72446i −1.05857 0.343949i −0.272542 0.962144i \(-0.587864\pi\)
−0.786025 + 0.618195i \(0.787864\pi\)
\(278\) −0.223760 0.307979i −0.0134202 0.0184714i
\(279\) 6.15828 + 4.47425i 0.368687 + 0.267866i
\(280\) 0 0
\(281\) 6.49461 + 19.9884i 0.387436 + 1.19241i 0.934698 + 0.355444i \(0.115670\pi\)
−0.547262 + 0.836962i \(0.684330\pi\)
\(282\) −1.71947 + 2.36665i −0.102393 + 0.140932i
\(283\) 0.955030 + 1.31449i 0.0567706 + 0.0781381i 0.836458 0.548030i \(-0.184622\pi\)
−0.779688 + 0.626169i \(0.784622\pi\)
\(284\) 5.20991 16.0345i 0.309151 0.951470i
\(285\) 0 0
\(286\) 0.549446 0.0607183i 0.0324894 0.00359035i
\(287\) 22.8708i 1.35002i
\(288\) −9.28911 3.01821i −0.547366 0.177850i
\(289\) 10.1483 7.37316i 0.596957 0.433715i
\(290\) 0 0
\(291\) −8.59170 26.4425i −0.503654 1.55009i
\(292\) 16.0882 5.22738i 0.941493 0.305910i
\(293\) 7.41008 10.1991i 0.432901 0.595838i −0.535715 0.844399i \(-0.679958\pi\)
0.968616 + 0.248561i \(0.0799578\pi\)
\(294\) −1.93354 + 1.40480i −0.112766 + 0.0819295i
\(295\) 0 0
\(296\) −1.75401 −0.101950
\(297\) −14.3002 + 25.0771i −0.829782 + 1.45512i
\(298\) 2.47423i 0.143328i
\(299\) −0.673179 + 2.07183i −0.0389309 + 0.119817i
\(300\) 0 0
\(301\) 12.2317 + 8.88687i 0.705025 + 0.512230i
\(302\) 0.192745 0.0626267i 0.0110912 0.00360376i
\(303\) 7.44578 2.41928i 0.427749 0.138984i
\(304\) 15.0900 + 10.9635i 0.865469 + 0.628800i
\(305\) 0 0
\(306\) 1.38501 4.26262i 0.0791757 0.243678i
\(307\) 22.6055i 1.29017i 0.764112 + 0.645083i \(0.223177\pi\)
−0.764112 + 0.645083i \(0.776823\pi\)
\(308\) 11.6153 20.3688i 0.661843 1.16062i
\(309\) −19.7231 −1.12201
\(310\) 0 0
\(311\) 15.0909 10.9642i 0.855729 0.621723i −0.0709908 0.997477i \(-0.522616\pi\)
0.926720 + 0.375754i \(0.122616\pi\)
\(312\) 1.16437 1.60262i 0.0659196 0.0907305i
\(313\) −16.6286 + 5.40298i −0.939907 + 0.305394i −0.738608 0.674136i \(-0.764516\pi\)
−0.201299 + 0.979530i \(0.564516\pi\)
\(314\) 0.144612 + 0.445069i 0.00816091 + 0.0251167i
\(315\) 0 0
\(316\) 0.631307 0.458671i 0.0355138 0.0258023i
\(317\) 10.6373 + 3.45627i 0.597450 + 0.194123i 0.592103 0.805862i \(-0.298298\pi\)
0.00534745 + 0.999986i \(0.498298\pi\)
\(318\) 4.49987i 0.252340i
\(319\) 13.6523 1.50869i 0.764380 0.0844703i
\(320\) 0 0
\(321\) −12.9748 + 39.9322i −0.724181 + 2.22880i
\(322\) −0.532924 0.733507i −0.0296987 0.0408767i
\(323\) −15.3437 + 21.1188i −0.853745 + 1.17508i
\(324\) 5.04510 + 15.5272i 0.280283 + 0.862624i
\(325\) 0 0
\(326\) 0.767994 + 0.557980i 0.0425353 + 0.0309037i
\(327\) 21.6770 + 29.8358i 1.19874 + 1.64992i
\(328\) −3.38132 1.09866i −0.186702 0.0606632i
\(329\) −25.0875 −1.38312
\(330\) 0 0
\(331\) −25.7621 −1.41602 −0.708008 0.706205i \(-0.750406\pi\)
−0.708008 + 0.706205i \(0.750406\pi\)
\(332\) −2.94531 0.956988i −0.161645 0.0525215i
\(333\) 10.9900 + 15.1264i 0.602246 + 0.828920i
\(334\) 2.21518 + 1.60942i 0.121209 + 0.0880637i
\(335\) 0 0
\(336\) −12.7914 39.3679i −0.697828 2.14769i
\(337\) −6.75842 + 9.30216i −0.368154 + 0.506721i −0.952398 0.304857i \(-0.901391\pi\)
0.584244 + 0.811578i \(0.301391\pi\)
\(338\) −0.948077 1.30492i −0.0515686 0.0709780i
\(339\) 3.29269 10.1339i 0.178834 0.550395i
\(340\) 0 0
\(341\) 1.75680 + 3.88978i 0.0951359 + 0.210643i
\(342\) 3.96015i 0.214141i
\(343\) 4.27093 + 1.38771i 0.230609 + 0.0749293i
\(344\) 1.90146 1.38149i 0.102520 0.0744850i
\(345\) 0 0
\(346\) −0.0100870 0.0310447i −0.000542282 0.00166897i
\(347\) 0.823501 0.267572i 0.0442079 0.0143640i −0.286830 0.957982i \(-0.592601\pi\)
0.331037 + 0.943618i \(0.392601\pi\)
\(348\) 14.3951 19.8132i 0.771660 1.06210i
\(349\) 14.3937 10.4576i 0.770476 0.559784i −0.131630 0.991299i \(-0.542021\pi\)
0.902106 + 0.431515i \(0.142021\pi\)
\(350\) 0 0
\(351\) −10.4067 −0.555466
\(352\) −3.68616 4.05018i −0.196473 0.215875i
\(353\) 1.11550i 0.0593723i −0.999559 0.0296862i \(-0.990549\pi\)
0.999559 0.0296862i \(-0.00945079\pi\)
\(354\) −0.516559 + 1.58981i −0.0274548 + 0.0844972i
\(355\) 0 0
\(356\) −11.0628 8.03757i −0.586325 0.425990i
\(357\) 55.0963 17.9019i 2.91600 0.947467i
\(358\) 2.25194 0.731701i 0.119019 0.0386716i
\(359\) 1.22945 + 0.893247i 0.0648878 + 0.0471438i 0.619756 0.784794i \(-0.287231\pi\)
−0.554869 + 0.831938i \(0.687231\pi\)
\(360\) 0 0
\(361\) 1.25614 3.86601i 0.0661127 0.203474i
\(362\) 2.41801i 0.127088i
\(363\) −28.2667 + 16.7250i −1.48362 + 0.877832i
\(364\) 8.45278 0.443046
\(365\) 0 0
\(366\) −4.87645 + 3.54295i −0.254896 + 0.185193i
\(367\) −6.24587 + 8.59670i −0.326032 + 0.448744i −0.940297 0.340356i \(-0.889453\pi\)
0.614265 + 0.789100i \(0.289453\pi\)
