Properties

Label 275.2.h.c.251.3
Level $275$
Weight $2$
Character 275.251
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(26,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 251.3
Root \(-0.265939 - 0.818476i\) of defining polynomial
Character \(\chi\) \(=\) 275.251
Dual form 275.2.h.c.126.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0430779 + 0.132580i) q^{2} +(-2.41558 + 1.75502i) q^{3} +(1.60231 + 1.16415i) q^{4} +(-0.128623 - 0.395861i) q^{6} +(2.88786 + 2.09815i) q^{7} +(-0.448926 + 0.326164i) q^{8} +(1.82787 - 5.62561i) q^{9} +(-2.45284 + 2.23239i) q^{11} -5.91361 q^{12} +(-0.369466 + 1.13710i) q^{13} +(-0.402576 + 0.292489i) q^{14} +(1.20015 + 3.69369i) q^{16} +(-1.67964 - 5.16941i) q^{17} +(0.667104 + 0.484679i) q^{18} +(-3.88538 + 2.82290i) q^{19} -10.6581 q^{21} +(-0.190307 - 0.421365i) q^{22} -1.82203 q^{23} +(0.511992 - 1.57575i) q^{24} +(-0.134841 - 0.0979678i) q^{26} +(2.68969 + 8.27800i) q^{27} +(2.18469 + 6.72378i) q^{28} +(3.35044 + 2.43424i) q^{29} +(0.397668 - 1.22390i) q^{31} -1.65122 q^{32} +(2.00714 - 9.69730i) q^{33} +0.757717 q^{34} +(9.47786 - 6.88607i) q^{36} +(2.55724 + 1.85794i) q^{37} +(-0.206886 - 0.636730i) q^{38} +(-1.10316 - 3.39517i) q^{39} +(5.18347 - 3.76601i) q^{41} +(0.459131 - 1.41306i) q^{42} +4.23557 q^{43} +(-6.52905 + 0.721514i) q^{44} +(0.0784894 - 0.241566i) q^{46} +(5.68588 - 4.13103i) q^{47} +(-9.38157 - 6.81611i) q^{48} +(1.77436 + 5.46092i) q^{49} +(13.1297 + 9.53930i) q^{51} +(-1.91575 + 1.39187i) q^{52} +(-3.34076 + 10.2818i) q^{53} -1.21337 q^{54} -1.98078 q^{56} +(4.43121 - 13.6379i) q^{57} +(-0.467062 + 0.339340i) q^{58} +(3.24907 + 2.36059i) q^{59} +(-4.47500 - 13.7726i) q^{61} +(0.145134 + 0.105446i) q^{62} +(17.0820 - 12.4108i) q^{63} +(-2.32918 + 7.16847i) q^{64} +(1.19921 + 0.683847i) q^{66} +8.14233 q^{67} +(3.32664 - 10.2384i) q^{68} +(4.40126 - 3.19770i) q^{69} +(2.63051 + 8.09589i) q^{71} +(1.01429 + 3.12167i) q^{72} +(6.90988 + 5.02032i) q^{73} +(-0.356488 + 0.259003i) q^{74} -9.51187 q^{76} +(-11.7673 + 1.30039i) q^{77} +0.497655 q^{78} +(0.121752 - 0.374714i) q^{79} +(-6.66892 - 4.84526i) q^{81} +(0.276005 + 0.849457i) q^{82} +(-0.483189 - 1.48710i) q^{83} +(-17.0777 - 12.4077i) q^{84} +(-0.182460 + 0.561553i) q^{86} -12.3654 q^{87} +(0.373020 - 1.80221i) q^{88} -6.90425 q^{89} +(-3.45277 + 2.50858i) q^{91} +(-2.91946 - 2.12112i) q^{92} +(1.18737 + 3.65434i) q^{93} +(0.302757 + 0.931792i) q^{94} +(3.98865 - 2.89792i) q^{96} +(-2.87750 + 8.85604i) q^{97} -0.800446 q^{98} +(8.07507 + 17.8793i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{3} - 2 q^{4} - 3 q^{6} + 4 q^{7} + 16 q^{8} + 8 q^{9} - 5 q^{11} - 6 q^{12} + 7 q^{13} + 3 q^{14} - 4 q^{16} + 12 q^{17} + 16 q^{18} - 13 q^{19} + 10 q^{21} + 28 q^{22} - 4 q^{23} - 43 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0430779 + 0.132580i −0.0304607 + 0.0937484i −0.965131 0.261767i \(-0.915695\pi\)
0.934670 + 0.355516i \(0.115695\pi\)
\(3\) −2.41558 + 1.75502i −1.39463 + 1.01326i −0.399296 + 0.916822i \(0.630745\pi\)
−0.995339 + 0.0964394i \(0.969255\pi\)
\(4\) 1.60231 + 1.16415i 0.801156 + 0.582074i
\(5\) 0 0
\(6\) −0.128623 0.395861i −0.0525101 0.161609i
\(7\) 2.88786 + 2.09815i 1.09151 + 0.793026i 0.979653 0.200698i \(-0.0643211\pi\)
0.111854 + 0.993725i \(0.464321\pi\)
\(8\) −0.448926 + 0.326164i −0.158719 + 0.115316i
\(9\) 1.82787 5.62561i 0.609290 1.87520i
\(10\) 0 0
\(11\) −2.45284 + 2.23239i −0.739560 + 0.673091i
\(12\) −5.91361 −1.70711
\(13\) −0.369466 + 1.13710i −0.102471 + 0.315375i −0.989129 0.147053i \(-0.953021\pi\)
0.886657 + 0.462427i \(0.153021\pi\)
\(14\) −0.402576 + 0.292489i −0.107593 + 0.0781709i
\(15\) 0 0
\(16\) 1.20015 + 3.69369i 0.300038 + 0.923423i
\(17\) −1.67964 5.16941i −0.407373 1.25377i −0.918897 0.394496i \(-0.870919\pi\)
0.511524 0.859269i \(-0.329081\pi\)
\(18\) 0.667104 + 0.484679i 0.157238 + 0.114240i
\(19\) −3.88538 + 2.82290i −0.891368 + 0.647617i −0.936234 0.351376i \(-0.885714\pi\)
0.0448661 + 0.998993i \(0.485714\pi\)
\(20\) 0 0
\(21\) −10.6581 −2.32580
\(22\) −0.190307 0.421365i −0.0405737 0.0898354i
\(23\) −1.82203 −0.379920 −0.189960 0.981792i \(-0.560836\pi\)
−0.189960 + 0.981792i \(0.560836\pi\)
\(24\) 0.511992 1.57575i 0.104510 0.321649i
\(25\) 0 0
\(26\) −0.134841 0.0979678i −0.0264445 0.0192131i
\(27\) 2.68969 + 8.27800i 0.517630 + 1.59310i
\(28\) 2.18469 + 6.72378i 0.412868 + 1.27068i
\(29\) 3.35044 + 2.43424i 0.622161 + 0.452026i 0.853676 0.520805i \(-0.174368\pi\)
−0.231515 + 0.972831i \(0.574368\pi\)
\(30\) 0 0
\(31\) 0.397668 1.22390i 0.0714233 0.219818i −0.908973 0.416856i \(-0.863132\pi\)
0.980396 + 0.197037i \(0.0631320\pi\)
\(32\) −1.65122 −0.291897
\(33\) 2.00714 9.69730i 0.349399 1.68808i
\(34\) 0.757717 0.129947
\(35\) 0 0
\(36\) 9.47786 6.88607i 1.57964 1.14768i
\(37\) 2.55724 + 1.85794i 0.420408 + 0.305444i 0.777802 0.628509i \(-0.216335\pi\)
−0.357394 + 0.933954i \(0.616335\pi\)
\(38\) −0.206886 0.636730i −0.0335614 0.103291i
\(39\) −1.10316 3.39517i −0.176647 0.543663i
\(40\) 0 0
\(41\) 5.18347 3.76601i 0.809522 0.588152i −0.104170 0.994559i \(-0.533219\pi\)
0.913692 + 0.406408i \(0.133219\pi\)
\(42\) 0.459131 1.41306i 0.0708454 0.218040i
\(43\) 4.23557 0.645919 0.322959 0.946413i \(-0.395322\pi\)
0.322959 + 0.946413i \(0.395322\pi\)
\(44\) −6.52905 + 0.721514i −0.984291 + 0.108772i
\(45\) 0 0
\(46\) 0.0784894 0.241566i 0.0115726 0.0356169i
\(47\) 5.68588 4.13103i 0.829371 0.602573i −0.0900107 0.995941i \(-0.528690\pi\)
0.919381 + 0.393368i \(0.128690\pi\)
\(48\) −9.38157 6.81611i −1.35411 0.983821i
\(49\) 1.77436 + 5.46092i 0.253480 + 0.780131i
\(50\) 0 0
\(51\) 13.1297 + 9.53930i 1.83853 + 1.33577i
\(52\) −1.91575 + 1.39187i −0.265667 + 0.193018i
\(53\) −3.34076 + 10.2818i −0.458889 + 1.41232i 0.407618 + 0.913152i \(0.366359\pi\)
−0.866508 + 0.499164i \(0.833641\pi\)
\(54\) −1.21337 −0.165118
\(55\) 0 0
\(56\) −1.98078 −0.264692
\(57\) 4.43121 13.6379i 0.586928 1.80638i
\(58\) −0.467062 + 0.339340i −0.0613282 + 0.0445575i
\(59\) 3.24907 + 2.36059i 0.422993 + 0.307323i 0.778841 0.627221i \(-0.215808\pi\)
−0.355848 + 0.934544i \(0.615808\pi\)
\(60\) 0 0
\(61\) −4.47500 13.7726i −0.572964 1.76340i −0.643008 0.765859i \(-0.722314\pi\)
0.0700436 0.997544i \(-0.477686\pi\)
\(62\) 0.145134 + 0.105446i 0.0184320 + 0.0133916i
\(63\) 17.0820 12.4108i 2.15213 1.56361i
\(64\) −2.32918 + 7.16847i −0.291147 + 0.896058i
\(65\) 0 0
\(66\) 1.19921 + 0.683847i 0.147612 + 0.0841758i
\(67\) 8.14233 0.994744 0.497372 0.867537i \(-0.334298\pi\)
0.497372 + 0.867537i \(0.334298\pi\)
\(68\) 3.32664 10.2384i 0.403415 1.24158i
\(69\) 4.40126 3.19770i 0.529850 0.384958i
\(70\) 0 0
\(71\) 2.63051 + 8.09589i 0.312185 + 0.960806i 0.976898 + 0.213707i \(0.0685538\pi\)
