Properties

Label 275.3.q.f.24.3
Level $275$
Weight $3$
Character 275.24
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,3,Mod(24,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.24");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 24.3
Character \(\chi\) \(=\) 275.24
Dual form 275.3.q.f.149.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0941972 + 0.289909i) q^{2} +(3.03467 + 4.17687i) q^{3} +(3.16089 + 2.29652i) q^{4} +(-1.49677 + 0.486330i) q^{6} +(-8.17974 - 5.94293i) q^{7} +(-1.94998 + 1.41674i) q^{8} +(-5.45583 + 16.7913i) q^{9} +(-1.50807 + 10.8961i) q^{11} +20.1718i q^{12} +(1.49891 - 4.61316i) q^{13} +(2.49342 - 1.81157i) q^{14} +(4.60237 + 14.1646i) q^{16} +(-0.883556 - 2.71930i) q^{17} +(-4.35403 - 3.16339i) q^{18} +(12.5616 + 17.2895i) q^{19} -52.2005i q^{21} +(-3.01683 - 1.46359i) q^{22} +12.1155i q^{23} +(-11.8351 - 3.84545i) q^{24} +(1.19620 + 0.869094i) q^{26} +(-42.4999 + 13.8091i) q^{27} +(-12.2072 - 37.5699i) q^{28} +(28.0610 - 38.6227i) q^{29} +(9.63737 - 29.6608i) q^{31} -14.1812 q^{32} +(-50.0882 + 26.7672i) q^{33} +0.871580 q^{34} +(-55.8070 + 40.5461i) q^{36} +(11.6773 - 16.0724i) q^{37} +(-6.19566 + 2.01309i) q^{38} +(23.8172 - 7.73869i) q^{39} +(23.5474 + 32.4102i) q^{41} +(15.1334 + 4.91714i) q^{42} +28.7133 q^{43} +(-29.7901 + 30.9782i) q^{44} +(-3.51240 - 1.14125i) q^{46} +(2.31141 + 3.18139i) q^{47} +(-45.1971 + 62.2085i) q^{48} +(16.4479 + 50.6214i) q^{49} +(8.67687 - 11.9427i) q^{51} +(15.3321 - 11.1394i) q^{52} +(59.9100 + 19.4659i) q^{53} -13.6219i q^{54} +24.3699 q^{56} +(-34.0958 + 104.936i) q^{57} +(8.55381 + 11.7733i) q^{58} +(-41.4758 - 30.1339i) q^{59} +(31.6001 - 10.2675i) q^{61} +(7.69112 + 5.58793i) q^{62} +(144.417 - 104.925i) q^{63} +(-17.0737 + 52.5473i) q^{64} +(-3.04189 - 17.0424i) q^{66} -90.1298i q^{67} +(3.45212 - 10.6245i) q^{68} +(-50.6049 + 36.7666i) q^{69} +(1.85591 + 5.71191i) q^{71} +(-13.1502 - 40.4722i) q^{72} +(-105.902 - 76.9424i) q^{73} +(3.55957 + 4.89933i) q^{74} +83.4983i q^{76} +(77.0905 - 80.1652i) q^{77} +7.63380i q^{78} +(-85.4604 - 27.7678i) q^{79} +(-58.1000 - 42.2121i) q^{81} +(-11.6141 + 3.77365i) q^{82} +(27.3155 + 84.0686i) q^{83} +(119.880 - 165.000i) q^{84} +(-2.70472 + 8.32426i) q^{86} +246.478 q^{87} +(-12.4963 - 23.3837i) q^{88} +118.531 q^{89} +(-39.6764 + 28.8266i) q^{91} +(-27.8236 + 38.2959i) q^{92} +(153.135 - 49.7567i) q^{93} +(-1.14004 + 0.370422i) q^{94} +(-43.0353 - 59.2330i) q^{96} +(-63.5544 - 20.6501i) q^{97} -16.2250 q^{98} +(-174.733 - 84.7699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 26 q^{4} + 40 q^{6} - 8 q^{9} + 24 q^{11} + 120 q^{14} - 86 q^{16} + 160 q^{19} - 420 q^{24} - 240 q^{26} - 10 q^{29} - 92 q^{31} - 20 q^{34} - 78 q^{36} + 570 q^{39} + 460 q^{41} - 976 q^{44} + 410 q^{46}+ \cdots - 1338 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0941972 + 0.289909i −0.0470986 + 0.144955i −0.971840 0.235641i \(-0.924281\pi\)
0.924742 + 0.380596i \(0.124281\pi\)
\(3\) 3.03467 + 4.17687i 1.01156 + 1.39229i 0.917957 + 0.396679i \(0.129837\pi\)
0.0935994 + 0.995610i \(0.470163\pi\)
\(4\) 3.16089 + 2.29652i 0.790223 + 0.574131i
\(5\) 0 0
\(6\) −1.49677 + 0.486330i −0.249462 + 0.0810550i
\(7\) −8.17974 5.94293i −1.16853 0.848990i −0.177701 0.984084i \(-0.556866\pi\)
−0.990833 + 0.135095i \(0.956866\pi\)
\(8\) −1.94998 + 1.41674i −0.243747 + 0.177093i
\(9\) −5.45583 + 16.7913i −0.606203 + 1.86570i
\(10\) 0 0
\(11\) −1.50807 + 10.8961i −0.137097 + 0.990558i
\(12\) 20.1718i 1.68099i
\(13\) 1.49891 4.61316i 0.115301 0.354859i −0.876709 0.481021i \(-0.840266\pi\)
0.992010 + 0.126162i \(0.0402661\pi\)
\(14\) 2.49342 1.81157i 0.178101 0.129398i
\(15\) 0 0
\(16\) 4.60237 + 14.1646i 0.287648 + 0.885290i
\(17\) −0.883556 2.71930i −0.0519739 0.159959i 0.921701 0.387902i \(-0.126800\pi\)
−0.973675 + 0.227943i \(0.926800\pi\)
\(18\) −4.35403 3.16339i −0.241891 0.175744i
\(19\) 12.5616 + 17.2895i 0.661136 + 0.909975i 0.999518 0.0310333i \(-0.00987978\pi\)
−0.338383 + 0.941009i \(0.609880\pi\)
\(20\) 0 0
\(21\) 52.2005i 2.48574i
\(22\) −3.01683 1.46359i −0.137129 0.0665267i
\(23\) 12.1155i 0.526762i 0.964692 + 0.263381i \(0.0848376\pi\)
−0.964692 + 0.263381i \(0.915162\pi\)
\(24\) −11.8351 3.84545i −0.493128 0.160227i
\(25\) 0 0
\(26\) 1.19620 + 0.869094i 0.0460079 + 0.0334267i
\(27\) −42.4999 + 13.8091i −1.57407 + 0.511447i
\(28\) −12.2072 37.5699i −0.435972 1.34178i
\(29\) 28.0610 38.6227i 0.967622 1.33182i 0.0243833 0.999703i \(-0.492238\pi\)
0.943239 0.332115i \(-0.107762\pi\)
\(30\) 0 0
\(31\) 9.63737 29.6608i 0.310883 0.956800i −0.666533 0.745476i \(-0.732222\pi\)
0.977416 0.211324i \(-0.0677776\pi\)
\(32\) −14.1812 −0.443163
\(33\) −50.0882 + 26.7672i −1.51782 + 0.811127i
\(34\) 0.871580 0.0256347
\(35\) 0 0
\(36\) −55.8070 + 40.5461i −1.55019 + 1.12628i
\(37\) 11.6773 16.0724i 0.315602 0.434389i −0.621516 0.783402i \(-0.713483\pi\)
0.937118 + 0.349012i \(0.113483\pi\)
\(38\) −6.19566 + 2.01309i −0.163044 + 0.0529761i
\(39\) 23.8172 7.73869i 0.610699 0.198428i
\(40\) 0 0
\(41\) 23.5474 + 32.4102i 0.574326 + 0.790493i 0.993059 0.117617i \(-0.0375255\pi\)