\(368\) 6.73003 2.18672i 0.350827 0.113991i
\(369\) 11.7114 + 36.0439i 0.609670 + 1.87637i
\(370\) 0 0
\(371\) −31.2204 + 22.6830i −1.62088 + 1.17764i
\(372\) 7.23765 + 2.35166i 0.375255 + 0.121928i
\(373\) 27.9435i 1.44686i 0.690399 + 0.723429i \(0.257435\pi\)
−0.690399 + 0.723429i \(0.742565\pi\)
\(374\) 1.85856 1.69152i 0.0961038 0.0874664i
\(375\) 0 0
\(376\) −1.20515 + 3.70906i −0.0621507 + 0.191280i
\(377\) 2.91041 + 4.00584i 0.149894 + 0.206311i
\(378\) 2.54582 3.50403i 0.130943 0.180228i
\(379\) −5.76969 17.7573i −0.296369 0.912130i −0.982758 0.184896i \(-0.940805\pi\)
0.686389 0.727235i \(-0.259195\pi\)
\(380\) 0 0
\(381\) −15.1686 11.0206i −0.777111 0.564605i
\(382\) −1.70184 2.34238i −0.0870736 0.119847i
\(383\) −20.6018 6.69393i −1.05270 0.342044i −0.268974 0.963147i \(-0.586685\pi\)
−0.783729 + 0.621104i \(0.786685\pi\)
\(384\) −12.9978 −0.663290
\(385\) 0 0
\(386\) 1.18667 0.0603998
\(387\) −23.8277 7.74208i −1.21123 0.393552i
\(388\) −10.8403 14.9204i −0.550333 0.757468i
\(389\) −30.3224 22.0305i −1.53740 1.11699i −0.951937 0.306294i \(-0.900911\pi\)
−0.585468 0.810696i \(-0.699089\pi\)
\(390\) 0 0
\(391\) 3.06036 + 9.41883i 0.154769 + 0.476331i
\(392\) −1.87282 + 2.57771i −0.0945916 + 0.130194i
\(393\) −32.4248 44.6289i −1.63562 2.25123i
\(394\) 0.112111 0.345042i 0.00564806 0.0173829i
\(395\) 0 0
\(396\) −7.87531 + 38.0487i −0.395749 + 1.91202i
\(397\) 18.3084i 0.918873i 0.888211 + 0.459437i \(0.151949\pi\)
−0.888211 + 0.459437i \(0.848051\pi\)
\(398\) 1.16370 + 0.378109i 0.0583309 + 0.0189529i
\(399\) −41.4110 + 30.0868i −2.07314 + 1.50623i
\(400\) 0 0
\(401\) 4.04434 + 12.4472i 0.201965 + 0.621583i 0.999824 + 0.0187401i \(0.00596551\pi\)
−0.797860 + 0.602843i \(0.794034\pi\)
\(402\) −3.22323 + 1.04729i −0.160760 + 0.0522341i
\(403\) −0.904376 + 1.24477i −0.0450502 + 0.0620063i
\(404\) 4.20133 3.05245i 0.209024 0.151865i
\(405\) 0 0
\(406\) −2.06079 −0.102275
\(407\) 1.15151 + 10.4202i 0.0570785 + 0.516509i
\(408\) 9.00566i 0.445846i
\(409\) −6.57096 + 20.2233i −0.324913 + 0.999980i 0.646567 + 0.762857i \(0.276204\pi\)
−0.971480 + 0.237122i \(0.923796\pi\)
\(410\) 0 0
\(411\) 10.0888 + 7.32997i 0.497646 + 0.361561i
\(412\) −12.4425 + 4.04281i −0.612998 + 0.199175i
\(413\) −13.6341 + 4.42998i −0.670889 + 0.217985i
\(414\) 1.21548 + 0.883101i 0.0597378 + 0.0434021i
\(415\) 0 0
\(416\) 0.610069 1.87760i 0.0299111 0.0920568i
\(417\) 8.15371i 0.399289i
\(418\) −1.09995 + 1.92889i −0.0538002 + 0.0943450i
\(419\) 37.5627 1.83506 0.917528 0.397670i \(-0.130181\pi\)
0.917528 + 0.397670i \(0.130181\pi\)
\(420\) 0 0
\(421\) 7.41340 5.38615i 0.361307 0.262505i −0.392290 0.919842i \(-0.628317\pi\)
0.753597 + 0.657337i \(0.228317\pi\)
\(422\) 0.885700 1.21906i 0.0431152 0.0593430i
\(423\) 39.5375 12.8465i 1.92238 0.624619i
\(424\) 1.85380 + 5.70542i 0.0900286 + 0.277079i
\(425\) 0 0
\(426\) 2.86650 2.08263i 0.138882 0.100904i
\(427\) −49.1626 15.9739i −2.37914 0.773030i
\(428\) 27.8512i 1.34624i
\(429\) −10.2852 5.86514i −0.496575 0.283172i
\(430\) 0 0
\(431\) 8.63312 26.5700i 0.415843 1.27983i −0.495653 0.868521i \(-0.665071\pi\)
0.911495 0.411311i \(-0.134929\pi\)
\(432\) 19.8697 + 27.3484i 0.955984 + 1.31580i
\(433\) 11.9620 16.4642i 0.574856 0.791221i −0.418264 0.908325i \(-0.637361\pi\)
0.993120 + 0.117105i \(0.0373613\pi\)
\(434\) −0.197884 0.609025i −0.00949875 0.0292342i
\(435\) 0 0
\(436\) 19.7908 + 14.3789i 0.947808 + 0.688623i
\(437\) −5.14341 7.07930i −0.246043 0.338649i
\(438\) 3.38108 + 1.09858i 0.161554 + 0.0524921i
\(439\) 5.87262 0.280285 0.140142 0.990131i \(-0.455244\pi\)
0.140142 + 0.990131i \(0.455244\pi\)
\(440\) 0 0
\(441\) 33.9643 1.61735
\(442\) 0.861599 + 0.279951i 0.0409821 + 0.0133159i
\(443\) −21.2309 29.2219i −1.00871 1.38837i −0.919824 0.392332i \(-0.871668\pi\)
−0.0888891 0.996042i \(-0.528332\pi\)
\(444\) 15.1225 + 10.9872i 0.717684 + 0.521428i
\(445\) 0 0
\(446\) 0.346717 + 1.06709i 0.0164175 + 0.0505280i
\(447\) 31.1494 42.8735i 1.47332 2.02784i
\(448\) −15.8145 21.7668i −0.747167 1.02839i
\(449\) −2.11744 + 6.51680i −0.0999281 + 0.307547i −0.988507 0.151177i \(-0.951694\pi\)
0.888579 + 0.458724i \(0.151694\pi\)
\(450\) 0 0
\(451\) −4.30703 + 20.8089i −0.202810 + 0.979855i
\(452\) 7.06796i 0.332449i
\(453\) −4.12833 1.34138i −0.193966 0.0630233i
\(454\) −2.33674 + 1.69774i −0.109668 + 0.0796788i
\(455\) 0 0
\(456\) 2.45889 + 7.56770i 0.115148 + 0.354390i
\(457\) −20.2693 + 6.58590i −0.948158 + 0.308075i −0.741967 0.670437i \(-0.766107\pi\)
−0.206191 + 0.978512i \(0.566107\pi\)