−0.664713 + 0.747099i \(0.731446\pi\)
\(72\) 1.01429 + 3.12167i 0.119535 + 0.367892i
\(73\) 6.90988 + 5.02032i 0.808740 + 0.587584i 0.913465 0.406917i \(-0.133396\pi\)
−0.104725 + 0.994501i \(0.533396\pi\)
\(74\) −0.356488 + 0.259003i −0.0414408 + 0.0301085i
\(75\) 0 0
\(76\) −9.51187 −1.09109
\(77\) −11.7673 + 1.30039i −1.34101 + 0.148193i
\(78\) 0.497655 0.0563483
\(79\) 0.121752 0.374714i 0.0136982 0.0421586i −0.943974 0.330020i \(-0.892944\pi\)
0.957672 + 0.287862i \(0.0929444\pi\)
\(80\) 0 0
\(81\) −6.66892 4.84526i −0.740992 0.538362i
\(82\) 0.276005 + 0.849457i 0.0304797 + 0.0938069i
\(83\) −0.483189 1.48710i −0.0530369 0.163231i 0.921030 0.389492i \(-0.127350\pi\)
−0.974067 + 0.226262i \(0.927350\pi\)
\(84\) −17.0777 12.4077i −1.86333 1.35379i
\(85\) 0 0
\(86\) −0.182460 + 0.561553i −0.0196751 + 0.0605538i
\(87\) −12.3654 −1.32571
\(88\) 0.373020 1.80221i 0.0397641 0.192116i
\(89\) −6.90425 −0.731849 −0.365925 0.930645i \(-0.619247\pi\)
−0.365925 + 0.930645i \(0.619247\pi\)
\(90\) 0 0
\(91\) −3.45277 + 2.50858i −0.361949 + 0.262971i
\(92\) −2.91946 2.12112i −0.304375 0.221142i
\(93\) 1.18737 + 3.65434i 0.123124 + 0.378937i
\(94\) 0.302757 + 0.931792i 0.0312270 + 0.0961070i
\(95\) 0 0
\(96\) 3.98865 2.89792i 0.407089 0.295768i
\(97\) −2.87750 + 8.85604i −0.292166 + 0.899195i 0.691993 + 0.721905i \(0.256733\pi\)
−0.984159 + 0.177290i \(0.943267\pi\)
\(98\) −0.800446 −0.0808572
\(99\) 8.07507 + 17.8793i 0.811575 + 1.79693i
\(100\) 0 0
\(101\) −0.810256 + 2.49371i −0.0806235 + 0.248134i −0.983241 0.182309i \(-0.941643\pi\)
0.902618 + 0.430443i \(0.141643\pi\)
\(102\) −1.83032 + 1.32981i −0.181229 + 0.131671i
\(103\) −5.34404 3.88267i −0.526564 0.382571i 0.292507 0.956263i \(-0.405510\pi\)
−0.819071 + 0.573692i \(0.805510\pi\)
\(104\) −0.205018 0.630980i −0.0201037 0.0618727i
\(105\) 0 0
\(106\) −1.21925 0.885839i −0.118424 0.0860403i
\(107\) 11.3766 8.26556i 1.09981 0.799062i 0.118785 0.992920i \(-0.462100\pi\)
0.981030 + 0.193858i \(0.0621001\pi\)
\(108\) −5.32710 + 16.3951i −0.512601 + 1.57762i
\(109\) 12.3514 1.18305 0.591525 0.806286i \(-0.298526\pi\)
0.591525 + 0.806286i \(0.298526\pi\)
\(110\) 0 0
\(111\) −9.43795 −0.895810
\(112\) −4.28405 + 13.1850i −0.404805 + 1.24586i
\(113\) 2.88710 2.09760i 0.271596 0.197326i −0.443648 0.896201i \(-0.646316\pi\)
0.715243 + 0.698875i \(0.246316\pi\)
\(114\) 1.61722 + 1.17498i 0.151467 + 0.110047i
\(115\) 0 0
\(116\) 2.53464 + 7.80081i 0.235335 + 0.724287i
\(117\) 5.72154 + 4.15694i 0.528956 + 0.384309i
\(118\) −0.452931 + 0.329074i −0.0416957 + 0.0302937i
\(119\) 5.99563 18.4526i 0.549618 1.69155i
\(120\) 0 0
\(121\) 1.03287 10.9514i 0.0938974 0.995582i
\(122\) 2.01875 0.182769
\(123\) −5.91165 + 18.1942i −0.533035 + 1.64051i
\(124\) 2.06199 1.49812i 0.185172 0.134535i
\(125\) 0 0
\(126\) 0.909570 + 2.79937i 0.0810309 + 0.249388i
\(127\) 1.94047 + 5.97215i 0.172189 + 0.529943i 0.999494 0.0318100i \(-0.0101271\pi\)
−0.827305 + 0.561753i \(0.810127\pi\)
\(128\) −3.52179 2.55873i −0.311285 0.226162i
\(129\) −10.2314 + 7.43352i −0.900821 + 0.654485i
\(130\) 0 0
\(131\) 18.4755 1.61421 0.807105 0.590408i \(-0.201033\pi\)
0.807105 + 0.590408i \(0.201033\pi\)
\(132\) 14.5052 13.2015i 1.26251 1.14904i
\(133\) −17.1433 −1.48651
\(134\) −0.350755 + 1.07951i −0.0303006 + 0.0932557i
\(135\) 0 0
\(136\) 2.44011 + 1.77284i 0.209238 + 0.152020i
\(137\) −1.29063 3.97216i −0.110266 0.339364i 0.880664 0.473741i \(-0.157097\pi\)
−0.990930 + 0.134377i \(0.957097\pi\)
\(138\) 0.234355 + 0.721271i 0.0199496 + 0.0613987i
\(139\) 2.20927 + 1.60513i 0.187388 + 0.136145i 0.677524 0.735501i \(-0.263053\pi\)
−0.490136 + 0.871646i \(0.663053\pi\)
\(140\) 0 0
\(141\) −6.48464 + 19.9577i −0.546105 + 1.68074i
\(142\) −1.18667 −0.0995834
\(143\) −1.63221 3.61392i −0.136492 0.302211i
\(144\) 22.9730 1.91442
\(145\) 0 0
\(146\) −0.963258 + 0.699848i −0.0797198 + 0.0579199i
\(147\) −13.8701 10.0772i −1.14399 0.831156i
\(148\) 1.93458 + 5.95401i 0.159021 + 0.489417i
\(149\) −5.48466 16.8800i −0.449321 1.38287i −0.877675 0.479256i \(-0.840906\pi\)
0.428354 0.903611i \(-0.359094\pi\)
\(150\) 0 0
\(151\) 1.17615 0.854522i 0.0957136 0.0695400i −0.538899 0.842370i \(-0.681160\pi\)
0.634613 + 0.772830i \(0.281160\pi\)
\(152\) 0.823524 2.53455i 0.0667966 0.205579i
\(153\) −32.1512 −2.59927
\(154\) 0.334507 1.61614i 0.0269554 0.130232i
\(155\) 0 0
\(156\) 2.18488 6.72437i 0.174930 0.538380i
\(157\) −2.71585 + 1.97318i −0.216749 + 0.157477i −0.690862 0.722987i \(-0.742769\pi\)
0.474113 + 0.880464i \(0.342769\pi\)
\(158\) 0.0444348 + 0.0322838i 0.00353504 + 0.00256836i
\(159\) −9.97492 30.6996i −0.791062 2.43464i
\(160\) 0 0
\(161\) −5.26177 3.82290i −0.414685 0.301287i
\(162\) 0.929669 0.675444i 0.0730417 0.0530679i
\(163\) 2.10431 6.47640i 0.164822 0.507271i −0.834201 0.551461i \(-0.814071\pi\)
0.999023 + 0.0441897i \(0.0140706\pi\)
\(164\) 12.6897 0.990901
\(165\) 0 0
\(166\) 0.217975 0.0169182
\(167\) −6.06962 + 18.6804i −0.469681 + 1.44553i 0.383318 + 0.923616i \(0.374781\pi\)
−0.852999 + 0.521913i \(0.825219\pi\)
\(168\) 4.78472 3.47630i 0.369149 0.268203i
\(169\) 9.36073 + 6.80097i 0.720056 + 0.523152i
\(170\) 0 0
\(171\) 8.77853 + 27.0175i 0.671311 + 2.06608i
\(172\) 6.78671 + 4.93083i 0.517482 + 0.375972i
\(173\) −0.189438 + 0.137634i −0.0144027 + 0.0104642i −0.594963 0.803753i \(-0.702833\pi\)
0.580561 + 0.814217i \(0.302833\pi\)
\(174\) 0.532675 1.63941i 0.0403820 0.124283i
\(175\) 0 0
\(176\) −11.1895 6.38084i −0.843444 0.480974i
\(177\) −11.9913 −0.901319
\(178\) 0.297421 0.915367i 0.0222926 0.0686097i
\(179\) −13.7416 + 9.98383i −1.02709 + 0.746227i −0.967725 0.252010i \(-0.918909\pi\)
−0.0593679 + 0.998236i \(0.518909\pi\)
\(180\) 0 0
\(181\) −5.36003 16.4965i −0.398408 1.22617i −0.926275 0.376847i \(-0.877008\pi\)
0.527867 0.849327i \(-0.322992\pi\)
\(182\) −0.183851 0.565834i −0.0136279 0.0419424i
\(183\) 34.9809 + 25.4151i 2.58586 + 1.87874i
\(184\) 0.817958 0.594282i 0.0603007 0.0438110i
\(185\) 0 0
\(186\) −0.535642 −0.0392752
\(187\) 15.6600 + 8.93012i 1.14517 + 0.653035i
\(188\) 13.9197 1.01520
\(189\) −9.60107 + 29.5490i −0.698375 + 2.14938i
\(190\) 0 0
\(191\) −16.8029 12.2080i −1.21582 0.883342i −0.220070 0.975484i \(-0.570629\pi\)
−0.995746 + 0.0921420i \(0.970629\pi\)
\(192\) −6.95450 21.4037i −0.501898 1.54468i
\(193\) −2.63050 8.09586i −0.189348 0.582752i 0.810648 0.585533i \(-0.199115\pi\)
−0.999996 + 0.00278083i \(0.999115\pi\)
\(194\) −1.05018 0.763000i −0.0753985 0.0547802i
\(195\) 0 0
\(196\) −3.51424 + 10.8157i −0.251017 + 0.772551i
\(197\) 2.60251 0.185421 0.0927106 0.995693i \(-0.470447\pi\)
0.0927106 + 0.995693i \(0.470447\pi\)
\(198\) −2.71829 + 0.300394i −0.193181 + 0.0213481i