−0.418733 + 0.908110i \(0.637526\pi\)
\(42\) 15.1334 + 4.91714i 0.360319 + 0.117075i
\(43\) 28.7133 0.667752 0.333876 0.942617i \(-0.391643\pi\)
0.333876 + 0.942617i \(0.391643\pi\)
\(44\) −29.7901 + 30.9782i −0.677047 + 0.704050i
\(45\) 0 0
\(46\) −3.51240 1.14125i −0.0763566 0.0248098i
\(47\) 2.31141 + 3.18139i 0.0491790 + 0.0676891i 0.832898 0.553426i \(-0.186680\pi\)
−0.783719 + 0.621115i \(0.786680\pi\)
\(48\) −45.1971 + 62.2085i −0.941607 + 1.29601i
\(49\) 16.4479 + 50.6214i 0.335671 + 1.03309i
\(50\) 0 0
\(51\) 8.67687 11.9427i 0.170135 0.234170i
\(52\) 15.3321 11.1394i 0.294848 0.214220i
\(53\) 59.9100 + 19.4659i 1.13038 + 0.367282i 0.813719 0.581258i \(-0.197439\pi\)
0.316658 + 0.948540i \(0.397439\pi\)
\(54\) 13.6219i 0.252257i
\(55\) 0 0
\(56\) 24.3699 0.435177
\(57\) −34.0958 + 104.936i −0.598172 + 1.84098i
\(58\) 8.55381 + 11.7733i 0.147479 + 0.202988i
\(59\) −41.4758 30.1339i −0.702979 0.510744i 0.177922 0.984045i \(-0.443063\pi\)
−0.880901 + 0.473300i \(0.843063\pi\)
\(60\) 0 0
\(61\) 31.6001 10.2675i 0.518035 0.168320i −0.0383184 0.999266i \(-0.512200\pi\)
0.556353 + 0.830946i \(0.312200\pi\)
\(62\) 7.69112 + 5.58793i 0.124050 + 0.0901279i
\(63\) 144.417 104.925i 2.29233 1.66548i
\(64\) −17.0737 + 52.5473i −0.266776 + 0.821052i
\(65\) 0 0
\(66\) −3.04189 17.0424i −0.0460892 0.258218i
\(67\) 90.1298i 1.34522i −0.739997 0.672611i \(-0.765173\pi\)
0.739997 0.672611i \(-0.234827\pi\)
\(68\) 3.45212 10.6245i 0.0507665 0.156243i
\(69\) −50.6049 + 36.7666i −0.733405 + 0.532850i
\(70\) 0 0
\(71\) 1.85591 + 5.71191i 0.0261396 + 0.0804494i 0.963275 0.268516i \(-0.0865331\pi\)
−0.937136 + 0.348965i \(0.886533\pi\)
\(72\) −13.1502 40.4722i −0.182642 0.562114i
\(73\) −105.902 76.9424i −1.45071 1.05401i −0.985664 0.168722i \(-0.946036\pi\)
−0.465051 0.885284i \(-0.653964\pi\)
\(74\) 3.55957 + 4.89933i 0.0481023 + 0.0662072i
\(75\) 0 0
\(76\) 83.4983i 1.09866i
\(77\) 77.0905 80.1652i 1.00118 1.04111i
\(78\) 7.63380i 0.0978693i
\(79\) −85.4604 27.7678i −1.08178 0.351491i −0.286714 0.958016i \(-0.592563\pi\)
−0.795064 + 0.606525i \(0.792563\pi\)
\(80\) 0 0
\(81\) −58.1000 42.2121i −0.717284 0.521137i
\(82\) −11.6141 + 3.77365i −0.141636 + 0.0460202i
\(83\) 27.3155 + 84.0686i 0.329103 + 1.01287i 0.969554 + 0.244876i \(0.0787473\pi\)
−0.640451 + 0.767999i \(0.721253\pi\)
\(84\) 119.880 165.000i 1.42714 1.96429i
\(85\) 0 0
\(86\) −2.70472 + 8.32426i −0.0314502 + 0.0967937i
\(87\) 246.478 2.83308
\(88\) −12.4963 23.3837i −0.142003 0.265724i
\(89\) 118.531 1.33180 0.665902 0.746039i \(-0.268047\pi\)
0.665902 + 0.746039i \(0.268047\pi\)
\(90\) 0 0
\(91\) −39.6764 + 28.8266i −0.436004 + 0.316775i
\(92\) −27.8236 + 38.2959i −0.302430 + 0.416260i
\(93\) 153.135 49.7567i 1.64662 0.535018i
\(94\) −1.14004 + 0.370422i −0.0121281 + 0.00394066i
\(95\) 0 0
\(96\) −43.0353 59.2330i −0.448284 0.617010i
\(97\) −63.5544 20.6501i −0.655200 0.212887i −0.0374942 0.999297i \(-0.511938\pi\)
−0.617705 + 0.786410i \(0.711938\pi\)
\(98\) −16.2250 −0.165561
\(99\) −174.733 84.7699i −1.76498 0.856262i
\(100\) 0 0
\(101\) 12.3073 + 3.99890i 0.121855 + 0.0395931i 0.369310 0.929306i \(-0.379594\pi\)
−0.247455 + 0.968899i \(0.579594\pi\)
\(102\) 2.64496 + 3.64047i 0.0259310 + 0.0356909i
\(103\) −66.4251 + 91.4263i −0.644904 + 0.887634i −0.998865 0.0476260i \(-0.984834\pi\)
0.353961 + 0.935260i \(0.384834\pi\)
\(104\) 3.61282 + 11.1191i 0.0347387 + 0.106915i
\(105\) 0 0
\(106\) −11.2867 + 15.5348i −0.106478 + 0.146555i
\(107\) 12.9688 9.42241i 0.121204 0.0880599i −0.525532 0.850774i \(-0.676134\pi\)
0.646736 + 0.762714i \(0.276134\pi\)
\(108\) −166.051 53.9531i −1.53751 0.499566i
\(109\) 156.813i 1.43865i −0.694671 0.719327i \(-0.744450\pi\)
0.694671 0.719327i \(-0.255550\pi\)
\(110\) 0 0
\(111\) 102.569 0.924045
\(112\) 46.5333 143.215i 0.415476 1.27870i
\(113\) 18.8099 + 25.8896i 0.166459 + 0.229112i 0.884095 0.467307i \(-0.154776\pi\)
−0.717636 + 0.696419i \(0.754776\pi\)
\(114\) −27.2102 19.7694i −0.238686 0.173416i
\(115\) 0 0
\(116\) 177.396 57.6394i 1.52928 0.496892i
\(117\) 69.2833 + 50.3372i 0.592165 + 0.430233i
\(118\) 12.6430 9.18568i 0.107144 0.0778447i
\(119\) −8.93338 + 27.4941i −0.0750704 + 0.231043i
\(120\) 0 0
\(121\) −116.451 32.8642i −0.962409 0.271605i
\(122\) 10.1283i 0.0830192i
\(123\) −63.9145 + 196.709i −0.519630 + 1.59926i
\(124\) 98.5794 71.6221i 0.794995 0.577598i
\(125\) 0 0
\(126\) 16.8151 + 51.7514i 0.133453 + 0.410726i
\(127\) 33.3284 + 102.574i 0.262428 + 0.807671i 0.992275 + 0.124060i \(0.0395915\pi\)
−0.729846 + 0.683611i \(0.760408\pi\)
\(128\) −59.5170 43.2416i −0.464977 0.337825i
\(129\) 87.1355 + 119.932i 0.675469 + 0.929703i
\(130\) 0 0
\(131\) 48.6741i 0.371558i 0.982592 + 0.185779i \(0.0594808\pi\)
−0.982592 + 0.185779i \(0.940519\pi\)
\(132\) −219.795 30.4205i −1.66511 0.230458i
\(133\) 216.076i 1.62463i
\(134\) 26.1295 + 8.48998i 0.194996 + 0.0633580i
\(135\) 0 0
\(136\) 5.57546 + 4.05081i 0.0409961 + 0.0297854i
\(137\) 71.4507 23.2157i 0.521538 0.169458i −0.0364052 0.999337i \(-0.511591\pi\)