\(458\) −0.656528 + 0.903634i −0.0306776 + 0.0422240i
\(459\) −38.2747 + 27.8082i −1.78651 + 1.29797i
\(460\) 0 0
\(461\) −29.0126 −1.35125 −0.675626 0.737244i \(-0.736127\pi\)
−0.675626 + 0.737244i \(0.736127\pi\)
\(462\) 4.49097 2.02832i 0.208939 0.0943661i
\(463\) 17.8392i 0.829057i −0.910036 0.414528i \(-0.863947\pi\)
0.910036 0.414528i \(-0.136053\pi\)
\(464\) 4.97028 15.2969i 0.230739 0.710143i
\(465\) 0 0
\(466\) 2.87129 + 2.08612i 0.133010 + 0.0966374i
\(467\) −3.80640 + 1.23677i −0.176139 + 0.0572311i −0.395759 0.918354i \(-0.629518\pi\)
0.219620 + 0.975586i \(0.429518\pi\)
\(468\) −13.3214 + 4.32840i −0.615784 + 0.200080i
\(469\) −23.5139 17.0838i −1.08577 0.788858i
\(470\) 0 0
\(471\) 3.09738 9.53275i 0.142720 0.439246i
\(472\) 2.22853i 0.102577i
\(473\) −9.45545 10.3892i −0.434762 0.477695i
\(474\) 0.163994 0.00753252
\(475\) 0 0
\(476\) 31.0885 22.5871i 1.42494 1.03528i
\(477\) 37.5877 51.7350i 1.72102 2.36878i
\(478\) 0.0725292 0.0235662i 0.00331741 0.00107789i
\(479\) 0.372018 + 1.14495i 0.0169979 + 0.0523143i 0.959196 0.282743i \(-0.0912443\pi\)
−0.942198 + 0.335057i \(0.891244\pi\)
\(480\) 0 0
\(481\) −3.05748 + 2.22139i −0.139409 + 0.101287i
\(482\) 2.91146 + 0.945992i 0.132614 + 0.0430888i
\(483\) 19.4195i 0.883617i
\(484\) −14.4040 + 16.3451i −0.654729 + 0.742961i
\(485\) 0 0
\(486\) 0.0645818 0.198762i 0.00292949 0.00901605i
\(487\) −24.8406 34.1902i −1.12564 1.54930i −0.796105 0.605159i \(-0.793109\pi\)
−0.329531 0.944145i \(-0.606891\pi\)
\(488\) −4.72331 + 6.50108i −0.213814 + 0.294290i
\(489\) −6.28309 19.3374i −0.284131 0.874466i
\(490\) 0 0
\(491\) −14.7908 10.7462i −0.667500 0.484967i 0.201687 0.979450i \(-0.435358\pi\)
−0.869188 + 0.494483i \(0.835358\pi\)
\(492\) 22.2707 + 30.6530i 1.00404 + 1.38194i
\(493\) 21.4084 + 6.95602i 0.964187 + 0.313283i
\(494\) −0.800462 −0.0360145
\(495\) 0 0
\(496\) 4.99796 0.224415
\(497\) 28.8990 + 9.38985i 1.29630 + 0.421192i
\(498\) −0.382551 0.526536i −0.0171425 0.0235947i
\(499\) 18.3522 + 13.3336i 0.821557 + 0.596896i 0.917158 0.398524i \(-0.130477\pi\)
−0.0956011 + 0.995420i \(0.530477\pi\)
\(500\) 0 0
\(501\) −18.1228 55.7762i −0.809666 2.49190i
\(502\) 0.495958 0.682627i 0.0221357 0.0304671i
\(503\) 18.9706 + 26.1108i 0.845859 + 1.16422i 0.984760 + 0.173919i \(0.0556430\pi\)
−0.138901 + 0.990306i \(0.544357\pi\)
\(504\) 3.62060 11.1431i 0.161274 0.496352i
\(505\) 0 0
\(506\) 0.346746 + 0.767741i 0.0154148 + 0.0341303i
\(507\) 34.5474i 1.53430i
\(508\) −11.8282 3.84323i −0.524794 0.170516i
\(509\) 17.8771 12.9885i 0.792390 0.575705i −0.116282 0.993216i \(-0.537098\pi\)
0.908672 + 0.417512i \(0.137098\pi\)
\(510\) 0 0
\(511\) 9.42134 + 28.9959i 0.416776 + 1.28270i
\(512\) −10.1984 + 3.31365i −0.450709 + 0.146444i
\(513\) 24.5705 33.8184i 1.08481 1.49312i
\(514\) 0.344841 0.250541i 0.0152103 0.0110509i
\(515\) 0 0
\(516\) −25.0475 −1.10266
\(517\) 22.8259 + 4.72449i 1.00388 + 0.207783i
\(518\) 1.57291i 0.0691098i
\(519\) −0.216050 + 0.664934i −0.00948355 + 0.0291874i
\(520\) 0 0
\(521\) 13.7909 + 10.0196i 0.604189 + 0.438969i 0.847363 0.531014i \(-0.178189\pi\)
−0.243175 + 0.969983i \(0.578189\pi\)
\(522\) 3.24778 1.05527i 0.142151 0.0461878i
\(523\) 19.0148 6.17828i 0.831459 0.270157i 0.137799 0.990460i \(-0.455997\pi\)
0.693660 + 0.720303i \(0.255997\pi\)
\(524\) −29.6035 21.5082i −1.29323 0.939589i
\(525\) 0 0
\(526\) 0.781285 2.40455i 0.0340657 0.104843i
\(527\) 6.99476i 0.304697i
\(528\) 4.22448 + 38.2277i 0.183847 + 1.66365i
\(529\) 19.6802 0.855661
\(530\) 0 0
\(531\) 19.2186 13.9632i 0.834018 0.605949i
\(532\) −19.9573 + 27.4689i −0.865260 + 1.19093i
\(533\) −7.28553 + 2.36721i −0.315571 + 0.102535i
\(534\) −0.888045 2.73312i −0.0384295 0.118274i
\(535\) 0 0
\(536\) −3.65531 + 2.65574i −0.157885 + 0.114710i
\(537\) −48.2334 15.6720i −2.08143 0.676297i
\(538\) 2.43147i 0.104828i
\(539\) 16.5431 + 9.43371i 0.712563 + 0.406338i
\(540\) 0 0
\(541\) −2.28788 + 7.04138i −0.0983638 + 0.302733i −0.988116 0.153712i \(-0.950877\pi\)
0.889752 + 0.456444i \(0.150877\pi\)
\(542\) 0.577315 + 0.794606i 0.0247978 + 0.0341313i
\(543\) −30.4416 + 41.8992i −1.30637 + 1.79807i
\(544\) −2.77345 8.53582i −0.118911 0.365970i
\(545\) 0 0
\(546\) 1.43716 + 1.04415i 0.0615046 + 0.0446857i
\(547\) 11.5228 + 15.8598i 0.492679 + 0.678115i 0.980879 0.194617i \(-0.0623464\pi\)
−0.488200 + 0.872732i \(0.662346\pi\)
\(548\) 7.86712 + 2.55618i 0.336067 + 0.109195i
\(549\) 85.6591 3.65584
\(550\) 0 0
\(551\) −19.8893 −0.847314
\(552\) 2.87107 + 0.932866i 0.122201 + 0.0397054i