\(199\) −8.77731 −0.622207 −0.311104 0.950376i \(-0.600699\pi\)
−0.311104 + 0.950376i \(0.600699\pi\)
\(200\) 0 0
\(201\) −19.6684 + 14.2900i −1.38730 + 1.00794i
\(202\) −0.295713 0.214848i −0.0208063 0.0151167i
\(203\) 4.56819 + 14.0594i 0.320624 + 0.986780i
\(204\) 9.93275 + 30.5699i 0.695432 + 2.14032i
\(205\) 0 0
\(206\) 0.744976 0.541256i 0.0519049 0.0377111i
\(207\) −3.33044 + 10.2500i −0.231482 + 0.712427i
\(208\) −4.64351 −0.321970
\(209\) 3.22843 15.5978i 0.223315 1.07892i
\(210\) 0 0
\(211\) 3.34024 10.2802i 0.229952 0.707718i −0.767799 0.640690i \(-0.778648\pi\)
0.997751 0.0670281i \(-0.0213517\pi\)
\(212\) −17.3225 + 12.5855i −1.18971 + 0.864378i
\(213\) −20.5627 14.9397i −1.40893 1.02365i
\(214\) 0.605771 + 1.86437i 0.0414097 + 0.127446i
\(215\) 0 0
\(216\) −3.90746 2.83893i −0.265869 0.193165i
\(217\) 3.71633 2.70007i 0.252281 0.183293i
\(218\) −0.532073 + 1.63755i −0.0360366 + 0.110909i
\(219\) −25.5021 −1.72327
\(220\) 0 0
\(221\) 6.49870 0.437150
\(222\) 0.406567 1.25129i 0.0272870 0.0839808i
\(223\) 6.51146 4.73085i 0.436040 0.316801i −0.348020 0.937487i \(-0.613146\pi\)
0.784059 + 0.620686i \(0.213146\pi\)
\(224\) −4.76848 3.46450i −0.318607 0.231482i
\(225\) 0 0
\(226\) 0.153730 + 0.473133i 0.0102260 + 0.0314724i
\(227\) −16.7624 12.1786i −1.11256 0.808323i −0.129496 0.991580i \(-0.541336\pi\)
−0.983065 + 0.183257i \(0.941336\pi\)
\(228\) 22.9767 16.6935i 1.52167 1.10556i
\(229\) 2.47597 7.62024i 0.163616 0.503560i −0.835315 0.549771i \(-0.814715\pi\)
0.998932 + 0.0462117i \(0.0147149\pi\)
\(230\) 0 0
\(231\) 26.1427 23.7931i 1.72007 1.56547i
\(232\) −2.29806 −0.150875
\(233\) 7.86737 24.2133i 0.515408 1.58626i −0.267129 0.963661i \(-0.586075\pi\)
0.782538 0.622603i \(-0.213925\pi\)
\(234\) −0.797601 + 0.579491i −0.0521408 + 0.0378825i
\(235\) 0 0
\(236\) 2.45795 + 7.56480i 0.159999 + 0.492427i
\(237\) 0.363529 + 1.11883i 0.0236137 + 0.0726756i
\(238\) 2.18818 + 1.58980i 0.141838 + 0.103052i
\(239\) −0.442580 + 0.321553i −0.0286281 + 0.0207995i −0.602007 0.798491i \(-0.705632\pi\)
0.573379 + 0.819290i \(0.305632\pi\)
\(240\) 0 0
\(241\) 21.9600 1.41457 0.707285 0.706929i \(-0.249920\pi\)
0.707285 + 0.706929i \(0.249920\pi\)
\(242\) 1.40745 + 0.608702i 0.0904740 + 0.0391289i
\(243\) −1.49919 −0.0961728
\(244\) 8.86303 27.2776i 0.567397 1.74627i
\(245\) 0 0
\(246\) −2.15753 1.56754i −0.137559 0.0999424i
\(247\) −1.77440 5.46103i −0.112902 0.347477i
\(248\) 0.220668 + 0.679145i 0.0140124 + 0.0431257i
\(249\) 3.77708 + 2.74421i 0.239362 + 0.173907i
\(250\) 0 0
\(251\) 1.87041 5.75652i 0.118059 0.363348i −0.874514 0.485001i \(-0.838819\pi\)
0.992573 + 0.121653i \(0.0388194\pi\)
\(252\) 41.8187 2.63433
\(253\) 4.46916 4.06749i 0.280974 0.255721i
\(254\) −0.875381 −0.0549263
\(255\) 0 0
\(256\) −11.7048 + 8.50402i −0.731548 + 0.531501i
\(257\) 2.47369 + 1.79724i 0.154305 + 0.112109i 0.662259 0.749275i \(-0.269598\pi\)
−0.507954 + 0.861384i \(0.669598\pi\)
\(258\) −0.544792 1.67670i −0.0339172 0.104387i
\(259\) 3.48670 + 10.7310i 0.216653 + 0.666789i
\(260\) 0 0
\(261\) 19.8182 14.3988i 1.22672 0.891263i
\(262\) −0.795885 + 2.44948i −0.0491699 + 0.151330i
\(263\) −18.1365 −1.11835 −0.559174 0.829050i \(-0.688882\pi\)
−0.559174 + 0.829050i \(0.688882\pi\)
\(264\) 2.26185 + 5.00803i 0.139207 + 0.308223i
\(265\) 0 0
\(266\) 0.738498 2.27286i 0.0452802 0.139358i
\(267\) 16.6778 12.1171i 1.02066 0.741555i
\(268\) 13.0466 + 9.47888i 0.796945 + 0.579015i
\(269\) 5.38987 + 16.5883i 0.328626 + 1.01141i 0.969777 + 0.243993i \(0.0784574\pi\)
−0.641151 + 0.767415i \(0.721543\pi\)
\(270\) 0 0
\(271\) 5.70006 + 4.14134i 0.346254 + 0.251568i 0.747296 0.664492i \(-0.231352\pi\)
−0.401042 + 0.916060i \(0.631352\pi\)
\(272\) 17.0784 12.4082i 1.03553 0.752355i
\(273\) 3.93782 12.1194i 0.238328 0.733497i
\(274\) 0.582227 0.0351736
\(275\) 0 0
\(276\) 10.7748 0.648567
\(277\) 5.72446 17.6181i 0.343949 1.05857i −0.618195 0.786025i \(-0.712136\pi\)
0.962144 0.272542i \(-0.0878643\pi\)
\(278\) −0.307979 + 0.223760i −0.0184714 + 0.0134202i
\(279\) −6.15828 4.47425i −0.368687 0.267866i
\(280\) 0 0
\(281\) 6.49461 + 19.9884i 0.387436 + 1.19241i 0.934698 + 0.355444i \(0.115670\pi\)
−0.547262 + 0.836962i \(0.684330\pi\)
\(282\) −2.36665 1.71947i −0.140932 0.102393i
\(283\) 1.31449 0.955030i 0.0781381 0.0567706i −0.548030 0.836458i \(-0.684622\pi\)
0.626169 + 0.779688i \(0.284622\pi\)
\(284\) −5.20991 + 16.0345i −0.309151 + 0.951470i
\(285\) 0 0
\(286\) 0.549446 0.0607183i 0.0324894 0.00359035i
\(287\) 22.8708 1.35002
\(288\) −3.01821 + 9.28911i −0.177850 + 0.547366i
\(289\) −10.1483 + 7.37316i −0.596957 + 0.433715i
\(290\) 0 0
\(291\) −8.59170 26.4425i −0.503654 1.55009i
\(292\) 5.22738 + 16.0882i 0.305910 + 0.941493i
\(293\) −10.1991 7.41008i −0.595838 0.432901i 0.248561 0.968616i \(-0.420042\pi\)
−0.844399 + 0.535715i \(0.820042\pi\)
\(294\) 1.93354 1.40480i 0.112766 0.0819295i
\(295\) 0 0
\(296\) −1.75401 −0.101950
\(297\) −25.0771 14.3002i −1.45512 0.829782i
\(298\) 2.47423 0.143328
\(299\) 0.673179 2.07183i 0.0389309 0.119817i
\(300\) 0 0
\(301\) 12.2317 + 8.88687i 0.705025 + 0.512230i
\(302\) 0.0626267 + 0.192745i 0.00360376 + 0.0110912i
\(303\) −2.41928 7.44578i −0.138984 0.427749i
\(304\) −15.0900 10.9635i −0.865469 0.628800i
\(305\) 0 0
\(306\) 1.38501 4.26262i 0.0791757 0.243678i
\(307\) −22.6055 −1.29017 −0.645083 0.764112i \(-0.723177\pi\)
−0.645083 + 0.764112i \(0.723177\pi\)
\(308\) −20.3688 11.6153i −1.16062 0.661843i
\(309\) 19.7231 1.12201
\(310\) 0 0
\(311\) 15.0909 10.9642i 0.855729 0.621723i −0.0709908 0.997477i \(-0.522616\pi\)
0.926720 + 0.375754i \(0.122616\pi\)
\(312\) 1.60262 + 1.16437i 0.0907305 + 0.0659196i
\(313\) 5.40298 + 16.6286i 0.305394 + 0.939907i 0.979530 + 0.201299i \(0.0645163\pi\)
−0.674136 + 0.738608i \(0.735484\pi\)
\(314\) −0.144612 0.445069i −0.00816091 0.0251167i
\(315\) 0 0
\(316\) 0.631307 0.458671i 0.0355138 0.0258023i
\(317\) −3.45627 + 10.6373i −0.194123 + 0.597450i 0.805862 + 0.592103i \(0.201702\pi\)
−0.999986 + 0.00534745i \(0.998298\pi\)
\(318\) 4.49987 0.252340
\(319\) −13.6523 + 1.50869i −0.764380 + 0.0844703i
\(320\) 0 0
\(321\) −12.9748 + 39.9322i −0.724181 + 2.22880i
\(322\) 0.733507 0.532924i 0.0408767 0.0296987i
\(323\) 21.1188 + 15.3437i 1.17508 + 0.853745i
\(324\) −5.04510 15.5272i −0.280283 0.862624i
\(325\) 0 0
\(326\) 0.767994 + 0.557980i 0.0425353 + 0.0309037i
\(327\) −29.8358 + 21.6770i −1.64992 + 1.19874i
\(328\) −1.09866 + 3.38132i −0.0606632 + 0.186702i
\(329\) 25.0875 1.38312
\(330\) 0 0
\(331\) −25.7621 −1.41602 −0.708008 0.706205i \(-0.750406\pi\)
−0.708008 + 0.706205i \(0.750406\pi\)
\(332\) 0.956988 2.94531i 0.0525215 0.161645i
\(333\) 15.1264 10.9900i 0.828920 0.602246i