0.557943 + 0.829879i \(0.311591\pi\)
\(138\) −5.89214 18.1341i −0.0426967 0.131407i
\(139\) 28.3745 39.0542i 0.204133 0.280965i −0.694660 0.719338i \(-0.744445\pi\)
0.898793 + 0.438373i \(0.144445\pi\)
\(140\) 0 0
\(141\) −6.27385 + 19.3089i −0.0444954 + 0.136943i
\(142\) −1.83076 −0.0128926
\(143\) 48.0052 + 23.2892i 0.335700 + 0.162862i
\(144\) −262.953 −1.82606
\(145\) 0 0
\(146\) 32.2820 23.4542i 0.221110 0.160646i
\(147\) −161.525 + 222.320i −1.09881 + 1.51238i
\(148\) 73.8213 23.9860i 0.498793 0.162068i
\(149\) −114.600 + 37.2357i −0.769126 + 0.249904i −0.667191 0.744887i \(-0.732503\pi\)
−0.101935 + 0.994791i \(0.532503\pi\)
\(150\) 0 0
\(151\) −45.4102 62.5018i −0.300730 0.413919i 0.631733 0.775186i \(-0.282344\pi\)
−0.932462 + 0.361268i \(0.882344\pi\)
\(152\) −48.9896 15.9177i −0.322300 0.104722i
\(153\) 50.4812 0.329943
\(154\) 15.9789 + 29.9006i 0.103759 + 0.194160i
\(155\) 0 0
\(156\) 93.0559 + 30.2357i 0.596512 + 0.193819i
\(157\) −31.8599 43.8515i −0.202930 0.279309i 0.695407 0.718616i \(-0.255224\pi\)
−0.898337 + 0.439307i \(0.855224\pi\)
\(158\) 16.1003 22.1601i 0.101900 0.140254i
\(159\) 100.501 + 309.309i 0.632079 + 1.94534i
\(160\) 0 0
\(161\) 72.0017 99.1018i 0.447215 0.615539i
\(162\) 17.7105 12.8675i 0.109324 0.0794287i
\(163\) 193.205 + 62.7761i 1.18531 + 0.385129i 0.834336 0.551257i \(-0.185852\pi\)
0.350971 + 0.936386i \(0.385852\pi\)
\(164\) 156.522i 0.954404i
\(165\) 0 0
\(166\) −26.9453 −0.162321
\(167\) −41.0093 + 126.214i −0.245565 + 0.755771i 0.749978 + 0.661462i \(0.230064\pi\)
−0.995543 + 0.0943081i \(0.969936\pi\)
\(168\) 73.9546 + 101.790i 0.440206 + 0.605891i
\(169\) 117.689 + 85.5063i 0.696387 + 0.505954i
\(170\) 0 0
\(171\) −358.848 + 116.597i −2.09853 + 0.681852i
\(172\) 90.7598 + 65.9408i 0.527673 + 0.383377i
\(173\) −90.4855 + 65.7416i −0.523037 + 0.380009i −0.817747 0.575578i \(-0.804777\pi\)
0.294709 + 0.955587i \(0.404777\pi\)
\(174\) −23.2175 + 71.4562i −0.133434 + 0.410668i
\(175\) 0 0
\(176\) −161.281 + 28.7868i −0.916367 + 0.163562i
\(177\) 264.685i 1.49540i
\(178\) −11.1652 + 34.3631i −0.0627261 + 0.193051i
\(179\) −38.7619 + 28.1621i −0.216547 + 0.157330i −0.690771 0.723074i \(-0.742729\pi\)
0.474224 + 0.880404i \(0.342729\pi\)
\(180\) 0 0
\(181\) 2.09873 + 6.45923i 0.0115952 + 0.0356864i 0.956687 0.291119i \(-0.0940277\pi\)
−0.945092 + 0.326806i \(0.894028\pi\)
\(182\) −4.61968 14.2179i −0.0253829 0.0781204i
\(183\) 138.782 + 100.831i 0.758371 + 0.550989i
\(184\) −17.1646 23.6250i −0.0932857 0.128397i
\(185\) 0 0
\(186\) 49.0823i 0.263883i
\(187\) 30.9624 5.52645i 0.165574 0.0295532i
\(188\) 15.3642i 0.0817246i
\(189\) 429.705 + 139.619i 2.27357 + 0.738728i
\(190\) 0 0
\(191\) 60.7195 + 44.1153i 0.317903 + 0.230970i 0.735280 0.677763i \(-0.237051\pi\)
−0.417377 + 0.908733i \(0.637051\pi\)
\(192\) −271.296 + 88.1494i −1.41300 + 0.459112i
\(193\) −117.250 360.857i −0.607511 1.86973i −0.478513 0.878081i \(-0.658824\pi\)
−0.128998 0.991645i \(-0.541176\pi\)
\(194\) 11.9733 16.4798i 0.0617180 0.0849475i
\(195\) 0 0
\(196\) −64.2633 + 197.782i −0.327874 + 1.00909i
\(197\) −91.4898 −0.464415 −0.232208 0.972666i \(-0.574595\pi\)
−0.232208 + 0.972666i \(0.574595\pi\)
\(198\) 41.0349 42.6715i 0.207247 0.215513i
\(199\) −24.0213 −0.120710 −0.0603551 0.998177i \(-0.519223\pi\)
−0.0603551 + 0.998177i \(0.519223\pi\)
\(200\) 0 0
\(201\) 376.460 273.514i 1.87294 1.36077i
\(202\) −2.31864 + 3.19133i −0.0114784 + 0.0157987i
\(203\) −459.064 + 149.159i −2.26140 + 0.734773i
\(204\) 54.8533 17.8229i 0.268889 0.0873673i
\(205\) 0 0
\(206\) −20.2483 27.8693i −0.0982926 0.135288i
\(207\) −203.436 66.1002i −0.982781 0.319325i
\(208\) 72.2423 0.347319
\(209\) −207.333 + 110.799i −0.992023 + 0.530138i
\(210\) 0 0
\(211\) −349.688 113.620i −1.65729 0.538486i −0.676987 0.735995i \(-0.736715\pi\)
−0.980301 + 0.197509i \(0.936715\pi\)
\(212\) 144.665 + 199.115i 0.682383 + 0.939219i
\(213\) −18.2258 + 25.0856i −0.0855671 + 0.117773i
\(214\) 1.51002 + 4.64735i 0.00705615 + 0.0217166i
\(215\) 0 0
\(216\) 63.3100 87.1387i 0.293102 0.403420i
\(217\) −255.103 + 185.343i −1.17559 + 0.854117i
\(218\) 45.4616 + 14.7714i 0.208540 + 0.0677586i
\(219\) 675.834i 3.08600i
\(220\) 0 0
\(221\) −13.8690 −0.0627555
\(222\) −9.66172 + 29.7357i −0.0435212 + 0.133945i
\(223\) −104.183 143.396i −0.467190 0.643032i 0.508790 0.860891i \(-0.330093\pi\)
−0.975980 + 0.217858i \(0.930093\pi\)
\(224\) 115.999 + 84.2779i 0.517851 + 0.376241i
\(225\) 0 0
\(226\) −9.27747 + 3.01443i −0.0410508 + 0.0133382i
\(227\) 14.9656 + 10.8732i 0.0659279 + 0.0478994i 0.620261 0.784395i \(-0.287027\pi\)
−0.554333 + 0.832295i \(0.687027\pi\)
\(228\) −348.761 + 253.390i −1.52966 + 1.11136i
\(229\) 41.3284 127.196i 0.180473 0.555440i −0.819368 0.573268i \(-0.805675\pi\)
0.999841 + 0.0178283i \(0.00567522\pi\)
\(230\) 0 0
\(231\) 568.784 + 78.7219i 2.46227 + 0.340787i
\(232\) 115.069i 0.495985i
\(233\) −13.6070 + 41.8780i −0.0583991 + 0.179734i −0.976001 0.217767i \(-0.930123\pi\)
0.917602 + 0.397501i \(0.130123\pi\)
\(234\) −21.1195 + 15.3442i −0.0902544 + 0.0655736i