\(553\) 0.826665 + 1.13781i 0.0351534 + 0.0483845i
\(554\) −2.08921 1.51790i −0.0887620 0.0644894i
\(555\) 0 0
\(556\) 1.67133 + 5.14384i 0.0708804 + 0.218147i
\(557\) 9.93712 13.6773i 0.421049 0.579524i −0.544821 0.838553i \(-0.683402\pi\)
0.965870 + 0.259028i \(0.0834023\pi\)
\(558\) 0.623725 + 0.858484i 0.0264044 + 0.0363425i
\(559\) 1.56490 4.81627i 0.0661882 0.203706i
\(560\) 0 0
\(561\) −53.5006 + 5.91225i −2.25880 + 0.249616i
\(562\) 2.92984i 0.123588i
\(563\) −18.1665 5.90264i −0.765625 0.248767i −0.0999340 0.994994i \(-0.531863\pi\)
−0.665691 + 0.746227i \(0.731863\pi\)
\(564\) 33.6241 24.4293i 1.41583 1.02866i
\(565\) 0 0
\(566\) 0.0699928 + 0.215416i 0.00294202 + 0.00905460i
\(567\) −27.9848 + 9.09282i −1.17525 + 0.381862i
\(568\) 2.77648 3.82150i 0.116499 0.160346i
\(569\) −14.3191 + 10.4034i −0.600286 + 0.436133i −0.845980 0.533214i \(-0.820984\pi\)
0.245694 + 0.969347i \(0.420984\pi\)
\(570\) 0 0
\(571\) −5.15632 −0.215785 −0.107893 0.994163i \(-0.534410\pi\)
−0.107893 + 0.994163i \(0.534410\pi\)
\(572\) −7.69075 1.59183i −0.321567 0.0665577i
\(573\) 62.0141i 2.59068i
\(574\) 0.985225 3.03221i 0.0411225 0.126562i
\(575\) 0 0
\(576\) 36.0696 + 26.2061i 1.50290 + 1.09192i
\(577\) −19.1835 + 6.23309i −0.798619 + 0.259487i −0.679770 0.733425i \(-0.737920\pi\)
−0.118849 + 0.992912i \(0.537920\pi\)
\(578\) 1.66308 0.540368i 0.0691751 0.0224763i
\(579\) −20.5626 14.9396i −0.854552 0.620868i
\(580\) 0 0
\(581\) 1.72478 5.30834i 0.0715561 0.220227i
\(582\) 3.87587i 0.160660i
\(583\) 32.6776 14.7587i 1.35337 0.611241i
\(584\) 4.73947 0.196121
\(585\) 0 0
\(586\) 1.42179 1.03299i 0.0587334 0.0426723i
\(587\) 20.8185 28.6541i 0.859270 1.18268i −0.122474 0.992472i \(-0.539083\pi\)
0.981743 0.190211i \(-0.0609173\pi\)
\(588\) 32.2938 10.4929i 1.33177 0.432719i
\(589\) −1.90984 5.87789i −0.0786936 0.242194i
\(590\) 0 0
\(591\) −6.28657 + 4.56746i −0.258595 + 0.187880i
\(592\) 11.6755 + 3.79359i 0.479859 + 0.155916i
\(593\) 38.2459i 1.57057i 0.619134 + 0.785285i \(0.287484\pi\)
−0.619134 + 0.785285i \(0.712516\pi\)
\(594\) −2.97620 + 2.70871i −0.122115 + 0.111140i
\(595\) 0 0
\(596\) 10.8627 33.4321i 0.444955 1.36943i
\(597\) −15.4044 21.2023i −0.630459 0.867752i
\(598\) −0.178500 + 0.245685i −0.00729943 + 0.0100468i
\(599\) −7.32601 22.5471i −0.299333 0.921251i −0.981732 0.190271i \(-0.939063\pi\)
0.682399 0.730980i \(-0.260937\pi\)
\(600\) 0 0
\(601\) −7.93032 5.76172i −0.323485 0.235025i 0.414176 0.910197i \(-0.364070\pi\)
−0.737661 + 0.675171i \(0.764070\pi\)
\(602\) 1.23886 + 1.70514i 0.0504920 + 0.0694963i
\(603\) 45.8056 + 14.8831i 1.86535 + 0.606088i
\(604\) −2.87935 −0.117159
\(605\) 0 0
\(606\) 1.09138 0.0443343
\(607\) 2.00862 + 0.652640i 0.0815273 + 0.0264898i 0.349497 0.936938i \(-0.386353\pi\)
−0.267969 + 0.963427i \(0.586353\pi\)
\(608\) 4.66122 + 6.41562i 0.189037 + 0.260188i
\(609\) 35.7094 + 25.9444i 1.44702 + 1.05132i
\(610\) 0 0
\(611\) 2.59666 + 7.99168i 0.105049 + 0.323309i
\(612\) −37.4288 + 51.5163i −1.51297 + 2.08242i
\(613\) −1.66624 2.29338i −0.0672986 0.0926286i 0.774041 0.633136i \(-0.218232\pi\)
−0.841340 + 0.540507i \(0.818232\pi\)
\(614\) −0.973800 + 2.99705i −0.0392994 + 0.120951i
\(615\) 0 0
\(616\) 4.85853 4.42186i 0.195756 0.178162i
\(617\) 43.2099i 1.73957i −0.493434 0.869783i \(-0.664259\pi\)
0.493434 0.869783i \(-0.335741\pi\)
\(618\) −2.61489 0.849631i −0.105187 0.0341772i
\(619\) −37.9078 + 27.5416i −1.52364 + 1.10699i −0.563998 + 0.825776i \(0.690738\pi\)
−0.959645 + 0.281216i \(0.909262\pi\)
\(620\) 0 0
\(621\) −4.90070 15.0828i −0.196658 0.605252i
\(622\) 2.47308 0.803551i 0.0991613 0.0322195i
\(623\) 14.4862 19.9385i 0.580376 0.798818i
\(624\) −11.2168 + 8.14946i −0.449030 + 0.326239i
\(625\) 0 0
\(626\) −2.43738 −0.0974173
\(627\) 43.3437 19.5760i 1.73098 0.781789i
\(628\) 6.64872i 0.265313i
\(629\) −5.30922 + 16.3401i −0.211693 + 0.651523i
\(630\) 0 0
\(631\) −4.16305 3.02463i −0.165728 0.120409i 0.501830 0.864966i \(-0.332660\pi\)
−0.667558 + 0.744558i \(0.732660\pi\)
\(632\) 0.207930 0.0675605i 0.00827101 0.00268741i
\(633\) −30.6948 + 9.97335i −1.22001 + 0.396405i
\(634\) 1.26141 + 0.916466i 0.0500969 + 0.0363975i
\(635\) 0 0
\(636\) 19.7560 60.8027i 0.783376 2.41098i
\(637\) 6.86517i 0.272008i
\(638\) 1.87501 + 0.388089i 0.0742324 + 0.0153646i
\(639\) −50.3526 −1.99192
\(640\) 0 0
\(641\) −13.4838 + 9.79658i −0.532580 + 0.386942i −0.821322 0.570465i \(-0.806763\pi\)
0.288742 + 0.957407i \(0.406763\pi\)
\(642\) −3.44040 + 4.73530i −0.135782 + 0.186887i
\(643\) 34.0436 11.0614i 1.34255 0.436220i 0.452368 0.891831i \(-0.350579\pi\)