\(334\) −2.21518 1.60942i −0.121209 0.0880637i
\(335\) 0 0
\(336\) −12.7914 39.3679i −0.697828 2.14769i
\(337\) −9.30216 6.75842i −0.506721 0.368154i 0.304857 0.952398i \(-0.401391\pi\)
−0.811578 + 0.584244i \(0.801391\pi\)
\(338\) −1.30492 + 0.948077i −0.0709780 + 0.0515686i
\(339\) −3.29269 + 10.1339i −0.178834 + 0.550395i
\(340\) 0 0
\(341\) 1.75680 + 3.88978i 0.0951359 + 0.210643i
\(342\) −3.96015 −0.214141
\(343\) 1.38771 4.27093i 0.0749293 0.230609i
\(344\) −1.90146 + 1.38149i −0.102520 + 0.0744850i
\(345\) 0 0
\(346\) −0.0100870 0.0310447i −0.000542282 0.00166897i
\(347\) 0.267572 + 0.823501i 0.0143640 + 0.0442079i 0.957982 0.286830i \(-0.0926014\pi\)
−0.943618 + 0.331037i \(0.892601\pi\)
\(348\) −19.8132 14.3951i −1.06210 0.771660i
\(349\) −14.3937 + 10.4576i −0.770476 + 0.559784i −0.902106 0.431515i \(-0.857979\pi\)
0.131630 + 0.991299i \(0.457979\pi\)
\(350\) 0 0
\(351\) −10.4067 −0.555466
\(352\) 4.05018 3.68616i 0.215875 0.196473i
\(353\) −1.11550 −0.0593723 −0.0296862 0.999559i \(-0.509451\pi\)
−0.0296862 + 0.999559i \(0.509451\pi\)
\(354\) 0.516559 1.58981i 0.0274548 0.0844972i
\(355\) 0 0
\(356\) −11.0628 8.03757i −0.586325 0.425990i
\(357\) 17.9019 + 55.0963i 0.947467 + 2.91600i
\(358\) −0.731701 2.25194i −0.0386716 0.119019i
\(359\) −1.22945 0.893247i −0.0648878 0.0471438i 0.554869 0.831938i \(-0.312769\pi\)
−0.619756 + 0.784794i \(0.712769\pi\)
\(360\) 0 0
\(361\) 1.25614 3.86601i 0.0661127 0.203474i
\(362\) 2.41801 0.127088
\(363\) 16.7250 + 28.2667i 0.877832 + 1.48362i
\(364\) −8.45278 −0.443046
\(365\) 0 0
\(366\) −4.87645 + 3.54295i −0.254896 + 0.185193i
\(367\) −8.59670 6.24587i −0.448744 0.326032i 0.340356 0.940297i \(-0.389453\pi\)
−0.789100 + 0.614265i \(0.789453\pi\)
\(368\) −2.18672 6.73003i −0.113991 0.350827i
\(369\) −11.7114 36.0439i −0.609670 1.87637i
\(370\) 0 0
\(371\) −31.2204 + 22.6830i −1.62088 + 1.17764i
\(372\) −2.35166 + 7.23765i −0.121928 + 0.375255i
\(373\) 27.9435 1.44686 0.723429 0.690399i \(-0.242565\pi\)
0.723429 + 0.690399i \(0.242565\pi\)
\(374\) −1.85856 + 1.69152i −0.0961038 + 0.0874664i
\(375\) 0 0
\(376\) −1.20515 + 3.70906i −0.0621507 + 0.191280i
\(377\) −4.00584 + 2.91041i −0.206311 + 0.149894i
\(378\) −3.50403 2.54582i −0.180228 0.130943i
\(379\) 5.76969 + 17.7573i 0.296369 + 0.912130i 0.982758 + 0.184896i \(0.0591948\pi\)
−0.686389 + 0.727235i \(0.740805\pi\)
\(380\) 0 0
\(381\) −15.1686 11.0206i −0.777111 0.564605i
\(382\) 2.34238 1.70184i 0.119847 0.0870736i
\(383\) −6.69393 + 20.6018i −0.342044 + 1.05270i 0.621104 + 0.783729i \(0.286685\pi\)
−0.963147 + 0.268974i \(0.913315\pi\)
\(384\) 12.9978 0.663290
\(385\) 0 0
\(386\) 1.18667 0.0603998
\(387\) 7.74208 23.8277i 0.393552 1.21123i
\(388\) −14.9204 + 10.8403i −0.757468 + 0.550333i
\(389\) 30.3224 + 22.0305i 1.53740 + 1.11699i 0.951937 + 0.306294i \(0.0990892\pi\)
0.585468 + 0.810696i \(0.300911\pi\)
\(390\) 0 0
\(391\) 3.06036 + 9.41883i 0.154769 + 0.476331i
\(392\) −2.57771 1.87282i −0.130194 0.0945916i
\(393\) −44.6289 + 32.4248i −2.25123 + 1.63562i
\(394\) −0.112111 + 0.345042i −0.00564806 + 0.0173829i
\(395\) 0 0
\(396\) −7.87531 + 38.0487i −0.395749 + 1.91202i
\(397\) −18.3084 −0.918873 −0.459437 0.888211i \(-0.651949\pi\)
−0.459437 + 0.888211i \(0.651949\pi\)
\(398\) 0.378109 1.16370i 0.0189529 0.0583309i
\(399\) 41.4110 30.0868i 2.07314 1.50623i
\(400\) 0 0
\(401\) 4.04434 + 12.4472i 0.201965 + 0.621583i 0.999824 + 0.0187401i \(0.00596551\pi\)
−0.797860 + 0.602843i \(0.794034\pi\)
\(402\) −1.04729 3.22323i −0.0522341 0.160760i
\(403\) 1.24477 + 0.904376i 0.0620063 + 0.0450502i
\(404\) −4.20133 + 3.05245i −0.209024 + 0.151865i
\(405\) 0 0
\(406\) −2.06079 −0.102275
\(407\) −10.4202 + 1.15151i −0.516509 + 0.0570785i
\(408\) −9.00566 −0.445846
\(409\) 6.57096 20.2233i 0.324913 0.999980i −0.646567 0.762857i \(-0.723796\pi\)
0.971480 0.237122i \(-0.0762042\pi\)
\(410\) 0 0
\(411\) 10.0888 + 7.32997i 0.497646 + 0.361561i
\(412\) −4.04281 12.4425i −0.199175 0.612998i
\(413\) 4.42998 + 13.6341i 0.217985 + 0.670889i
\(414\) −1.21548 0.883101i −0.0597378 0.0434021i
\(415\) 0 0
\(416\) 0.610069 1.87760i 0.0299111 0.0920568i
\(417\) −8.15371 −0.399289
\(418\) 1.92889 + 1.09995i 0.0943450 + 0.0538002i
\(419\) −37.5627 −1.83506 −0.917528 0.397670i \(-0.869819\pi\)
−0.917528 + 0.397670i \(0.869819\pi\)
\(420\) 0 0
\(421\) 7.41340 5.38615i 0.361307 0.262505i −0.392290 0.919842i \(-0.628317\pi\)
0.753597 + 0.657337i \(0.228317\pi\)
\(422\) 1.21906 + 0.885700i 0.0593430 + 0.0431152i
\(423\) −12.8465 39.5375i −0.624619 1.92238i
\(424\) −1.85380 5.70542i −0.0900286 0.277079i
\(425\) 0 0
\(426\) 2.86650 2.08263i 0.138882 0.100904i
\(427\) 15.9739 49.1626i 0.773030 2.37914i
\(428\) 27.8512 1.34624
\(429\) 10.2852 + 5.86514i 0.496575 + 0.283172i
\(430\) 0 0
\(431\) 8.63312 26.5700i 0.415843 1.27983i −0.495653 0.868521i \(-0.665071\pi\)
0.911495 0.411311i \(-0.134929\pi\)
\(432\) −27.3484 + 19.8697i −1.31580 + 0.955984i
\(433\) −16.4642 11.9620i −0.791221 0.574856i 0.117105 0.993120i \(-0.462639\pi\)
−0.908325 + 0.418264i \(0.862639\pi\)
\(434\) 0.197884 + 0.609025i 0.00949875 + 0.0292342i
\(435\) 0 0
\(436\) 19.7908 + 14.3789i 0.947808 + 0.688623i
\(437\) 7.07930 5.14341i 0.338649 0.246043i
\(438\) 1.09858 3.38108i 0.0524921 0.161554i
\(439\) −5.87262 −0.280285 −0.140142 0.990131i \(-0.544756\pi\)
−0.140142 + 0.990131i \(0.544756\pi\)
\(440\) 0 0
\(441\) 33.9643 1.61735
\(442\) −0.279951 + 0.861599i −0.0133159 + 0.0409821i
\(443\) −29.2219 + 21.2309i −1.38837 + 1.00871i −0.392332 + 0.919824i \(0.628332\pi\)
−0.996042 + 0.0888891i \(0.971668\pi\)
\(444\) −15.1225 10.9872i −0.717684 0.521428i
\(445\) 0 0
\(446\) 0.346717 + 1.06709i 0.0164175 + 0.0505280i
\(447\) 42.8735 + 31.1494i 2.02784 + 1.47332i
\(448\) −21.7668 + 15.8145i −1.02839 + 0.747167i
\(449\) 2.11744 6.51680i 0.0999281 0.307547i −0.888579 0.458724i \(-0.848306\pi\)
0.988507 + 0.151177i \(0.0483065\pi\)
\(450\) 0 0
\(451\) −4.30703 + 20.8089i −0.202810 + 0.979855i
\(452\) 7.06796 0.332449
\(453\) −1.34138 + 4.12833i −0.0630233 + 0.193966i
\(454\) 2.33674 1.69774i 0.109668 0.0796788i
\(455\) 0 0
\(456\) 2.45889 + 7.56770i 0.115148 + 0.354390i
\(457\) −6.58590 20.2693i −0.308075 0.948158i −0.978512 0.206191i \(-0.933893\pi\)
0.670437 0.741967i \(-0.266107\pi\)
\(458\) 0.903634 + 0.656528i 0.0422240 + 0.0306776i
\(459\) 38.2747 27.8082i 1.78651 1.29797i
\(460\) 0 0
\(461\) −29.0126 −1.35125 −0.675626 0.737244i \(-0.736127\pi\)
−0.675626 + 0.737244i \(0.736127\pi\)
\(462\) 2.02832 + 4.49097i 0.0943661 + 0.208939i
\(463\) −17.8392 −0.829057 −0.414528 0.910036i \(-0.636053\pi\)
−0.414528 + 0.910036i \(0.636053\pi\)
\(464\) −4.97028 + 15.2969i −0.230739 + 0.710143i
\(465\) 0 0