\(235\) 0 0
\(236\) −61.8973 190.500i −0.262277 0.807204i
\(237\) −143.362 441.223i −0.604903 1.86170i
\(238\) −7.12930 5.17974i −0.0299550 0.0217636i
\(239\) −97.2433 133.844i −0.406876 0.560017i 0.555577 0.831465i \(-0.312497\pi\)
−0.962453 + 0.271448i \(0.912497\pi\)
\(240\) 0 0
\(241\) 68.3979i 0.283809i −0.989880 0.141904i \(-0.954677\pi\)
0.989880 0.141904i \(-0.0453225\pi\)
\(242\) 20.4970 30.6646i 0.0846985 0.126713i
\(243\) 31.4080i 0.129251i
\(244\) 123.464 + 40.1160i 0.506001 + 0.164410i
\(245\) 0 0
\(246\) −51.0071 37.0588i −0.207346 0.150645i
\(247\) 98.5880 32.0332i 0.399142 0.129689i
\(248\) 23.2290 + 71.4915i 0.0936653 + 0.288272i
\(249\) −268.250 + 369.214i −1.07731 + 1.48279i
\(250\) 0 0
\(251\) 104.767 322.440i 0.417399 1.28462i −0.492688 0.870206i \(-0.663986\pi\)
0.910087 0.414417i \(-0.136014\pi\)
\(252\) 697.449 2.76766
\(253\) −132.012 18.2710i −0.521788 0.0722175i
\(254\) −32.8767 −0.129436
\(255\) 0 0
\(256\) −160.655 + 116.723i −0.627559 + 0.455949i
\(257\) −148.075 + 203.807i −0.576167 + 0.793025i −0.993269 0.115835i \(-0.963046\pi\)
0.417102 + 0.908860i \(0.363046\pi\)
\(258\) −42.9772 + 13.9641i −0.166578 + 0.0541246i
\(259\) −191.034 + 62.0708i −0.737584 + 0.239656i
\(260\) 0 0
\(261\) 495.430 + 681.901i 1.89820 + 2.61265i
\(262\) −14.1111 4.58496i −0.0538590 0.0174999i
\(263\) 424.803 1.61522 0.807610 0.589717i \(-0.200761\pi\)
0.807610 + 0.589717i \(0.200761\pi\)
\(264\) 59.7486 123.157i 0.226320 0.466505i
\(265\) 0 0
\(266\) 62.6425 + 20.3538i 0.235498 + 0.0765180i
\(267\) 359.701 + 495.086i 1.34720 + 1.85426i
\(268\) 206.985 284.891i 0.772333 1.06303i
\(269\) −154.300 474.888i −0.573608 1.76538i −0.640872 0.767648i \(-0.721427\pi\)
0.0672640 0.997735i \(-0.478573\pi\)
\(270\) 0 0
\(271\) −138.031 + 189.983i −0.509339 + 0.701045i −0.983808 0.179227i \(-0.942640\pi\)
0.474468 + 0.880273i \(0.342640\pi\)
\(272\) 34.4515 25.0305i 0.126660 0.0920239i
\(273\) −240.809 78.2437i −0.882086 0.286607i
\(274\) 22.9011i 0.0835806i
\(275\) 0 0
\(276\) −244.392 −0.885479
\(277\) −42.0248 + 129.339i −0.151714 + 0.466928i −0.997813 0.0660976i \(-0.978945\pi\)
0.846099 + 0.533026i \(0.178945\pi\)
\(278\) 8.64937 + 11.9048i 0.0311128 + 0.0428232i
\(279\) 445.464 + 323.648i 1.59664 + 1.16003i
\(280\) 0 0
\(281\) −287.964 + 93.5652i −1.02478 + 0.332972i −0.772726 0.634740i \(-0.781107\pi\)
−0.252057 + 0.967712i \(0.581107\pi\)
\(282\) −5.00685 3.63769i −0.0177548 0.0128996i
\(283\) −8.61523 + 6.25933i −0.0304425 + 0.0221178i −0.602902 0.797815i \(-0.705989\pi\)
0.572460 + 0.819933i \(0.305989\pi\)
\(284\) −7.25119 + 22.3169i −0.0255324 + 0.0785805i
\(285\) 0 0
\(286\) −11.2737 + 11.7234i −0.0394186 + 0.0409908i
\(287\) 405.047i 1.41131i
\(288\) 77.3703 238.121i 0.268647 0.826810i
\(289\) 227.192 165.065i 0.786131 0.571158i
\(290\) 0 0
\(291\) −106.614 328.124i −0.366371 1.12757i
\(292\) −158.045 486.414i −0.541251 1.66580i
\(293\) 267.010 + 193.994i 0.911296 + 0.662095i 0.941342 0.337453i \(-0.109565\pi\)
−0.0300463 + 0.999549i \(0.509565\pi\)
\(294\) −49.2374 67.7695i −0.167474 0.230509i
\(295\) 0 0
\(296\) 47.8845i 0.161772i
\(297\) −86.3727 483.910i −0.290817 1.62933i
\(298\) 36.7310i 0.123259i
\(299\) 55.8909 + 18.1600i 0.186926 + 0.0607359i
\(300\) 0 0
\(301\) −234.868 170.641i −0.780291 0.566914i
\(302\) 22.3973 7.27734i 0.0741634 0.0240971i
\(303\) 20.6459 + 63.5415i 0.0681382 + 0.209708i
\(304\) −187.087 + 257.503i −0.615418 + 0.847050i
\(305\) 0 0
\(306\) −4.75519 + 14.6350i −0.0155398 + 0.0478267i
\(307\) 111.473 0.363104 0.181552 0.983381i \(-0.441888\pi\)
0.181552 + 0.983381i \(0.441888\pi\)
\(308\) 427.776 76.3534i 1.38888 0.247901i
\(309\) −583.454 −1.88820
\(310\) 0 0
\(311\) −327.747 + 238.122i −1.05385 + 0.765665i −0.972940 0.231057i \(-0.925782\pi\)
−0.0809071 + 0.996722i \(0.525782\pi\)
\(312\) −35.4794 + 48.8331i −0.113716 + 0.156516i
\(313\) 161.450 52.4582i 0.515814 0.167598i −0.0395307 0.999218i \(-0.512586\pi\)
0.555345 + 0.831620i \(0.312586\pi\)
\(314\) 15.7141 5.10581i 0.0500448 0.0162605i
\(315\) 0 0
\(316\) −206.362 284.033i −0.653044 0.898838i
\(317\) −367.389 119.372i −1.15895 0.376567i −0.334445 0.942415i \(-0.608549\pi\)
−0.824510 + 0.565848i \(0.808549\pi\)
\(318\) −99.1383 −0.311756
\(319\) 378.520 + 364.003i 1.18658 + 1.14107i
\(320\) 0 0
\(321\) 78.7123 + 25.5752i 0.245210 + 0.0796735i
\(322\) 21.9482 + 30.2091i 0.0681620 + 0.0938170i
\(323\) 35.9167 49.4350i 0.111197 0.153050i
\(324\) −86.7068 266.856i −0.267613 0.823630i
\(325\) 0 0
\(326\) −36.3987 + 50.0986i −0.111653 + 0.153677i
\(327\) 654.988 475.877i 2.00302 1.45528i
\(328\) −91.8337 29.8386i −0.279981 0.0909713i
\(329\) 39.7595i 0.120849i
\(330\) 0 0
\(331\) 118.966 0.359413 0.179706 0.983720i \(-0.442485\pi\)
0.179706 + 0.983720i \(0.442485\pi\)
\(332\) −106.724 + 328.463i −0.321458 + 0.989346i
\(333\) 206.168 + 283.765i 0.619122 + 0.852148i
\(334\) −32.7275 23.7780i −0.0979867 0.0711915i
\(335\) 0 0
\(336\) 739.402 240.246i 2.20060 0.715018i
\(337\) 358.847 + 260.717i 1.06483 + 0.773642i 0.974975 0.222313i \(-0.0713607\pi\)