0.890179 + 0.455611i \(0.150579\pi\)
\(644\) 3.98058 + 12.2510i 0.156857 + 0.482755i
\(645\) 0 0
\(646\) −2.94402 + 2.13896i −0.115831 + 0.0841561i
\(647\) 30.3007 + 9.84530i 1.19124 + 0.387059i 0.836533 0.547917i \(-0.184579\pi\)
0.354712 + 0.934976i \(0.384579\pi\)
\(648\) 4.57421i 0.179692i
\(649\) 13.2392 1.46304i 0.519685 0.0574295i
\(650\) 0 0
\(651\) −4.23840 + 13.0445i −0.166116 + 0.511253i
\(652\) −7.92749 10.9113i −0.310465 0.427318i
\(653\) −1.19071 + 1.63887i −0.0465961 + 0.0641340i −0.831679 0.555256i \(-0.812620\pi\)
0.785083 + 0.619390i \(0.212620\pi\)
\(654\) 1.58867 + 4.88944i 0.0621221 + 0.191192i
\(655\) 0 0
\(656\) 20.1314 + 14.6263i 0.786001 + 0.571063i
\(657\) −29.6958 40.8727i −1.15854 1.59460i
\(658\) −3.32611 1.08072i −0.129665 0.0421308i
\(659\) 14.3580 0.559308 0.279654 0.960101i \(-0.409780\pi\)
0.279654 + 0.960101i \(0.409780\pi\)
\(660\) 0 0
\(661\) 28.0721 1.09188 0.545938 0.837825i \(-0.316173\pi\)
0.545938 + 0.837825i \(0.316173\pi\)
\(662\) −3.41555 1.10978i −0.132749 0.0431328i
\(663\) −11.4053 15.6981i −0.442947 0.609664i
\(664\) −0.701956 0.510001i −0.0272412 0.0197919i
\(665\) 0 0
\(666\) 0.805438 + 2.47888i 0.0312101 + 0.0960548i
\(667\) −4.43526 + 6.10461i −0.171734 + 0.236371i
\(668\) −22.8658 31.4721i −0.884706 1.21769i
\(669\) 7.42620 22.8555i 0.287113 0.883644i
\(670\) 0 0
\(671\) 41.7223 + 23.7921i 1.61067 + 0.918485i
\(672\) 17.5989i 0.678893i
\(673\) 37.3122 + 12.1235i 1.43828 + 0.467326i 0.921361 0.388708i \(-0.127079\pi\)
0.516919 + 0.856034i \(0.327079\pi\)
\(674\) −1.29675 + 0.942144i −0.0499490 + 0.0362900i
\(675\) 0 0
\(676\) 7.08148 + 21.7946i 0.272365 + 0.838252i
\(677\) −46.9682 + 15.2609i −1.80513 + 0.586524i −0.999979 0.00653953i \(-0.997918\pi\)
−0.805156 + 0.593063i \(0.797918\pi\)
\(678\) 0.873091 1.20171i 0.0335309 0.0461513i
\(679\) 26.8911 19.5375i 1.03199 0.749782i
\(680\) 0 0
\(681\) 61.8647 2.37066
\(682\) 0.0653531 + 0.591387i 0.00250250 + 0.0226454i
\(683\) 29.7973i 1.14016i 0.821589 + 0.570081i \(0.193088\pi\)
−0.821589 + 0.570081i \(0.806912\pi\)
\(684\) 17.3865 53.5101i 0.664788 2.04601i
\(685\) 0 0
\(686\) 0.506462 + 0.367966i 0.0193368 + 0.0140490i
\(687\) 22.7527 7.39279i 0.868068 0.282052i
\(688\) −15.6449 + 5.08334i −0.596456 + 0.193800i
\(689\) 10.4571 + 7.59756i 0.398386 + 0.289444i
\(690\) 0 0
\(691\) 9.94364 30.6034i 0.378274 1.16421i −0.562970 0.826478i \(-0.690341\pi\)
0.941243 0.337729i \(-0.109659\pi\)
\(692\) 0.463765i 0.0176297i
\(693\) −68.5754 14.1937i −2.60497 0.539175i
\(694\) 0.120706 0.00458195
\(695\) 0 0
\(696\) 5.55115 4.03314i 0.210416 0.152876i
\(697\) −20.4699 + 28.1744i −0.775353 + 1.06718i
\(698\) 2.35881 0.766424i 0.0892823 0.0290096i
\(699\) −23.4905 72.2964i −0.888494 2.73450i
\(700\) 0 0
\(701\) −10.8560 + 7.88737i −0.410027 + 0.297902i −0.773613 0.633659i \(-0.781552\pi\)
0.363586 + 0.931561i \(0.381552\pi\)
\(702\) −1.37972 0.448297i −0.0520741 0.0169199i
\(703\) 15.1807i 0.572549i
\(704\) 10.2897 + 22.7827i 0.387808 + 0.858657i
\(705\) 0 0
\(706\) 0.0480537 0.147894i 0.00180852 0.00556606i
\(707\) 5.50144 + 7.57209i 0.206903 + 0.284778i
\(708\) 13.9596 19.2138i 0.524634 0.722097i
\(709\) 6.97855 + 21.4778i 0.262085 + 0.806615i 0.992351 + 0.123451i \(0.0393963\pi\)
−0.730266 + 0.683163i \(0.760604\pi\)
\(710\) 0 0
\(711\) −1.88545 1.36986i −0.0707097 0.0513736i
\(712\) −2.25192 3.09950i −0.0843942 0.116159i
\(713\) −2.22998 0.724565i −0.0835134 0.0271352i
\(714\) 8.07585 0.302231
\(715\) 0 0
\(716\) −33.6409 −1.25722
\(717\) −1.55347 0.504754i −0.0580155 0.0188504i
\(718\) 0.124521 + 0.171389i 0.00464710 + 0.00639618i
\(719\) −21.5922 15.6876i −0.805253 0.585050i 0.107198 0.994238i \(-0.465812\pi\)
−0.912450 + 0.409187i \(0.865812\pi\)
\(720\) 0 0
\(721\) −7.28639 22.4252i −0.271359 0.835158i
\(722\) 0.333079 0.458444i 0.0123959 0.0170615i
\(723\) −38.5403 53.0461i −1.43333 1.97281i
\(724\) −10.6159 + 32.6724i −0.394537 + 1.21426i
\(725\) 0 0
\(726\) −4.46808 + 0.999728i −0.165826 + 0.0371034i
\(727\) 10.6151i 0.393693i −0.980434 0.196846i \(-0.936930\pi\)
0.980434 0.196846i \(-0.0630700\pi\)
\(728\) 2.25234 + 0.731829i 0.0834772 + 0.0271234i
\(729\) −23.6282 + 17.1669i −0.875118 + 0.635810i
\(730\) 0 0
\(731\) −7.11424 21.8954i −0.263130 0.809830i
\(732\) 81.4460 26.4634i 3.01033 0.978115i
\(733\) 7.54772 10.3886i 0.278782 0.383710i −0.646548 0.762873i \(-0.723788\pi\)
0.925330 + 0.379163i \(0.123788\pi\)
\(734\) −1.19841 + 0.870694i −0.0442340 + 0.0321379i
\(735\) 0 0
\(736\) 3.00857 0.110897