\(466\) 2.87129 + 2.08612i 0.133010 + 0.0966374i
\(467\) −1.23677 3.80640i −0.0572311 0.176139i 0.918354 0.395759i \(-0.129518\pi\)
−0.975586 + 0.219620i \(0.929518\pi\)
\(468\) 4.32840 + 13.3214i 0.200080 + 0.615784i
\(469\) 23.5139 + 17.0838i 1.08577 + 0.788858i
\(470\) 0 0
\(471\) 3.09738 9.53275i 0.142720 0.439246i
\(472\) −2.22853 −0.102577
\(473\) −10.3892 + 9.45545i −0.477695 + 0.434762i
\(474\) −0.163994 −0.00753252
\(475\) 0 0
\(476\) 31.0885 22.5871i 1.42494 1.03528i
\(477\) 51.7350 + 37.5877i 2.36878 + 1.72102i
\(478\) −0.0235662 0.0725292i −0.00107789 0.00331741i
\(479\) −0.372018 1.14495i −0.0169979 0.0523143i 0.942198 0.335057i \(-0.108756\pi\)
−0.959196 + 0.282743i \(0.908756\pi\)
\(480\) 0 0
\(481\) −3.05748 + 2.22139i −0.139409 + 0.101287i
\(482\) −0.945992 + 2.91146i −0.0430888 + 0.132614i
\(483\) 19.4195 0.883617
\(484\) 14.4040 16.3451i 0.654729 0.742961i
\(485\) 0 0
\(486\) 0.0645818 0.198762i 0.00292949 0.00901605i
\(487\) 34.1902 24.8406i 1.54930 1.12564i 0.605159 0.796105i \(-0.293109\pi\)
0.944145 0.329531i \(-0.106891\pi\)
\(488\) 6.50108 + 4.72331i 0.294290 + 0.213814i
\(489\) 6.28309 + 19.3374i 0.284131 + 0.874466i
\(490\) 0 0
\(491\) −14.7908 10.7462i −0.667500 0.484967i 0.201687 0.979450i \(-0.435358\pi\)
−0.869188 + 0.494483i \(0.835358\pi\)
\(492\) −30.6530 + 22.2707i −1.38194 + 1.00404i
\(493\) 6.95602 21.4084i 0.313283 0.964187i
\(494\) 0.800462 0.0360145
\(495\) 0 0
\(496\) 4.99796 0.224415
\(497\) −9.38985 + 28.8990i −0.421192 + 1.29630i
\(498\) −0.526536 + 0.382551i −0.0235947 + 0.0171425i
\(499\) −18.3522 13.3336i −0.821557 0.596896i 0.0956011 0.995420i \(-0.469523\pi\)
−0.917158 + 0.398524i \(0.869523\pi\)
\(500\) 0 0
\(501\) −18.1228 55.7762i −0.809666 2.49190i
\(502\) 0.682627 + 0.495958i 0.0304671 + 0.0221357i
\(503\) 26.1108 18.9706i 1.16422 0.845859i 0.173919 0.984760i \(-0.444357\pi\)
0.990306 + 0.138901i \(0.0443570\pi\)
\(504\) −3.62060 + 11.1431i −0.161274 + 0.496352i
\(505\) 0 0
\(506\) 0.346746 + 0.767741i 0.0154148 + 0.0341303i
\(507\) −34.5474 −1.53430
\(508\) −3.84323 + 11.8282i −0.170516 + 0.524794i
\(509\) −17.8771 + 12.9885i −0.792390 + 0.575705i −0.908672 0.417512i \(-0.862902\pi\)
0.116282 + 0.993216i \(0.462902\pi\)
\(510\) 0 0
\(511\) 9.42134 + 28.9959i 0.416776 + 1.28270i
\(512\) −3.31365 10.1984i −0.146444 0.450709i
\(513\) −33.8184 24.5705i −1.49312 1.08481i
\(514\) −0.344841 + 0.250541i −0.0152103 + 0.0110509i
\(515\) 0 0
\(516\) −25.0475 −1.10266
\(517\) −4.72449 + 22.8259i −0.207783 + 1.00388i
\(518\) −1.57291 −0.0691098
\(519\) 0.216050 0.664934i 0.00948355 0.0291874i
\(520\) 0 0
\(521\) 13.7909 + 10.0196i 0.604189 + 0.438969i 0.847363 0.531014i \(-0.178189\pi\)
−0.243175 + 0.969983i \(0.578189\pi\)
\(522\) 1.05527 + 3.24778i 0.0461878 + 0.142151i
\(523\) −6.17828 19.0148i −0.270157 0.831459i −0.990460 0.137799i \(-0.955997\pi\)
0.720303 0.693660i \(-0.244003\pi\)
\(524\) 29.6035 + 21.5082i 1.29323 + 0.939589i
\(525\) 0 0
\(526\) 0.781285 2.40455i 0.0340657 0.104843i
\(527\) −6.99476 −0.304697
\(528\) 38.2277 4.22448i 1.66365 0.183847i
\(529\) −19.6802 −0.855661
\(530\) 0 0
\(531\) 19.2186 13.9632i 0.834018 0.605949i
\(532\) −27.4689 19.9573i −1.19093 0.865260i
\(533\) 2.36721 + 7.28553i 0.102535 + 0.315571i
\(534\) 0.888045 + 2.73312i 0.0384295 + 0.118274i
\(535\) 0 0
\(536\) −3.65531 + 2.65574i −0.157885 + 0.114710i
\(537\) 15.6720 48.2334i 0.676297 2.08143i
\(538\) −2.43147 −0.104828
\(539\) −16.5431 9.43371i −0.712563 0.406338i
\(540\) 0 0
\(541\) −2.28788 + 7.04138i −0.0983638 + 0.302733i −0.988116 0.153712i \(-0.950877\pi\)
0.889752 + 0.456444i \(0.150877\pi\)
\(542\) −0.794606 + 0.577315i −0.0341313 + 0.0247978i
\(543\) 41.8992 + 30.4416i 1.79807 + 1.30637i
\(544\) 2.77345 + 8.53582i 0.118911 + 0.365970i
\(545\) 0 0
\(546\) 1.43716 + 1.04415i 0.0615046 + 0.0446857i
\(547\) −15.8598 + 11.5228i −0.678115 + 0.492679i −0.872732 0.488200i \(-0.837654\pi\)
0.194617 + 0.980879i \(0.437654\pi\)
\(548\) 2.55618 7.86712i 0.109195 0.336067i
\(549\) −85.6591 −3.65584
\(550\) 0 0
\(551\) −19.8893 −0.847314
\(552\) −0.932866 + 2.87107i −0.0397054 + 0.122201i
\(553\) 1.13781 0.826665i 0.0483845 0.0351534i
\(554\) 2.08921 + 1.51790i 0.0887620 + 0.0644894i
\(555\) 0 0
\(556\) 1.67133 + 5.14384i 0.0708804 + 0.218147i
\(557\) 13.6773 + 9.93712i 0.579524 + 0.421049i 0.838553 0.544821i \(-0.183402\pi\)
−0.259028 + 0.965870i \(0.583402\pi\)
\(558\) 0.858484 0.623725i 0.0363425 0.0264044i
\(559\) −1.56490 + 4.81627i −0.0661882 + 0.203706i
\(560\) 0 0
\(561\) −53.5006 + 5.91225i −2.25880 + 0.249616i
\(562\) −2.92984 −0.123588
\(563\) −5.90264 + 18.1665i −0.248767 + 0.765625i 0.746227 + 0.665691i \(0.231863\pi\)
−0.994994 + 0.0999340i \(0.968137\pi\)
\(564\) −33.6241 + 24.4293i −1.41583 + 1.02866i
\(565\) 0 0
\(566\) 0.0699928 + 0.215416i 0.00294202 + 0.00905460i
\(567\) −9.09282 27.9848i −0.381862 1.17525i
\(568\) −3.82150 2.77648i −0.160346 0.116499i
\(569\) 14.3191 10.4034i 0.600286 0.436133i −0.245694 0.969347i \(-0.579016\pi\)
0.845980 + 0.533214i \(0.179016\pi\)
\(570\) 0 0
\(571\) −5.15632 −0.215785 −0.107893 0.994163i \(-0.534410\pi\)
−0.107893 + 0.994163i \(0.534410\pi\)
\(572\) 1.59183 7.69075i 0.0665577 0.321567i
\(573\) 62.0141 2.59068
\(574\) −0.985225 + 3.03221i −0.0411225 + 0.126562i
\(575\) 0 0
\(576\) 36.0696 + 26.2061i 1.50290 + 1.09192i
\(577\) −6.23309 19.1835i −0.259487 0.798619i −0.992912 0.118849i \(-0.962080\pi\)
0.733425 0.679770i \(-0.237920\pi\)
\(578\) −0.540368 1.66308i −0.0224763 0.0691751i
\(579\) 20.5626 + 14.9396i 0.854552 + 0.620868i
\(580\) 0 0
\(581\) 1.72478 5.30834i 0.0715561 0.220227i
\(582\) 3.87587 0.160660
\(583\) −14.7587 32.6776i −0.611241 1.35337i
\(584\) −4.73947 −0.196121
\(585\) 0 0
\(586\) 1.42179 1.03299i 0.0587334 0.0426723i
\(587\) 28.6541 + 20.8185i 1.18268 + 0.859270i 0.992472 0.122474i \(-0.0390827\pi\)
0.190211 + 0.981743i \(0.439083\pi\)
\(588\) −10.4929 32.2938i −0.432719 1.33177i
\(589\) 1.90984 + 5.87789i 0.0786936 + 0.242194i
\(590\) 0 0
\(591\) −6.28657 + 4.56746i −0.258595 + 0.187880i
\(592\) −3.79359 + 11.6755i −0.155916 + 0.479859i
\(593\) 38.2459 1.57057 0.785285 0.619134i \(-0.212516\pi\)
0.785285 + 0.619134i \(0.212516\pi\)
\(594\) 2.97620 2.70871i 0.122115 0.111140i
\(595\) 0 0
\(596\) 10.8627 33.4321i 0.444955 1.36943i
\(597\) 21.2023 15.4044i 0.867752 0.630459i
\(598\) 0.245685 + 0.178500i 0.0100468 + 0.00729943i
\(599\) 7.32601 + 22.5471i 0.299333 + 0.921251i 0.981732 + 0.190271i \(0.0609368\pi\)
−0.682399 + 0.730980i \(0.739063\pi\)
\(600\) 0 0
\(601\) −7.93032 5.76172i −0.323485 0.235025i 0.414176 0.910197i \(-0.364070\pi\)
−0.737661 + 0.675171i \(0.764070\pi\)
\(602\) −1.70514 + 1.23886i −0.0694963 + 0.0504920i