0.0898516 + 0.995955i \(0.471361\pi\)
\(338\) −35.8751 + 26.0648i −0.106139 + 0.0771147i
\(339\) −51.0556 + 157.133i −0.150606 + 0.463519i
\(340\) 0 0
\(341\) 308.654 + 149.741i 0.905144 + 0.439122i
\(342\) 115.016i 0.336305i
\(343\) 13.2053 40.6417i 0.0384993 0.118489i
\(344\) −55.9903 + 40.6793i −0.162763 + 0.118254i
\(345\) 0 0
\(346\) −10.5356 32.4252i −0.0304497 0.0937146i
\(347\) 163.076 + 501.898i 0.469961 + 1.44639i 0.852635 + 0.522507i \(0.175003\pi\)
−0.382674 + 0.923883i \(0.624997\pi\)
\(348\) 779.091 + 566.042i 2.23877 + 1.62656i
\(349\) −318.255 438.040i −0.911905 1.25513i −0.966512 0.256622i \(-0.917390\pi\)
0.0546065 0.998508i \(-0.482610\pi\)
\(350\) 0 0
\(351\) 216.758i 0.617543i
\(352\) 21.3862 154.520i 0.0607563 0.438978i
\(353\) 216.813i 0.614201i −0.951677 0.307101i \(-0.900641\pi\)
0.951677 0.307101i \(-0.0993588\pi\)
\(354\) 76.7347 + 24.9326i 0.216765 + 0.0704311i
\(355\) 0 0
\(356\) 374.662 + 272.208i 1.05242 + 0.764630i
\(357\) −141.949 + 46.1221i −0.397616 + 0.129193i
\(358\) −4.51321 13.8902i −0.0126067 0.0387995i
\(359\) 329.315 453.263i 0.917311 1.26257i −0.0472967 0.998881i \(-0.515061\pi\)
0.964608 0.263689i \(-0.0849394\pi\)
\(360\) 0 0
\(361\) −29.5795 + 91.0363i −0.0819376 + 0.252178i
\(362\) −2.07029 −0.00571902
\(363\) −216.123 586.134i −0.595379 1.61469i
\(364\) −191.614 −0.526411
\(365\) 0 0
\(366\) −42.3047 + 30.7362i −0.115587 + 0.0839786i
\(367\) 18.1911 25.0380i 0.0495671 0.0682233i −0.783514 0.621374i \(-0.786575\pi\)
0.833081 + 0.553151i \(0.186575\pi\)
\(368\) −171.612 + 55.7602i −0.466337 + 0.151522i
\(369\) −672.680 + 218.567i −1.82298 + 0.592323i
\(370\) 0 0
\(371\) −374.364 515.267i −1.00907 1.38886i
\(372\) 598.312 + 194.403i 1.60837 + 0.522590i
\(373\) −483.806 −1.29707 −0.648534 0.761186i \(-0.724617\pi\)
−0.648534 + 0.761186i \(0.724617\pi\)
\(374\) −1.31440 + 9.49685i −0.00351444 + 0.0253927i
\(375\) 0 0
\(376\) −9.01440 2.92896i −0.0239745 0.00778977i
\(377\) −136.112 187.342i −0.361040 0.496928i
\(378\) −80.9540 + 111.424i −0.214164 + 0.294771i
\(379\) −25.3368 77.9786i −0.0668517 0.205748i 0.912050 0.410078i \(-0.134499\pi\)
−0.978902 + 0.204330i \(0.934499\pi\)
\(380\) 0 0
\(381\) −327.298 + 450.487i −0.859050 + 1.18238i
\(382\) −18.5090 + 13.4476i −0.0484530 + 0.0352031i
\(383\) −693.283 225.261i −1.81014 0.588150i −0.999998 0.00191562i \(-0.999390\pi\)
−0.810141 0.586234i \(-0.800610\pi\)
\(384\) 379.819i 0.989111i
\(385\) 0 0
\(386\) 115.660 0.299638
\(387\) −156.655 + 482.135i −0.404793 + 1.24583i
\(388\) −153.465 211.227i −0.395529 0.544399i
\(389\) 193.321 + 140.456i 0.496969 + 0.361069i 0.807858 0.589377i \(-0.200627\pi\)
−0.310889 + 0.950446i \(0.600627\pi\)
\(390\) 0 0
\(391\) 32.9458 10.7047i 0.0842604 0.0273779i
\(392\) −103.790 75.4082i −0.264772 0.192368i
\(393\) −203.305 + 147.710i −0.517316 + 0.375852i
\(394\) 8.61808 26.5237i 0.0218733 0.0673191i
\(395\) 0 0
\(396\) −357.635 669.226i −0.903120 1.68997i
\(397\) 354.733i 0.893535i −0.894650 0.446768i \(-0.852575\pi\)
0.894650 0.446768i \(-0.147425\pi\)
\(398\) 2.26274 6.96401i 0.00568528 0.0174975i
\(399\) 902.522 655.721i 2.26196 1.64341i
\(400\) 0 0
\(401\) 79.1417 + 243.573i 0.197361 + 0.607414i 0.999941 + 0.0108700i \(0.00346008\pi\)
−0.802580 + 0.596545i \(0.796540\pi\)
\(402\) 43.8328 + 134.904i 0.109037 + 0.335581i
\(403\) −122.384 88.9175i −0.303684 0.220639i
\(404\) 29.7187 + 40.9042i 0.0735610 + 0.101248i
\(405\) 0 0
\(406\) 147.137i 0.362407i
\(407\) 157.517 + 151.476i 0.387020 + 0.372176i
\(408\) 35.5808i 0.0872079i
\(409\) −261.500 84.9666i −0.639365 0.207742i −0.0286458 0.999590i \(-0.509119\pi\)
−0.610719 + 0.791847i \(0.709119\pi\)
\(410\) 0 0
\(411\) 313.798 + 227.988i 0.763500 + 0.554715i
\(412\) −419.925 + 136.442i −1.01924 + 0.331170i
\(413\) 160.177 + 492.975i 0.387839 + 1.19364i
\(414\) 38.3261 52.7514i 0.0925752 0.127419i
\(415\) 0 0
\(416\) −21.2563 + 65.4202i −0.0510969 + 0.157260i
\(417\) 249.232 0.597678
\(418\) −12.5914 70.5446i −0.0301231 0.168767i
\(419\) −44.0757 −0.105193 −0.0525963 0.998616i \(-0.516750\pi\)
−0.0525963 + 0.998616i \(0.516750\pi\)
\(420\) 0 0
\(421\) 65.8608 47.8507i 0.156439 0.113660i −0.506812 0.862057i \(-0.669176\pi\)
0.663251 + 0.748397i \(0.269176\pi\)
\(422\) 65.8792 90.6750i 0.156112 0.214870i
\(423\) −66.0303 + 21.4546i −0.156100 + 0.0507200i
\(424\) −144.401 + 46.9188i −0.340569 + 0.110658i
\(425\) 0 0
\(426\) −5.55574 7.64682i −0.0130416 0.0179503i
\(427\) −319.500 103.812i −0.748243 0.243119i
\(428\) 62.6319 0.146336
\(429\) 48.4038 + 271.186i 0.112829 + 0.632136i
\(430\) 0 0
\(431\) 690.547 + 224.372i 1.60220 + 0.520585i 0.967649 0.252299i \(-0.0811866\pi\)
0.634547 + 0.772884i \(0.281187\pi\)
\(432\) −391.201 538.442i −0.905558 1.24639i
\(433\) −204.033 + 280.828i −0.471208 + 0.648563i −0.976786 0.214218i \(-0.931280\pi\)
0.505577 + 0.862781i \(0.331280\pi\)
\(434\) −29.7027 91.4156i −0.0684394 0.210635i
\(435\) 0 0
\(436\) 360.126 495.670i 0.825976 1.13686i
\(437\) −209.472 + 152.190i −0.479340 + 0.348261i
\(438\) 195.930 + 63.6617i 0.447330 + 0.145346i