\(737\) 18.1769 + 19.9719i 0.669553 + 0.735673i
\(738\) 5.28322i 0.194478i
\(739\) −10.4930 + 32.2942i −0.385992 + 1.18796i 0.549766 + 0.835318i \(0.314717\pi\)
−0.935758 + 0.352642i \(0.885283\pi\)
\(740\) 0 0
\(741\) 13.8704 + 10.0774i 0.509542 + 0.370204i
\(742\) −5.11635 + 1.66240i −0.187827 + 0.0610287i
\(743\) 43.8477 14.2470i 1.60862 0.522672i 0.639399 0.768875i \(-0.279183\pi\)
0.969218 + 0.246203i \(0.0791830\pi\)
\(744\) 1.72495 + 1.25325i 0.0632398 + 0.0459464i
\(745\) 0 0
\(746\) −1.20375 + 3.70475i −0.0440723 + 0.135641i
\(747\) 9.24906i 0.338406i
\(748\) −32.5394 + 14.6963i −1.18976 + 0.537349i
\(749\) −50.1963 −1.83413
\(750\) 0 0
\(751\) −33.8831 + 24.6175i −1.23641 + 0.898306i −0.997354 0.0726986i \(-0.976839\pi\)
−0.239059 + 0.971005i \(0.576839\pi\)
\(752\) 16.0440 22.0827i 0.585065 0.805273i
\(753\) −17.1879 + 5.58469i −0.626362 + 0.203517i
\(754\) 0.213300 + 0.656470i 0.00776793 + 0.0239072i
\(755\) 0 0
\(756\) −49.7834 + 36.1697i −1.81060 + 1.31548i
\(757\) 22.1385 + 7.19323i 0.804637 + 0.261442i 0.682325 0.731049i \(-0.260969\pi\)
0.122312 + 0.992492i \(0.460969\pi\)
\(758\) 2.60281i 0.0945384i
\(759\) 3.65708 17.6688i 0.132744 0.641337i
\(760\) 0 0
\(761\) 6.47737 19.9353i 0.234805 0.722654i −0.762343 0.647174i \(-0.775951\pi\)
0.997147 0.0754807i \(-0.0240491\pi\)
\(762\) −1.53631 2.11455i −0.0556547 0.0766021i
\(763\) −25.9151 + 35.6691i −0.938190 + 1.29131i
\(764\) 12.7116 + 39.1221i 0.459888 + 1.41539i
\(765\) 0 0
\(766\) −2.44303 1.77497i −0.0882703 0.0641321i
\(767\) 2.82236 + 3.88465i 0.101910 + 0.140266i
\(768\) 41.0842 + 13.3491i 1.48250 + 0.481693i
\(769\) −24.9924 −0.901249 −0.450624 0.892714i \(-0.648799\pi\)
−0.450624 + 0.892714i \(0.648799\pi\)
\(770\) 0 0
\(771\) −9.12960 −0.328795
\(772\) −16.0344 5.20989i −0.577090 0.187508i
\(773\) 12.8231 + 17.6495i 0.461215 + 0.634808i 0.974760 0.223254i \(-0.0716681\pi\)
−0.513545 + 0.858063i \(0.671668\pi\)
\(774\) −2.82557 2.05289i −0.101563 0.0737898i
\(775\) 0 0
\(776\) −1.59674 4.91425i −0.0573195 0.176411i
\(777\) −19.8022 + 27.2554i −0.710401 + 0.977783i
\(778\) −3.07112 4.22703i −0.110105 0.151546i
\(779\) 9.50871 29.2648i 0.340685 1.04852i
\(780\) 0 0
\(781\) −24.5254 13.9856i −0.877589 0.500445i
\(782\) 1.38058i 0.0493696i
\(783\) −34.2823 11.1390i −1.22515 0.398075i
\(784\) 18.0414 13.1079i 0.644337 0.468138i
\(785\) 0 0
\(786\) −2.37637 7.31371i −0.0847623 0.260871i
\(787\) 22.6190 7.34937i 0.806281 0.261977i 0.123259 0.992374i \(-0.460665\pi\)
0.683022 + 0.730398i \(0.260665\pi\)
\(788\) −3.02971 + 4.17003i −0.107929 + 0.148551i
\(789\) −43.8103 + 31.8300i −1.55969 + 1.13318i
\(790\) 0 0
\(791\) 12.7386 0.452933
\(792\) −5.39267 + 9.45668i −0.191620 + 0.336029i
\(793\) 17.3142i 0.614845i
\(794\) −0.788689 + 2.42733i −0.0279895 + 0.0861429i
\(795\) 0 0
\(796\) −14.0640 10.2181i −0.498485 0.362171i
\(797\) −33.9877 + 11.0433i −1.20391 + 0.391173i −0.841197 0.540729i \(-0.818149\pi\)
−0.362711 + 0.931902i \(0.618149\pi\)
\(798\) −6.78636 + 2.20502i −0.240234 + 0.0780569i
\(799\) 30.9052 + 22.4540i 1.09335 + 0.794364i
\(800\) 0 0
\(801\) −12.6201 + 38.8406i −0.445909 + 1.37237i
\(802\) 1.82447i 0.0644244i
\(803\) −3.11149 28.1561i −0.109802 0.993609i
\(804\) 48.1506 1.69814
\(805\) 0 0
\(806\) −0.173524 + 0.126073i −0.00611214 + 0.00444073i
\(807\) −30.6111 + 42.1325i −1.07756 + 1.48313i
\(808\) 1.38377 0.449614i 0.0486809 0.0158174i
\(809\) 12.8563 + 39.5676i 0.452003 + 1.39112i 0.874618 + 0.484812i \(0.161112\pi\)
−0.422616 + 0.906309i \(0.638888\pi\)
\(810\) 0 0
\(811\) −19.5592 + 14.2106i −0.686815 + 0.499001i −0.875612 0.483016i \(-0.839541\pi\)
0.188796 + 0.982016i \(0.439541\pi\)
\(812\) 27.8457 + 9.04761i 0.977192 + 0.317509i
\(813\) 21.0371i 0.737802i
\(814\) −0.296211 + 1.43111i −0.0103822 + 0.0501605i
\(815\) 0 0
\(816\) −19.4776 + 59.9458i −0.681851 + 2.09852i
\(817\) 11.9566 + 16.4568i 0.418308 + 0.575751i
\(818\) −1.74236 + 2.39815i −0.0609202 + 0.0838494i
\(819\) −7.80109 24.0093i −0.272592 0.838953i
\(820\) 0 0
\(821\) −27.5371 20.0069i −0.961051 0.698244i −0.00765641 0.999971i \(-0.502437\pi\)
−0.953395 + 0.301726i \(0.902437\pi\)
\(822\) 1.02182 + 1.40642i 0.0356401 + 0.0490544i
\(823\) 5.26935 + 1.71212i 0.183678 + 0.0596806i 0.399412 0.916772i \(-0.369214\pi\)
−0.215734 + 0.976452i \(0.569214\pi\)
\(824\) −3.66547 −0.127693
\(825\) 0 0
\(826\) −1.99845 −0.0695348
\(827\) 24.4148 + 7.93284i 0.848984 + 0.275852i 0.701021 0.713141i \(-0.252728\pi\)
0.147964 + 0.988993i \(0.452728\pi\)
\(828\) −12.5466 17.2690i −0.436026 0.600138i