\(603\) 14.8831 45.8056i 0.606088 1.86535i
\(604\) 2.87935 0.117159
\(605\) 0 0
\(606\) 1.09138 0.0443343
\(607\) −0.652640 + 2.00862i −0.0264898 + 0.0815273i −0.963427 0.267969i \(-0.913647\pi\)
0.936938 + 0.349497i \(0.113647\pi\)
\(608\) 6.41562 4.66122i 0.260188 0.189037i
\(609\) −35.7094 25.9444i −1.44702 1.05132i
\(610\) 0 0
\(611\) 2.59666 + 7.99168i 0.105049 + 0.323309i
\(612\) −51.5163 37.4288i −2.08242 1.51297i
\(613\) −2.29338 + 1.66624i −0.0926286 + 0.0672986i −0.633136 0.774041i \(-0.718232\pi\)
0.540507 + 0.841340i \(0.318232\pi\)
\(614\) 0.973800 2.99705i 0.0392994 0.120951i
\(615\) 0 0
\(616\) 4.85853 4.42186i 0.195756 0.178162i
\(617\) 43.2099 1.73957 0.869783 0.493434i \(-0.164259\pi\)
0.869783 + 0.493434i \(0.164259\pi\)
\(618\) −0.849631 + 2.61489i −0.0341772 + 0.105187i
\(619\) 37.9078 27.5416i 1.52364 1.10699i 0.563998 0.825776i \(-0.309262\pi\)
0.959645 0.281216i \(-0.0907376\pi\)
\(620\) 0 0
\(621\) −4.90070 15.0828i −0.196658 0.605252i
\(622\) 0.803551 + 2.47308i 0.0322195 + 0.0991613i
\(623\) −19.9385 14.4862i −0.798818 0.580376i
\(624\) 11.2168 8.14946i 0.449030 0.326239i
\(625\) 0 0
\(626\) −2.43738 −0.0974173
\(627\) 19.5760 + 43.3437i 0.781789 + 1.73098i
\(628\) −6.64872 −0.265313
\(629\) 5.30922 16.3401i 0.211693 0.651523i
\(630\) 0 0
\(631\) −4.16305 3.02463i −0.165728 0.120409i 0.501830 0.864966i \(-0.332660\pi\)
−0.667558 + 0.744558i \(0.732660\pi\)
\(632\) 0.0675605 + 0.207930i 0.00268741 + 0.00827101i
\(633\) 9.97335 + 30.6948i 0.396405 + 1.22001i
\(634\) −1.26141 0.916466i −0.0500969 0.0363975i
\(635\) 0 0
\(636\) 19.7560 60.8027i 0.783376 2.41098i
\(637\) −6.86517 −0.272008
\(638\) 0.388089 1.87501i 0.0153646 0.0742324i
\(639\) 50.3526 1.99192
\(640\) 0 0
\(641\) −13.4838 + 9.79658i −0.532580 + 0.386942i −0.821322 0.570465i \(-0.806763\pi\)
0.288742 + 0.957407i \(0.406763\pi\)
\(642\) −4.73530 3.44040i −0.186887 0.135782i
\(643\) −11.0614 34.0436i −0.436220 1.34255i −0.891831 0.452368i \(-0.850579\pi\)
0.455611 0.890179i \(-0.349421\pi\)
\(644\) −3.98058 12.2510i −0.156857 0.482755i
\(645\) 0 0
\(646\) −2.94402 + 2.13896i −0.115831 + 0.0841561i
\(647\) −9.84530 + 30.3007i −0.387059 + 1.19124i 0.547917 + 0.836533i \(0.315421\pi\)
−0.934976 + 0.354712i \(0.884579\pi\)
\(648\) 4.57421 0.179692
\(649\) −13.2392 + 1.46304i −0.519685 + 0.0574295i
\(650\) 0 0
\(651\) −4.23840 + 13.0445i −0.166116 + 0.511253i
\(652\) 10.9113 7.92749i 0.427318 0.310465i
\(653\) 1.63887 + 1.19071i 0.0641340 + 0.0465961i 0.619390 0.785083i \(-0.287380\pi\)
−0.555256 + 0.831679i \(0.687380\pi\)
\(654\) −1.58867 4.88944i −0.0621221 0.191192i
\(655\) 0 0
\(656\) 20.1314 + 14.6263i 0.786001 + 0.571063i
\(657\) 40.8727 29.6958i 1.59460 1.15854i
\(658\) −1.08072 + 3.32611i −0.0421308 + 0.129665i
\(659\) −14.3580 −0.559308 −0.279654 0.960101i \(-0.590220\pi\)
−0.279654 + 0.960101i \(0.590220\pi\)
\(660\) 0 0
\(661\) 28.0721 1.09188 0.545938 0.837825i \(-0.316173\pi\)
0.545938 + 0.837825i \(0.316173\pi\)
\(662\) 1.10978 3.41555i 0.0431328 0.132749i
\(663\) −15.6981 + 11.4053i −0.609664 + 0.442947i
\(664\) 0.701956 + 0.510001i 0.0272412 + 0.0197919i
\(665\) 0 0
\(666\) 0.805438 + 2.47888i 0.0312101 + 0.0960548i
\(667\) −6.10461 4.43526i −0.236371 0.171734i
\(668\) −31.4721 + 22.8658i −1.21769 + 0.884706i
\(669\) −7.42620 + 22.8555i −0.287113 + 0.883644i
\(670\) 0 0
\(671\) 41.7223 + 23.7921i 1.61067 + 0.918485i
\(672\) 17.5989 0.678893
\(673\) 12.1235 37.3122i 0.467326 1.43828i −0.388708 0.921361i \(-0.627079\pi\)
0.856034 0.516919i \(-0.172921\pi\)
\(674\) 1.29675 0.942144i 0.0499490 0.0362900i
\(675\) 0 0
\(676\) 7.08148 + 21.7946i 0.272365 + 0.838252i
\(677\) −15.2609 46.9682i −0.586524 1.80513i −0.593063 0.805156i \(-0.702082\pi\)
0.00653953 0.999979i \(-0.497918\pi\)
\(678\) −1.20171 0.873091i −0.0461513 0.0335309i
\(679\) −26.8911 + 19.5375i −1.03199 + 0.749782i
\(680\) 0 0
\(681\) 61.8647 2.37066
\(682\) −0.591387 + 0.0653531i −0.0226454 + 0.00250250i
\(683\) 29.7973 1.14016 0.570081 0.821589i \(-0.306912\pi\)
0.570081 + 0.821589i \(0.306912\pi\)
\(684\) −17.3865 + 53.5101i −0.664788 + 2.04601i
\(685\) 0 0
\(686\) 0.506462 + 0.367966i 0.0193368 + 0.0140490i
\(687\) 7.39279 + 22.7527i 0.282052 + 0.868068i
\(688\) 5.08334 + 15.6449i 0.193800 + 0.596456i
\(689\) −10.4571 7.59756i −0.398386 0.289444i
\(690\) 0 0
\(691\) 9.94364 30.6034i 0.378274 1.16421i −0.562970 0.826478i \(-0.690341\pi\)
0.941243 0.337729i \(-0.109659\pi\)
\(692\) −0.463765 −0.0176297
\(693\) −14.1937 + 68.5754i −0.539175 + 2.60497i
\(694\) −0.120706 −0.00458195
\(695\) 0 0
\(696\) 5.55115 4.03314i 0.210416 0.152876i
\(697\) −28.1744 20.4699i −1.06718 0.775353i
\(698\) −0.766424 2.35881i −0.0290096 0.0892823i
\(699\) 23.4905 + 72.2964i 0.888494 + 2.73450i
\(700\) 0 0
\(701\) −10.8560 + 7.88737i −0.410027 + 0.297902i −0.773613 0.633659i \(-0.781552\pi\)
0.363586 + 0.931561i \(0.381552\pi\)
\(702\) 0.448297 1.37972i 0.0169199 0.0520741i
\(703\) −15.1807 −0.572549
\(704\) −10.2897 22.7827i −0.387808 0.858657i
\(705\) 0 0
\(706\) 0.0480537 0.147894i 0.00180852 0.00556606i
\(707\) −7.57209 + 5.50144i −0.284778 + 0.206903i
\(708\) −19.2138 13.9596i −0.722097 0.524634i
\(709\) −6.97855 21.4778i −0.262085 0.806615i −0.992351 0.123451i \(-0.960604\pi\)
0.730266 0.683163i \(-0.239396\pi\)
\(710\) 0 0
\(711\) −1.88545 1.36986i −0.0707097 0.0513736i
\(712\) 3.09950 2.25192i 0.116159 0.0843942i
\(713\) −0.724565 + 2.22998i −0.0271352 + 0.0835134i
\(714\) −8.07585 −0.302231
\(715\) 0 0
\(716\) −33.6409 −1.25722
\(717\) 0.504754 1.55347i 0.0188504 0.0580155i
\(718\) 0.171389 0.124521i 0.00639618 0.00464710i
\(719\) 21.5922 + 15.6876i 0.805253 + 0.585050i 0.912450 0.409187i \(-0.134188\pi\)
−0.107198 + 0.994238i \(0.534188\pi\)
\(720\) 0 0
\(721\) −7.28639 22.4252i −0.271359 0.835158i
\(722\) 0.458444 + 0.333079i 0.0170615 + 0.0123959i
\(723\) −53.0461 + 38.5403i −1.97281 + 1.43333i
\(724\) 10.6159 32.6724i 0.394537 1.21426i
\(725\) 0 0
\(726\) −4.46808 + 0.999728i −0.165826 + 0.0371034i
\(727\) 10.6151 0.393693 0.196846 0.980434i \(-0.436930\pi\)
0.196846 + 0.980434i \(0.436930\pi\)
\(728\) 0.731829 2.25234i 0.0271234 0.0834772i
\(729\) 23.6282 17.1669i 0.875118 0.635810i
\(730\) 0 0
\(731\) −7.11424 21.8954i −0.263130 0.809830i
\(732\) 26.4634 + 81.4460i 0.978115 + 3.01033i
\(733\) −10.3886 7.54772i −0.383710 0.278782i 0.379163 0.925330i \(-0.376212\pi\)
−0.762873 + 0.646548i \(0.776212\pi\)
\(734\) 1.19841 0.870694i 0.0442340 0.0321379i
\(735\) 0 0
\(736\) 3.00857 0.110897
\(737\) −19.9719 + 18.1769i −0.735673 + 0.669553i
\(738\) 5.28322 0.194478
\(739\) 10.4930 32.2942i 0.385992 1.18796i −0.549766 0.835318i \(-0.685283\pi\)
0.935758 0.352642i \(-0.114717\pi\)