\(439\) 72.1914i 0.164445i 0.996614 + 0.0822226i \(0.0262018\pi\)
−0.996614 + 0.0822226i \(0.973798\pi\)
\(440\) 0 0
\(441\) −939.738 −2.13092
\(442\) 1.30642 4.02074i 0.00295569 0.00909669i
\(443\) −220.886 304.024i −0.498614 0.686284i 0.483333 0.875436i \(-0.339426\pi\)
−0.981948 + 0.189153i \(0.939426\pi\)
\(444\) 324.210 + 235.552i 0.730202 + 0.530523i
\(445\) 0 0
\(446\) 51.3857 16.6962i 0.115214 0.0374355i
\(447\) −503.301 365.670i −1.12595 0.818053i
\(448\) 451.943 328.356i 1.00880 0.732937i
\(449\) −34.6764 + 106.723i −0.0772302 + 0.237690i −0.982217 0.187750i \(-0.939881\pi\)
0.904987 + 0.425440i \(0.139881\pi\)
\(450\) 0 0
\(451\) −388.657 + 207.699i −0.861767 + 0.460529i
\(452\) 125.032i 0.276619i
\(453\) 123.256 379.344i 0.272089 0.837405i
\(454\) −4.56195 + 3.31445i −0.0100483 + 0.00730055i
\(455\) 0 0
\(456\) −82.1812 252.928i −0.180222 0.554666i
\(457\) −57.6949 177.567i −0.126247 0.388549i 0.867879 0.496775i \(-0.165483\pi\)
−0.994126 + 0.108227i \(0.965483\pi\)
\(458\) 32.9822 + 23.9630i 0.0720136 + 0.0523209i
\(459\) 75.1021 + 103.369i 0.163621 + 0.225205i
\(460\) 0 0
\(461\) 559.922i 1.21458i −0.794479 0.607291i \(-0.792256\pi\)
0.794479 0.607291i \(-0.207744\pi\)
\(462\) −76.4000 + 157.480i −0.165368 + 0.340866i
\(463\) 648.611i 1.40089i 0.713708 + 0.700444i \(0.247014\pi\)
−0.713708 + 0.700444i \(0.752986\pi\)
\(464\) 676.224 + 219.719i 1.45738 + 0.473532i
\(465\) 0 0
\(466\) −10.8591 7.88958i −0.0233028 0.0169304i
\(467\) 856.339 278.242i 1.83370 0.595806i 0.834722 0.550671i \(-0.185628\pi\)
0.998981 0.0451348i \(-0.0143717\pi\)
\(468\) 103.396 + 318.221i 0.220932 + 0.679960i
\(469\) −535.635 + 737.238i −1.14208 + 1.57194i
\(470\) 0 0
\(471\) 86.4772 266.149i 0.183603 0.565073i
\(472\) 123.569 0.261798
\(473\) −43.3016 + 312.864i −0.0915468 + 0.661447i
\(474\) 141.419 0.298352
\(475\) 0 0
\(476\) −91.3783 + 66.3902i −0.191971 + 0.139475i
\(477\) −653.718 + 899.765i −1.37048 + 1.88630i
\(478\) 47.9626 15.5840i 0.100340 0.0326025i
\(479\) 441.790 143.546i 0.922317 0.299679i 0.190900 0.981609i \(-0.438859\pi\)
0.731417 + 0.681930i \(0.238859\pi\)
\(480\) 0 0
\(481\) −56.6415 77.9603i −0.117758 0.162080i
\(482\) 19.8292 + 6.44289i 0.0411394 + 0.0133670i
\(483\) 632.437 1.30939
\(484\) −292.617 371.314i −0.604581 0.767177i
\(485\) 0 0
\(486\) −9.10546 2.95854i −0.0187355 0.00608753i
\(487\) −19.3672 26.6567i −0.0397685 0.0547366i 0.788670 0.614817i \(-0.210770\pi\)
−0.828438 + 0.560081i \(0.810770\pi\)
\(488\) −47.0731 + 64.7906i −0.0964613 + 0.132768i
\(489\) 324.106 + 997.496i 0.662794 + 2.03987i
\(490\) 0 0
\(491\) −469.003 + 645.528i −0.955200 + 1.31472i −0.00602158 + 0.999982i \(0.501917\pi\)
−0.949179 + 0.314738i \(0.898083\pi\)
\(492\) −653.773 + 474.994i −1.32881 + 0.965434i
\(493\) −129.820 42.1812i −0.263327 0.0855603i
\(494\) 31.5990i 0.0639656i
\(495\) 0 0
\(496\) 464.489 0.936470
\(497\) 18.7646 57.7514i 0.0377557 0.116200i
\(498\) −81.7701 112.547i −0.164197 0.225998i
\(499\) 479.816 + 348.607i 0.961555 + 0.698611i 0.953511 0.301357i \(-0.0974396\pi\)
0.00804363 + 0.999968i \(0.497440\pi\)
\(500\) 0 0
\(501\) −651.627 + 211.727i −1.30065 + 0.422608i
\(502\) 83.6096 + 60.7459i 0.166553 + 0.121008i
\(503\) 634.532 461.015i 1.26150 0.916530i 0.262665 0.964887i \(-0.415398\pi\)
0.998830 + 0.0483569i \(0.0153985\pi\)
\(504\) −132.958 + 409.203i −0.263806 + 0.811910i
\(505\) 0 0
\(506\) 17.7321 36.5505i 0.0350437 0.0722342i
\(507\) 751.056i 1.48137i
\(508\) −130.217 + 400.766i −0.256332 + 0.788909i
\(509\) −639.768 + 464.819i −1.25691 + 0.913200i −0.998602 0.0528625i \(-0.983165\pi\)
−0.258310 + 0.966062i \(0.583165\pi\)
\(510\) 0 0
\(511\) 408.989 + 1258.74i 0.800369 + 2.46328i
\(512\) −109.640 337.436i −0.214140 0.659055i
\(513\) −772.619 561.340i −1.50608 1.09423i
\(514\) −45.1374 62.1263i −0.0878160 0.120868i
\(515\) 0 0
\(516\) 579.200i 1.12248i
\(517\) −38.1506 + 20.3877i −0.0737922 + 0.0394346i
\(518\) 61.2295i 0.118204i
\(519\) −549.187 178.442i −1.05816 0.343818i
\(520\) 0 0
\(521\) −514.280 373.646i −0.987101 0.717171i −0.0278170 0.999613i \(-0.508856\pi\)
−0.959284 + 0.282442i \(0.908856\pi\)
\(522\) −244.357 + 79.3966i −0.468118 + 0.152101i
\(523\) −58.7556 180.831i −0.112343 0.345757i 0.879040 0.476747i \(-0.158184\pi\)
−0.991384 + 0.130990i \(0.958184\pi\)
\(524\) −111.781 + 153.854i −0.213323 + 0.293614i
\(525\) 0 0
\(526\) −40.0152 + 123.154i −0.0760746 + 0.234134i
\(527\) −89.1719 −0.169207
\(528\) −609.672 586.289i −1.15468 1.11040i
\(529\) 382.214 0.722522
\(530\) 0 0
\(531\) 732.273 532.027i 1.37905 1.00193i
\(532\) 496.225 682.995i 0.932753 1.28382i
\(533\) 184.809 60.0480i 0.346733 0.112660i
\(534\) −177.413 + 57.6449i −0.332234 + 0.107949i
\(535\) 0 0
\(536\) 127.691 + 175.751i 0.238229 + 0.327894i
\(537\) −235.259 76.4403i −0.438099 0.142347i
\(538\) 152.209 0.282917
\(539\) −576.382 + 102.878i −1.06936 + 0.190868i
\(540\) 0 0
\(541\) 37.6026 + 12.2178i 0.0695058 + 0.0225838i 0.343563 0.939129i \(-0.388366\pi\)
−0.274058 + 0.961713i \(0.588366\pi\)
\(542\) −42.0758 57.9123i −0.0776306 0.106849i