\(829\) 33.7819 + 24.5440i 1.17329 + 0.852449i 0.991400 0.130869i \(-0.0417768\pi\)
0.181895 + 0.983318i \(0.441777\pi\)
\(830\) 0 0
\(831\) 17.0922 + 52.6043i 0.592921 + 1.82482i
\(832\) −5.29701 + 7.29071i −0.183641 + 0.252760i
\(833\) 18.3448 + 25.2494i 0.635609 + 0.874840i
\(834\) −0.351245 + 1.08102i −0.0121626 + 0.0374327i
\(835\) 0 0
\(836\) 23.3311 21.2342i 0.806923 0.734400i
\(837\) 11.2010i 0.387164i
\(838\) 4.98007 + 1.61812i 0.172034 + 0.0558971i
\(839\) 8.29817 6.02897i 0.286485 0.208143i −0.435256 0.900307i \(-0.643342\pi\)
0.721741 + 0.692163i \(0.243342\pi\)
\(840\) 0 0
\(841\) −3.66156 11.2691i −0.126261 0.388590i
\(842\) 1.21489 0.394743i 0.0418680 0.0136037i
\(843\) 36.8853 50.7682i 1.27040 1.74855i
\(844\) −17.3198 + 12.5836i −0.596172 + 0.433144i
\(845\) 0 0
\(846\) 5.79530 0.199246
\(847\) −29.4590 25.9605i −1.01222 0.892012i
\(848\) 41.9873i 1.44185i
\(849\) 1.49915 4.61390i 0.0514506 0.158349i
\(850\) 0 0
\(851\) −4.65938 3.38524i −0.159721 0.116044i
\(852\) −47.8760 + 15.5558i −1.64020 + 0.532935i
\(853\) −27.4331 + 8.91356i −0.939292 + 0.305195i −0.738357 0.674410i \(-0.764398\pi\)
−0.200935 + 0.979605i \(0.564398\pi\)
\(854\) −5.82986 4.23564i −0.199494 0.144941i
\(855\) 0 0
\(856\) −2.41131 + 7.42126i −0.0824170 + 0.253653i
\(857\) 20.7640i 0.709283i 0.935002 + 0.354642i \(0.115397\pi\)
−0.935002 + 0.354642i \(0.884603\pi\)
\(858\) −1.11096 1.22067i −0.0379275 0.0416729i
\(859\) −12.1297 −0.413859 −0.206929 0.978356i \(-0.566347\pi\)
−0.206929 + 0.978356i \(0.566347\pi\)
\(860\) 0 0
\(861\) −55.2461 + 40.1386i −1.88278 + 1.36792i
\(862\) 2.28916 3.15076i 0.0779692 0.107315i
\(863\) −35.5836 + 11.5618i −1.21128 + 0.393568i −0.843899 0.536503i \(-0.819745\pi\)
−0.367380 + 0.930071i \(0.619745\pi\)
\(864\) 4.44126 + 13.6688i 0.151095 + 0.465022i
\(865\) 0 0
\(866\) 2.29517 1.66754i 0.0779929 0.0566652i
\(867\) −35.6209 11.5739i −1.20975 0.393071i
\(868\) 9.09800i 0.308806i
\(869\) −0.537869 1.19091i −0.0182460 0.0403989i
\(870\) 0 0
\(871\) −3.00831 + 9.25864i −0.101933 + 0.313717i
\(872\) 4.02859 + 5.54487i 0.136425 + 0.187773i
\(873\) −32.3754 + 44.5609i −1.09574 + 1.50816i
\(874\) −0.376953 1.16014i −0.0127506 0.0392424i
\(875\) 0 0
\(876\) −40.8623 29.6882i −1.38061 1.00307i
\(877\) 30.7915 + 42.3808i 1.03975 + 1.43110i 0.897365 + 0.441289i \(0.145479\pi\)
0.142389 + 0.989811i \(0.454521\pi\)
\(878\) 0.778593 + 0.252980i 0.0262762 + 0.00853767i
\(879\) −37.6416 −1.26962
\(880\) 0 0
\(881\) 11.0403 0.371956 0.185978 0.982554i \(-0.440455\pi\)
0.185978 + 0.982554i \(0.440455\pi\)
\(882\) 4.50299 + 1.46311i 0.151624 + 0.0492655i
\(883\) 14.2179 + 19.5693i 0.478470 + 0.658558i 0.978210 0.207618i \(-0.0665710\pi\)
−0.499740 + 0.866176i \(0.666571\pi\)
\(884\) −10.4129 7.56545i −0.350225 0.254453i
\(885\) 0 0
\(886\) −1.55599 4.78883i −0.0522744 0.160884i
\(887\) 10.2457 14.1020i 0.344016 0.473497i −0.601593 0.798803i \(-0.705467\pi\)
0.945609 + 0.325305i \(0.105467\pi\)
\(888\) 3.07832 + 4.23694i 0.103302 + 0.142183i
\(889\) 6.92668 21.3181i 0.232313 0.714987i
\(890\) 0 0
\(891\) 27.1743 3.00299i 0.910374 0.100604i
\(892\) 15.9408i 0.533738i
\(893\) −32.1013 10.4303i −1.07423 0.349038i
\(894\) 5.97669 4.34232i 0.199891 0.145229i
\(895\) 0 0
\(896\) −4.80182 14.7785i −0.160418 0.493714i
\(897\) 6.18611 2.00999i 0.206548 0.0671116i
\(898\) −0.561461 + 0.772785i −0.0187362 + 0.0257882i
\(899\) −4.31162 + 3.13257i −0.143801 + 0.104477i
\(900\) 0 0
\(901\) 58.7622 1.95765
\(902\) −1.46743 + 2.57332i −0.0488602 + 0.0856821i
\(903\) 45.1433i 1.50228i
\(904\) 0.611934 1.88334i 0.0203526 0.0626389i
\(905\) 0 0
\(906\) −0.489551 0.355680i −0.0162643 0.0118167i
\(907\) 12.3385 4.00901i 0.409692 0.133117i −0.0969182 0.995292i \(-0.530899\pi\)
0.506610 + 0.862176i \(0.330899\pi\)
\(908\) 39.0279 12.6809i 1.29519 0.420832i
\(909\) −12.5476 9.11637i −0.416178 0.302371i
\(910\) 0 0
\(911\) −6.28687 + 19.3490i −0.208293 + 0.641061i 0.791269 + 0.611468i \(0.209421\pi\)
−0.999562 + 0.0295922i \(0.990579\pi\)
\(912\) 55.6922i 1.84415i
\(913\) −2.56896 + 4.50498i −0.0850202 + 0.149093i
\(914\) −2.97102 −0.0982725
\(915\) 0 0
\(916\) 12.8384 9.32761i 0.424191 0.308193i
\(917\) 38.7643 53.3545i 1.28011 1.76192i
\(918\) −6.27238 + 2.03802i −0.207019 + 0.0672647i
\(919\) −2.73013 8.40248i −0.0900587 0.277172i 0.895876 0.444305i \(-0.146549\pi\)
−0.985934 + 0.167133i \(0.946549\pi\)
\(920\) 0 0
\(921\) 54.6054 39.6732i 1.79931 1.30728i
\(922\) −3.84650 1.24980i −0.126678 0.0411601i
\(923\) 10.1777i 0.335004i