\(740\) 0 0
\(741\) 13.8704 + 10.0774i 0.509542 + 0.370204i
\(742\) −1.66240 5.11635i −0.0610287 0.187827i
\(743\) −14.2470 43.8477i −0.522672 1.60862i −0.768875 0.639399i \(-0.779183\pi\)
0.246203 0.969218i \(-0.420817\pi\)
\(744\) −1.72495 1.25325i −0.0632398 0.0459464i
\(745\) 0 0
\(746\) −1.20375 + 3.70475i −0.0440723 + 0.135641i
\(747\) −9.24906 −0.338406
\(748\) 14.6963 + 32.5394i 0.537349 + 1.18976i
\(749\) 50.1963 1.83413
\(750\) 0 0
\(751\) −33.8831 + 24.6175i −1.23641 + 0.898306i −0.997354 0.0726986i \(-0.976839\pi\)
−0.239059 + 0.971005i \(0.576839\pi\)
\(752\) 22.0827 + 16.0440i 0.805273 + 0.585065i
\(753\) 5.58469 + 17.1879i 0.203517 + 0.626362i
\(754\) −0.213300 0.656470i −0.00776793 0.0239072i
\(755\) 0 0
\(756\) −49.7834 + 36.1697i −1.81060 + 1.31548i
\(757\) −7.19323 + 22.1385i −0.261442 + 0.804637i 0.731049 + 0.682325i \(0.239031\pi\)
−0.992492 + 0.122312i \(0.960969\pi\)
\(758\) −2.60281 −0.0945384
\(759\) −3.65708 + 17.6688i −0.132744 + 0.641337i
\(760\) 0 0
\(761\) 6.47737 19.9353i 0.234805 0.722654i −0.762343 0.647174i \(-0.775951\pi\)
0.997147 0.0754807i \(-0.0240491\pi\)
\(762\) 2.11455 1.53631i 0.0766021 0.0556547i
\(763\) 35.6691 + 25.9151i 1.29131 + 0.938190i
\(764\) −12.7116 39.1221i −0.459888 1.41539i
\(765\) 0 0
\(766\) −2.44303 1.77497i −0.0882703 0.0641321i
\(767\) −3.88465 + 2.82236i −0.140266 + 0.101910i
\(768\) 13.3491 41.0842i 0.481693 1.48250i
\(769\) 24.9924 0.901249 0.450624 0.892714i \(-0.351201\pi\)
0.450624 + 0.892714i \(0.351201\pi\)
\(770\) 0 0
\(771\) −9.12960 −0.328795
\(772\) 5.20989 16.0344i 0.187508 0.577090i
\(773\) 17.6495 12.8231i 0.634808 0.461215i −0.223254 0.974760i \(-0.571668\pi\)
0.858063 + 0.513545i \(0.171668\pi\)
\(774\) 2.82557 + 2.05289i 0.101563 + 0.0737898i
\(775\) 0 0
\(776\) −1.59674 4.91425i −0.0573195 0.176411i
\(777\) −27.2554 19.8022i −0.977783 0.710401i
\(778\) −4.22703 + 3.07112i −0.151546 + 0.110105i
\(779\) −9.50871 + 29.2648i −0.340685 + 1.04852i
\(780\) 0 0
\(781\) −24.5254 13.9856i −0.877589 0.500445i
\(782\) −1.38058 −0.0493696
\(783\) −11.1390 + 34.2823i −0.398075 + 1.22515i
\(784\) −18.0414 + 13.1079i −0.644337 + 0.468138i
\(785\) 0 0
\(786\) −2.37637 7.31371i −0.0847623 0.260871i
\(787\) 7.34937 + 22.6190i 0.261977 + 0.806281i 0.992374 + 0.123259i \(0.0393347\pi\)
−0.730398 + 0.683022i \(0.760665\pi\)
\(788\) 4.17003 + 3.02971i 0.148551 + 0.107929i
\(789\) 43.8103 31.8300i 1.55969 1.13318i
\(790\) 0 0
\(791\) 12.7386 0.452933
\(792\) −9.45668 5.39267i −0.336029 0.191620i
\(793\) 17.3142 0.614845
\(794\) 0.788689 2.42733i 0.0279895 0.0861429i
\(795\) 0 0
\(796\) −14.0640 10.2181i −0.498485 0.362171i
\(797\) −11.0433 33.9877i −0.391173 1.20391i −0.931902 0.362711i \(-0.881851\pi\)
0.540729 0.841197i \(-0.318149\pi\)
\(798\) 2.20502 + 6.78636i 0.0780569 + 0.240234i
\(799\) −30.9052 22.4540i −1.09335 0.794364i
\(800\) 0 0
\(801\) −12.6201 + 38.8406i −0.445909 + 1.37237i
\(802\) −1.82447 −0.0644244
\(803\) −28.1561 + 3.11149i −0.993609 + 0.109802i
\(804\) −48.1506 −1.69814
\(805\) 0 0
\(806\) −0.173524 + 0.126073i −0.00611214 + 0.00444073i
\(807\) −42.1325 30.6111i −1.48313 1.07756i
\(808\) −0.449614 1.38377i −0.0158174 0.0486809i
\(809\) −12.8563 39.5676i −0.452003 1.39112i −0.874618 0.484812i \(-0.838888\pi\)
0.422616 0.906309i \(-0.361112\pi\)
\(810\) 0 0
\(811\) −19.5592 + 14.2106i −0.686815 + 0.499001i −0.875612 0.483016i \(-0.839541\pi\)
0.188796 + 0.982016i \(0.439541\pi\)
\(812\) −9.04761 + 27.8457i −0.317509 + 0.977192i
\(813\) −21.0371 −0.737802
\(814\) 0.296211 1.43111i 0.0103822 0.0501605i
\(815\) 0 0
\(816\) −19.4776 + 59.9458i −0.681851 + 2.09852i
\(817\) −16.4568 + 11.9566i −0.575751 + 0.418308i
\(818\) 2.39815 + 1.74236i 0.0838494 + 0.0609202i
\(819\) 7.80109 + 24.0093i 0.272592 + 0.838953i
\(820\) 0 0
\(821\) −27.5371 20.0069i −0.961051 0.698244i −0.00765641 0.999971i \(-0.502437\pi\)
−0.953395 + 0.301726i \(0.902437\pi\)
\(822\) −1.40642 + 1.02182i −0.0490544 + 0.0356401i
\(823\) 1.71212 5.26935i 0.0596806 0.183678i −0.916772 0.399412i \(-0.869214\pi\)
0.976452 + 0.215734i \(0.0692144\pi\)
\(824\) 3.66547 0.127693
\(825\) 0 0
\(826\) −1.99845 −0.0695348
\(827\) −7.93284 + 24.4148i −0.275852 + 0.848984i 0.713141 + 0.701021i \(0.247272\pi\)
−0.988993 + 0.147964i \(0.952728\pi\)
\(828\) −17.2690 + 12.5466i −0.600138 + 0.436026i
\(829\) −33.7819 24.5440i −1.17329 0.852449i −0.181895 0.983318i \(-0.558223\pi\)
−0.991400 + 0.130869i \(0.958223\pi\)
\(830\) 0 0
\(831\) 17.0922 + 52.6043i 0.592921 + 1.82482i
\(832\) −7.29071 5.29701i −0.252760 0.183641i
\(833\) 25.2494 18.3448i 0.874840 0.635609i
\(834\) 0.351245 1.08102i 0.0121626 0.0374327i
\(835\) 0 0
\(836\) 23.3311 21.2342i 0.806923 0.734400i
\(837\) 11.2010 0.387164
\(838\) 1.61812 4.98007i 0.0558971 0.172034i
\(839\) −8.29817 + 6.02897i −0.286485 + 0.208143i −0.721741 0.692163i \(-0.756658\pi\)
0.435256 + 0.900307i \(0.356658\pi\)
\(840\) 0 0
\(841\) −3.66156 11.2691i −0.126261 0.388590i
\(842\) 0.394743 + 1.21489i 0.0136037 + 0.0418680i
\(843\) −50.7682 36.8853i −1.74855 1.27040i
\(844\) 17.3198 12.5836i 0.596172 0.433144i
\(845\) 0 0
\(846\) 5.79530 0.199246
\(847\) 25.9605 29.4590i 0.892012 1.01222i
\(848\) −41.9873 −1.44185
\(849\) −1.49915 + 4.61390i −0.0514506 + 0.158349i
\(850\) 0 0
\(851\) −4.65938 3.38524i −0.159721 0.116044i
\(852\) −15.5558 47.8760i −0.532935 1.64020i
\(853\) 8.91356 + 27.4331i 0.305195 + 0.939292i 0.979605 + 0.200935i \(0.0643981\pi\)
−0.674410 + 0.738357i \(0.735602\pi\)
\(854\) 5.82986 + 4.23564i 0.199494 + 0.144941i
\(855\) 0 0
\(856\) −2.41131 + 7.42126i −0.0824170 + 0.253653i
\(857\) −20.7640 −0.709283 −0.354642 0.935002i \(-0.615397\pi\)
−0.354642 + 0.935002i \(0.615397\pi\)
\(858\) −1.22067 + 1.11096i −0.0416729 + 0.0379275i
\(859\) 12.1297 0.413859 0.206929 0.978356i \(-0.433653\pi\)
0.206929 + 0.978356i \(0.433653\pi\)
\(860\) 0 0
\(861\) −55.2461 + 40.1386i −1.88278 + 1.36792i
\(862\) 3.15076 + 2.28916i 0.107315 + 0.0779692i
\(863\) 11.5618 + 35.5836i 0.393568 + 1.21128i 0.930071 + 0.367380i \(0.119745\pi\)
−0.536503 + 0.843899i \(0.680255\pi\)
\(864\) −4.44126 13.6688i −0.151095 0.465022i
\(865\) 0 0
\(866\) 2.29517 1.66754i 0.0779929 0.0566652i
\(867\) 11.5739 35.6209i 0.393071 1.20975i
\(868\) 9.09800 0.308806
\(869\) 0.537869 + 1.19091i 0.0182460 + 0.0403989i
\(870\) 0 0
\(871\) −3.00831 + 9.25864i −0.101933 + 0.313717i
\(872\) −5.54487 + 4.02859i −0.187773 + 0.136425i
\(873\) 44.5609 + 32.3754i 1.50816 + 1.09574i
\(874\) 0.376953 + 1.16014i 0.0127506 + 0.0392424i
\(875\) 0 0
\(876\) −40.8623 29.6882i −1.38061 1.00307i
\(877\) −42.3808 + 30.7915i −1.43110 + 1.03975i −0.441289 + 0.897365i \(0.645479\pi\)
−0.989811 + 0.142389i \(0.954521\pi\)