\(543\) −20.6104 + 28.3678i −0.0379565 + 0.0522427i
\(544\) 12.5299 + 38.5630i 0.0230329 + 0.0708879i
\(545\) 0 0
\(546\) 45.3671 62.4425i 0.0830900 0.114364i
\(547\) −478.368 + 347.554i −0.874529 + 0.635383i −0.931799 0.362976i \(-0.881761\pi\)
0.0572690 + 0.998359i \(0.481761\pi\)
\(548\) 279.164 + 90.7057i 0.509423 + 0.165521i
\(549\) 586.626i 1.06853i
\(550\) 0 0
\(551\) 1020.26 1.85165
\(552\) 46.5896 143.388i 0.0844015 0.259761i
\(553\) 534.022 + 735.018i 0.965682 + 1.32915i
\(554\) −33.5380 24.3668i −0.0605379 0.0439833i
\(555\) 0 0
\(556\) 179.378 58.2834i 0.322622 0.104826i
\(557\) 176.596 + 128.305i 0.317049 + 0.230350i 0.734915 0.678159i \(-0.237222\pi\)
−0.417866 + 0.908509i \(0.637222\pi\)
\(558\) −135.790 + 98.6573i −0.243351 + 0.176805i
\(559\) 43.0386 132.459i 0.0769921 0.236957i
\(560\) 0 0
\(561\) 117.044 + 112.555i 0.208634 + 0.200632i
\(562\) 92.2970i 0.164229i
\(563\) −115.865 + 356.595i −0.205799 + 0.633383i 0.793881 + 0.608073i \(0.208057\pi\)
−0.999680 + 0.0253101i \(0.991943\pi\)
\(564\) −64.1743 + 46.6254i −0.113784 + 0.0826691i
\(565\) 0 0
\(566\) −1.00311 3.08725i −0.00177227 0.00545450i
\(567\) 224.379 + 690.568i 0.395730 + 1.21793i
\(568\) −11.7113 8.50874i −0.0206184 0.0149802i
\(569\) 131.674 + 181.234i 0.231413 + 0.318513i 0.908894 0.417028i \(-0.136928\pi\)
−0.677480 + 0.735541i \(0.736928\pi\)
\(570\) 0 0
\(571\) 176.017i 0.308262i −0.988050 0.154131i \(-0.950742\pi\)
0.988050 0.154131i \(-0.0492577\pi\)
\(572\) 98.2549 + 183.860i 0.171774 + 0.321433i
\(573\) 387.492i 0.676252i
\(574\) 117.427 + 38.1543i 0.204577 + 0.0664710i
\(575\) 0 0
\(576\) −789.188 573.378i −1.37012 0.995449i
\(577\) −635.162 + 206.377i −1.10080 + 0.357672i −0.802411 0.596772i \(-0.796450\pi\)
−0.298391 + 0.954444i \(0.596450\pi\)
\(578\) 26.4529 + 81.4137i 0.0457663 + 0.140854i
\(579\) 1151.44 1584.82i 1.98867 2.73716i
\(580\) 0 0
\(581\) 276.180 849.994i 0.475352 1.46298i
\(582\) 105.169 0.180703
\(583\) −302.452 + 623.432i −0.518785 + 1.06935i
\(584\) 315.514 0.540264
\(585\) 0 0
\(586\) −81.3922 + 59.1349i −0.138895 + 0.100913i
\(587\) −57.4195 + 79.0311i −0.0978185 + 0.134636i −0.855121 0.518429i \(-0.826517\pi\)
0.757302 + 0.653065i \(0.226517\pi\)
\(588\) −1021.13 + 331.784i −1.73661 + 0.564259i
\(589\) 633.882 205.961i 1.07620 0.349679i
\(590\) 0 0
\(591\) −277.641 382.141i −0.469782 0.646600i
\(592\) 281.403 + 91.4335i 0.475343 + 0.154448i
\(593\) −479.081 −0.807893 −0.403947 0.914783i \(-0.632362\pi\)
−0.403947 + 0.914783i \(0.632362\pi\)
\(594\) 148.426 + 20.5427i 0.249875 + 0.0345837i
\(595\) 0 0
\(596\) −447.751 145.483i −0.751259 0.244099i
\(597\) −72.8968 100.334i −0.122105 0.168063i
\(598\) −10.5295 + 14.4927i −0.0176079 + 0.0242352i
\(599\) −146.829 451.894i −0.245124 0.754414i −0.995616 0.0935345i \(-0.970183\pi\)
0.750492 0.660879i \(-0.229817\pi\)
\(600\) 0 0
\(601\) 316.409 435.499i 0.526470 0.724624i −0.460117 0.887858i \(-0.652193\pi\)
0.986587 + 0.163234i \(0.0521926\pi\)
\(602\) 71.5943 52.0163i 0.118927 0.0864059i
\(603\) 1513.40 + 491.733i 2.50978 + 0.815477i
\(604\) 301.847i 0.499747i
\(605\) 0 0
\(606\) −20.3660 −0.0336073
\(607\) 127.052 391.027i 0.209312 0.644196i −0.790197 0.612853i \(-0.790022\pi\)
0.999509 0.0313426i \(-0.00997830\pi\)
\(608\) −178.138 245.186i −0.292991 0.403267i
\(609\) −2016.13 1464.80i −3.31055 2.40526i
\(610\) 0 0
\(611\) 18.1408 5.89431i 0.0296904 0.00964700i
\(612\) 159.566 + 115.931i 0.260728 + 0.189430i
\(613\) 201.079 146.092i 0.328025 0.238324i −0.411567 0.911379i \(-0.635019\pi\)
0.739592 + 0.673056i \(0.235019\pi\)
\(614\) −10.5004 + 32.3170i −0.0171017 + 0.0526336i
\(615\) 0 0
\(616\) −36.7514 + 265.538i −0.0596614 + 0.431067i
\(617\) 1141.96i 1.85082i −0.378964 0.925411i \(-0.623720\pi\)
0.378964 0.925411i \(-0.376280\pi\)
\(618\) 54.9597 169.149i 0.0889316 0.273703i
\(619\) 4.57281 3.32234i 0.00738742 0.00536727i −0.584085 0.811692i \(-0.698547\pi\)
0.591473 + 0.806325i \(0.298547\pi\)
\(620\) 0 0
\(621\) −167.304 514.909i −0.269411 0.829161i
\(622\) −38.1609 117.447i −0.0613519 0.188822i
\(623\) −969.549 704.418i −1.55626 1.13069i
\(624\) 219.232 + 301.746i 0.351333 + 0.483568i
\(625\) 0 0
\(626\) 51.7472i 0.0826633i
\(627\) −1091.98 529.763i −1.74159 0.844917i
\(628\) 211.777i 0.337224i
\(629\) −54.0233 17.5532i −0.0858876 0.0279066i
\(630\) 0 0
\(631\) 601.402 + 436.944i 0.953094 + 0.692463i 0.951537 0.307536i \(-0.0995043\pi\)
0.00155713 + 0.999999i \(0.499504\pi\)
\(632\) 205.986 66.9288i 0.325927 0.105900i
\(633\) −586.610 1805.40i −0.926714 2.85213i
\(634\) 69.2140 95.2649i 0.109170 0.150260i
\(635\) 0 0
\(636\) −392.664 + 1208.49i −0.617396 + 1.90015i
\(637\) 258.179 0.405304
\(638\) −141.183 + 75.4485i −0.221290 + 0.118258i
\(639\) −106.036 −0.165940
\(640\) 0 0
\(641\) −292.789 + 212.724i −0.456769 + 0.331862i −0.792263 0.610180i \(-0.791097\pi\)
0.335493 + 0.942043i \(0.391097\pi\)
\(642\) −14.8290 + 20.4103i −0.0230981 + 0.0317918i
\(643\) 615.565 200.009i 0.957333 0.311056i 0.211641 0.977347i \(-0.432119\pi\)
0.745692 + 0.666291i \(0.232119\pi\)