\(924\) −69.5875 + 7.69000i −2.28926 + 0.252982i
\(925\) 0 0
\(926\) 0.768475 2.36512i 0.0252537 0.0777228i
\(927\) 22.9664 + 31.6106i 0.754317 + 1.03823i
\(928\) 4.01945 5.53230i 0.131945 0.181607i
\(929\) −4.77831 14.7061i −0.156771 0.482492i 0.841565 0.540156i \(-0.181635\pi\)
−0.998336 + 0.0576639i \(0.981635\pi\)
\(930\) 0 0
\(931\) −22.3097 16.2089i −0.731170 0.531226i
\(932\) −29.6384 40.7938i −0.970839 1.33625i
\(933\) −52.9698 17.2109i −1.73415 0.563461i
\(934\) −0.557931 −0.0182561
\(935\) 0 0
\(936\) −3.92439 −0.128273
\(937\) 39.6078 + 12.8694i 1.29393 + 0.420424i 0.873466 0.486885i \(-0.161867\pi\)
0.420465 + 0.907309i \(0.361867\pi\)
\(938\) −2.38154 3.27791i −0.0777601 0.107028i
\(939\) 42.2349 + 30.6855i 1.37828 + 1.00138i
\(940\) 0 0
\(941\) 14.6364 + 45.0462i 0.477133 + 1.46847i 0.843059 + 0.537821i \(0.180753\pi\)
−0.365925 + 0.930644i \(0.619247\pi\)
\(942\) 0.821303 1.13043i 0.0267595 0.0368313i
\(943\) −6.86179 9.44445i −0.223451 0.307553i
\(944\) 4.81991 14.8341i 0.156875 0.482810i
\(945\) 0 0
\(946\) −0.806061 1.78472i −0.0262073 0.0580263i
\(947\) 41.5599i 1.35052i 0.737581 + 0.675258i \(0.235968\pi\)
−0.737581 + 0.675258i \(0.764032\pi\)
\(948\) −2.21591 0.719993i −0.0719695 0.0233843i
\(949\) 8.26156 6.00238i 0.268182 0.194845i
\(950\) 0 0
\(951\) −10.3198 31.7611i −0.334642 1.02992i
\(952\) 10.2394 3.32699i 0.331862 0.107829i
\(953\) −16.5498 + 22.7788i −0.536099 + 0.737877i −0.988045 0.154169i \(-0.950730\pi\)
0.451946 + 0.892046i \(0.350730\pi\)
\(954\) 7.21202 5.23984i 0.233498 0.169646i
\(955\) 0 0
\(956\) −1.08349 −0.0350425
\(957\) −27.6044 30.3303i −0.892322 0.980440i
\(958\) 0.167824i 0.00542215i
\(959\) −4.60702 + 14.1790i −0.148769 + 0.457862i
\(960\) 0 0
\(961\) 23.7397 + 17.2479i 0.765798 + 0.556385i
\(962\) −0.501055 + 0.162802i −0.0161546 + 0.00524896i
\(963\) 79.1085 25.7039i 2.54924 0.828297i
\(964\) −35.1868 25.5647i −1.13329 0.823384i
\(965\) 0 0
\(966\) −0.836551 + 2.57464i −0.0269156 + 0.0828377i
\(967\) 53.8069i 1.73031i −0.501502 0.865157i \(-0.667219\pi\)
0.501502 0.865157i \(-0.332781\pi\)
\(968\) −5.25326 + 3.10827i −0.168846 + 0.0999036i
\(969\) 77.9425 2.50387
\(970\) 0 0
\(971\) 9.60235 6.97651i 0.308154 0.223887i −0.422950 0.906153i \(-0.639005\pi\)
0.731104 + 0.682266i \(0.239005\pi\)
\(972\) −1.74527 + 2.40216i −0.0559797 + 0.0770494i
\(973\) −9.27077 + 3.01226i −0.297207 + 0.0965685i
\(974\) −1.82053 5.60302i −0.0583336 0.179532i
\(975\) 0 0
\(976\) 45.5011 33.0585i 1.45646 1.05818i
\(977\) −32.9916 10.7196i −1.05550 0.342951i −0.270673 0.962671i \(-0.587246\pi\)
−0.784823 + 0.619720i \(0.787246\pi\)
\(978\) 2.83442i 0.0906346i
\(979\) −16.9350 + 15.4130i −0.541246 + 0.492601i
\(980\) 0 0
\(981\) 22.5768 69.4842i 0.720821 2.21846i
\(982\) −1.49805 2.06189i −0.0478047 0.0657975i
\(983\) 33.4617 46.0561i 1.06726 1.46896i 0.194446 0.980913i \(-0.437709\pi\)
0.872817 0.488048i \(-0.162291\pi\)
\(984\) 3.28039 + 10.0960i 0.104575 + 0.321849i
\(985\) 0 0
\(986\) 2.53868 + 1.84446i 0.0808482 + 0.0587396i
\(987\) 44.0291 + 60.6009i 1.40146 + 1.92895i
\(988\) 10.8159 + 3.51431i 0.344101 + 0.111805i
\(989\) 7.71735 0.245397
\(990\) 0 0
\(991\) 36.4470 1.15778 0.578889 0.815407i \(-0.303487\pi\)
0.578889 + 0.815407i \(0.303487\pi\)
\(992\) 2.02092 + 0.656637i 0.0641643 + 0.0208482i
\(993\) 45.2131 + 62.2305i 1.43479 + 1.97482i
\(994\) 3.42694 + 2.48982i 0.108696 + 0.0789722i
\(995\) 0 0
\(996\) 2.85739 + 8.79415i 0.0905399 + 0.278653i
\(997\) 14.1584 19.4874i 0.448402 0.617173i −0.523651 0.851933i \(-0.675430\pi\)
0.972053 + 0.234760i \(0.0754304\pi\)
\(998\) 1.85875 + 2.55835i 0.0588378 + 0.0809833i
\(999\) 8.50189 26.1661i 0.268988 0.827860i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.c.174.5 32
5.2 odd 4 275.2.h.c.251.3 yes 16
5.3 odd 4 275.2.h.e.251.2 yes 16
5.4 even 2 inner 275.2.z.c.174.4 32
11.5 even 5 inner 275.2.z.c.49.4 32
55.7 even 20 3025.2.a.bm.1.4 8
55.18 even 20 3025.2.a.bj.1.5 8
55.27 odd 20 275.2.h.c.126.3 16
55.37 odd 20 3025.2.a.bi.1.5 8
55.38 odd 20 275.2.h.e.126.2 yes 16
55.48 odd 20 3025.2.a.bn.1.4 8
55.49 even 10 inner 275.2.z.c.49.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.126.3 16 55.27 odd 20
275.2.h.c.251.3 yes 16 5.2 odd 4
275.2.h.e.126.2 yes 16 55.38 odd 20
275.2.h.e.251.2 yes 16 5.3 odd 4
275.2.z.c.49.4 32 11.5 even 5 inner
275.2.z.c.49.5 32 55.49 even 10 inner
275.2.z.c.174.4 32 5.4 even 2 inner
275.2.z.c.174.5 32 1.1 even 1 trivial
3025.2.a.bi.1.5 8 55.37 odd 20
3025.2.a.bj.1.5 8 55.18 even 20
3025.2.a.bm.1.4 8 55.7 even 20
3025.2.a.bn.1.4 8 55.48 odd 20