\(878\) 0.252980 0.778593i 0.00853767 0.0262762i
\(879\) 37.6416 1.26962
\(880\) 0 0
\(881\) 11.0403 0.371956 0.185978 0.982554i \(-0.440455\pi\)
0.185978 + 0.982554i \(0.440455\pi\)
\(882\) −1.46311 + 4.50299i −0.0492655 + 0.151624i
\(883\) 19.5693 14.2179i 0.658558 0.478470i −0.207618 0.978210i \(-0.566571\pi\)
0.866176 + 0.499740i \(0.166571\pi\)
\(884\) 10.4129 + 7.56545i 0.350225 + 0.254453i
\(885\) 0 0
\(886\) −1.55599 4.78883i −0.0522744 0.160884i
\(887\) 14.1020 + 10.2457i 0.473497 + 0.344016i 0.798803 0.601593i \(-0.205467\pi\)
−0.325305 + 0.945609i \(0.605467\pi\)
\(888\) 4.23694 3.07832i 0.142183 0.103302i
\(889\) −6.92668 + 21.3181i −0.232313 + 0.714987i
\(890\) 0 0
\(891\) 27.1743 3.00299i 0.910374 0.100604i
\(892\) 15.9408 0.533738
\(893\) −10.4303 + 32.1013i −0.349038 + 1.07423i
\(894\) −5.97669 + 4.34232i −0.199891 + 0.145229i
\(895\) 0 0
\(896\) −4.80182 14.7785i −0.160418 0.493714i
\(897\) 2.00999 + 6.18611i 0.0671116 + 0.206548i
\(898\) 0.772785 + 0.561461i 0.0257882 + 0.0187362i
\(899\) 4.31162 3.13257i 0.143801 0.104477i
\(900\) 0 0
\(901\) 58.7622 1.95765
\(902\) −2.57332 1.46743i −0.0856821 0.0488602i
\(903\) −45.1433 −1.50228
\(904\) −0.611934 + 1.88334i −0.0203526 + 0.0626389i
\(905\) 0 0
\(906\) −0.489551 0.355680i −0.0162643 0.0118167i
\(907\) 4.00901 + 12.3385i 0.133117 + 0.409692i 0.995292 0.0969182i \(-0.0308985\pi\)
−0.862176 + 0.506610i \(0.830899\pi\)
\(908\) −12.6809 39.0279i −0.420832 1.29519i
\(909\) 12.5476 + 9.11637i 0.416178 + 0.302371i
\(910\) 0 0
\(911\) −6.28687 + 19.3490i −0.208293 + 0.641061i 0.791269 + 0.611468i \(0.209421\pi\)
−0.999562 + 0.0295922i \(0.990579\pi\)
\(912\) 55.6922 1.84415
\(913\) 4.50498 + 2.56896i 0.149093 + 0.0850202i
\(914\) 2.97102 0.0982725
\(915\) 0 0
\(916\) 12.8384 9.32761i 0.424191 0.308193i
\(917\) 53.3545 + 38.7643i 1.76192 + 1.28011i
\(918\) 2.03802 + 6.27238i 0.0672647 + 0.207019i
\(919\) 2.73013 + 8.40248i 0.0900587 + 0.277172i 0.985934 0.167133i \(-0.0534508\pi\)
−0.895876 + 0.444305i \(0.853451\pi\)
\(920\) 0 0
\(921\) 54.6054 39.6732i 1.79931 1.30728i
\(922\) 1.24980 3.84650i 0.0411601 0.126678i
\(923\) −10.1777 −0.335004
\(924\) 69.5875 7.69000i 2.28926 0.252982i
\(925\) 0 0
\(926\) 0.768475 2.36512i 0.0252537 0.0777228i
\(927\) −31.6106 + 22.9664i −1.03823 + 0.754317i
\(928\) −5.53230 4.01945i −0.181607 0.131945i
\(929\) 4.77831 + 14.7061i 0.156771 + 0.482492i 0.998336 0.0576639i \(-0.0183652\pi\)
−0.841565 + 0.540156i \(0.818365\pi\)
\(930\) 0 0
\(931\) −22.3097 16.2089i −0.731170 0.531226i
\(932\) 40.7938 29.6384i 1.33625 0.970839i
\(933\) −17.2109 + 52.9698i −0.563461 + 1.73415i
\(934\) 0.557931 0.0182561
\(935\) 0 0
\(936\) −3.92439 −0.128273
\(937\) −12.8694 + 39.6078i −0.420424 + 1.29393i 0.486885 + 0.873466i \(0.338133\pi\)
−0.907309 + 0.420465i \(0.861867\pi\)
\(938\) −3.27791 + 2.38154i −0.107028 + 0.0777601i
\(939\) −42.2349 30.6855i −1.37828 1.00138i
\(940\) 0 0
\(941\) 14.6364 + 45.0462i 0.477133 + 1.46847i 0.843059 + 0.537821i \(0.180753\pi\)
−0.365925 + 0.930644i \(0.619247\pi\)
\(942\) 1.13043 + 0.821303i 0.0368313 + 0.0267595i
\(943\) −9.44445 + 6.86179i −0.307553 + 0.223451i
\(944\) −4.81991 + 14.8341i −0.156875 + 0.482810i
\(945\) 0 0
\(946\) −0.806061 1.78472i −0.0262073 0.0580263i
\(947\) −41.5599 −1.35052 −0.675258 0.737581i \(-0.735968\pi\)
−0.675258 + 0.737581i \(0.735968\pi\)
\(948\) −0.719993 + 2.21591i −0.0233843 + 0.0719695i
\(949\) −8.26156 + 6.00238i −0.268182 + 0.194845i
\(950\) 0 0
\(951\) −10.3198 31.7611i −0.334642 1.02992i
\(952\) 3.32699 + 10.2394i 0.107829 + 0.331862i
\(953\) 22.7788 + 16.5498i 0.737877 + 0.536099i 0.892046 0.451946i \(-0.149270\pi\)
−0.154169 + 0.988045i \(0.549270\pi\)
\(954\) −7.21202 + 5.23984i −0.233498 + 0.169646i
\(955\) 0 0
\(956\) −1.08349 −0.0350425
\(957\) 30.3303 27.6044i 0.980440 0.892322i
\(958\) 0.167824 0.00542215
\(959\) 4.60702 14.1790i 0.148769 0.457862i
\(960\) 0 0
\(961\) 23.7397 + 17.2479i 0.765798 + 0.556385i
\(962\) −0.162802 0.501055i −0.00524896 0.0161546i
\(963\) −25.7039 79.1085i −0.828297 2.54924i
\(964\) 35.1868 + 25.5647i 1.13329 + 0.823384i
\(965\) 0 0
\(966\) −0.836551 + 2.57464i −0.0269156 + 0.0828377i
\(967\) 53.8069 1.73031 0.865157 0.501502i \(-0.167219\pi\)
0.865157 + 0.501502i \(0.167219\pi\)
\(968\) 3.10827 + 5.25326i 0.0999036 + 0.168846i
\(969\) −77.9425 −2.50387
\(970\) 0 0
\(971\) 9.60235 6.97651i 0.308154 0.223887i −0.422950 0.906153i \(-0.639005\pi\)
0.731104 + 0.682266i \(0.239005\pi\)
\(972\) −2.40216 1.74527i −0.0770494 0.0559797i
\(973\) 3.01226 + 9.27077i 0.0965685 + 0.297207i
\(974\) 1.82053 + 5.60302i 0.0583336 + 0.179532i
\(975\) 0 0
\(976\) 45.5011 33.0585i 1.45646 1.05818i
\(977\) 10.7196 32.9916i 0.342951 1.05550i −0.619720 0.784823i \(-0.712754\pi\)
0.962671 0.270673i \(-0.0872461\pi\)
\(978\) −2.83442 −0.0906346
\(979\) 16.9350 15.4130i 0.541246 0.492601i
\(980\) 0 0
\(981\) 22.5768 69.4842i 0.720821 2.21846i
\(982\) 2.06189 1.49805i 0.0657975 0.0478047i
\(983\) −46.0561 33.4617i −1.46896 1.06726i −0.980913 0.194446i \(-0.937709\pi\)
−0.488048 0.872817i \(-0.662291\pi\)
\(984\) −3.28039 10.0960i −0.104575 0.321849i
\(985\) 0 0
\(986\) 2.53868 + 1.84446i 0.0808482 + 0.0587396i
\(987\) −60.6009 + 44.0291i −1.92895 + 1.40146i
\(988\) 3.51431 10.8159i 0.111805 0.344101i
\(989\) −7.71735 −0.245397
\(990\) 0 0
\(991\) 36.4470 1.15778 0.578889 0.815407i \(-0.303487\pi\)
0.578889 + 0.815407i \(0.303487\pi\)
\(992\) −0.656637 + 2.02092i −0.0208482 + 0.0641643i
\(993\) 62.2305 45.2131i 1.97482 1.43479i
\(994\) −3.42694 2.48982i −0.108696 0.0789722i
\(995\) 0 0
\(996\) 2.85739 + 8.79415i 0.0905399 + 0.278653i
\(997\) 19.4874 + 14.1584i 0.617173 + 0.448402i 0.851933 0.523651i \(-0.175430\pi\)
−0.234760 + 0.972053i \(0.575430\pi\)
\(998\) 2.55835 1.85875i 0.0809833 0.0588378i
\(999\) −8.50189 + 26.1661i −0.268988 + 0.827860i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.c.251.3 yes 16
5.2 odd 4 275.2.z.c.174.4 32
5.3 odd 4 275.2.z.c.174.5 32
5.4 even 2 275.2.h.e.251.2 yes 16
11.4 even 5 3025.2.a.bi.1.5 8
11.5 even 5 inner 275.2.h.c.126.3 16
11.7 odd 10 3025.2.a.bm.1.4 8
55.4 even 10 3025.2.a.bn.1.4 8
55.27 odd 20 275.2.z.c.49.5 32
55.29 odd 10 3025.2.a.bj.1.5 8
55.38 odd 20 275.2.z.c.49.4 32
55.49 even 10 275.2.h.e.126.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.126.3 16 11.5 even 5 inner
275.2.h.c.251.3 yes 16 1.1 even 1 trivial
275.2.h.e.126.2 yes 16 55.49 even 10
275.2.h.e.251.2 yes 16 5.4 even 2
275.2.z.c.49.4 32 55.38 odd 20
275.2.z.c.49.5 32 55.27 odd 20
275.2.z.c.174.4 32 5.2 odd 4
275.2.z.c.174.5 32 5.3 odd 4
3025.2.a.bi.1.5 8 11.4 even 5
3025.2.a.bj.1.5 8 55.29 odd 10
3025.2.a.bm.1.4 8 11.7 odd 10
3025.2.a.bn.1.4 8 55.4 even 10