\(644\) 455.179 147.897i 0.706800 0.229653i
\(645\) 0 0
\(646\) 10.9484 + 15.0692i 0.0169480 + 0.0233269i
\(647\) 694.892 + 225.784i 1.07402 + 0.348971i 0.792053 0.610453i \(-0.209012\pi\)
0.281969 + 0.959423i \(0.409012\pi\)
\(648\) 173.097 0.267125
\(649\) 390.891 406.482i 0.602298 0.626320i
\(650\) 0 0
\(651\) −1548.31 503.076i −2.37835 0.772774i
\(652\) 466.534 + 642.128i 0.715542 + 0.984859i
\(653\) −176.964 + 243.570i −0.271001 + 0.373001i −0.922727 0.385453i \(-0.874045\pi\)
0.651726 + 0.758454i \(0.274045\pi\)
\(654\) 76.2630 + 234.713i 0.116610 + 0.358889i
\(655\) 0 0
\(656\) −350.705 + 482.704i −0.534611 + 0.735829i
\(657\) 1869.75 1358.45i 2.84589 2.06766i
\(658\) 11.5266 + 3.74523i 0.0175177 + 0.00569184i
\(659\) 596.433i 0.905057i 0.891750 + 0.452529i \(0.149478\pi\)
−0.891750 + 0.452529i \(0.850522\pi\)
\(660\) 0 0
\(661\) 882.175 1.33461 0.667303 0.744786i \(-0.267449\pi\)
0.667303 + 0.744786i \(0.267449\pi\)
\(662\) −11.2062 + 34.4892i −0.0169278 + 0.0520985i
\(663\) −42.0877 57.9288i −0.0634807 0.0873737i
\(664\) −172.368 125.233i −0.259591 0.188604i
\(665\) 0 0
\(666\) −101.687 + 33.0400i −0.152683 + 0.0496096i
\(667\) 467.934 + 339.974i 0.701551 + 0.509707i
\(668\) −419.479 + 304.769i −0.627962 + 0.456241i
\(669\) 282.784 870.320i 0.422697 1.30093i
\(670\) 0 0
\(671\) 64.2210 + 359.803i 0.0957094 + 0.536220i
\(672\) 740.266i 1.10159i
\(673\) 124.617 383.533i 0.185167 0.569886i −0.814784 0.579764i \(-0.803145\pi\)
0.999951 + 0.00987877i \(0.00314456\pi\)
\(674\) −109.387 + 79.4741i −0.162295 + 0.117914i
\(675\) 0 0
\(676\) 175.636 + 540.553i 0.259817 + 0.799634i
\(677\) −193.523 595.604i −0.285854 0.879769i −0.986141 0.165908i \(-0.946945\pi\)
0.700287 0.713861i \(-0.253055\pi\)
\(678\) −40.7450 29.6029i −0.0600958 0.0436622i
\(679\) 397.136 + 546.611i 0.584884 + 0.805024i
\(680\) 0 0
\(681\) 95.5059i 0.140244i
\(682\) −72.4855 + 75.3765i −0.106284 + 0.110523i
\(683\) 935.585i 1.36982i −0.728629 0.684909i \(-0.759842\pi\)
0.728629 0.684909i \(-0.240158\pi\)
\(684\) −1402.05 455.553i −2.04978 0.666013i
\(685\) 0 0
\(686\) 10.5385 + 7.65666i 0.0153622 + 0.0111613i
\(687\) 656.698 213.374i 0.955892 0.310588i
\(688\) 132.149 + 406.714i 0.192078 + 0.591154i
\(689\) 179.599 247.197i 0.260666 0.358776i
\(690\) 0 0
\(691\) 255.366 785.937i 0.369561 1.13739i −0.577515 0.816380i \(-0.695977\pi\)
0.947076 0.321011i \(-0.104023\pi\)
\(692\) −436.992 −0.631491
\(693\) 925.486 + 1731.82i 1.33548 + 2.49902i
\(694\) −160.866 −0.231795
\(695\) 0 0
\(696\) −480.626 + 349.195i −0.690555 + 0.501718i
\(697\) 67.3278 92.6687i 0.0965965 0.132954i
\(698\) 156.971 51.0029i 0.224886 0.0730700i
\(699\) −216.212 + 70.2514i −0.309316 + 0.100503i
\(700\) 0 0
\(701\) −139.111 191.469i −0.198446 0.273138i 0.698184 0.715919i \(-0.253992\pi\)
−0.896630 + 0.442781i \(0.853992\pi\)
\(702\) −62.8400 20.4180i −0.0895157 0.0290854i
\(703\) 424.570 0.603940
\(704\) −546.814 265.282i −0.776725 0.376821i
\(705\) 0 0
\(706\) 62.8561 + 20.4232i 0.0890313 + 0.0289280i
\(707\) −76.9057 105.852i −0.108778 0.149719i
\(708\) 607.856 836.642i 0.858554 1.18170i
\(709\) 278.848 + 858.205i 0.393297 + 1.21044i 0.930280 + 0.366851i \(0.119564\pi\)
−0.536982 + 0.843593i \(0.680436\pi\)
\(710\) 0 0
\(711\) 932.515 1283.50i 1.31155 1.80520i
\(712\) −231.132 + 167.927i −0.324623 + 0.235853i
\(713\) 359.356 + 116.762i 0.504006 + 0.163761i
\(714\) 45.4969i 0.0637212i
\(715\) 0 0
\(716\) −187.197 −0.261449
\(717\) 263.947 812.345i 0.368127 1.13298i
\(718\) 100.385 + 138.167i 0.139811 + 0.192434i
\(719\) −318.157 231.154i −0.442499 0.321494i 0.344128 0.938923i \(-0.388174\pi\)
−0.786627 + 0.617428i \(0.788174\pi\)
\(720\) 0 0
\(721\) 1086.68 353.084i 1.50718 0.489714i
\(722\) −23.6060 17.1507i −0.0326952 0.0237545i
\(723\) 285.689 207.565i 0.395144 0.287089i
\(724\) −8.19991 + 25.2367i −0.0113258 + 0.0348574i
\(725\) 0 0
\(726\) 190.284 7.44370i 0.262099 0.0102530i
\(727\) 1284.55i 1.76691i 0.468514 + 0.883456i \(0.344790\pi\)
−0.468514 + 0.883456i \(0.655210\pi\)
\(728\) 36.5282 112.422i 0.0501761 0.154426i
\(729\) −654.087 + 475.222i −0.897238 + 0.651882i
\(730\) 0 0
\(731\) −25.3698 78.0803i −0.0347056 0.106813i
\(732\) 207.114 + 637.432i 0.282943 + 0.870809i
\(733\) 339.175 + 246.425i 0.462722 + 0.336187i 0.794598 0.607136i \(-0.207682\pi\)
−0.331876 + 0.943323i \(0.607682\pi\)
\(734\) 5.54518 + 7.63228i 0.00755474 + 0.0103982i
\(735\) 0 0
\(736\) 171.813i 0.233441i
\(737\) 982.066 + 135.922i 1.33252 + 0.184426i
\(738\) 215.605i 0.292147i
\(739\) 269.243 + 87.4823i 0.364334 + 0.118379i 0.485462 0.874258i \(-0.338651\pi\)
−0.121128 + 0.992637i \(0.538651\pi\)
\(740\) 0 0
\(741\) 432.981 + 314.579i 0.584319 + 0.424533i
\(742\) 184.645 59.9947i 0.248847 0.0808554i
\(743\) 3.47057 + 10.6813i 0.00467102 + 0.0143759i 0.953365 0.301820i \(-0.0975942\pi\)
−0.948694 + 0.316196i \(0.897594\pi\)
\(744\) −228.118 + 313.978i −0.306610 + 0.422013i
\(745\) 0 0
\(746\) 45.5732 140.260i 0.0610901 0.188016i
\(747\) −1560.65 −2.08923
\(748\) 110.560 + 53.6373i 0.147808 + 0.0717076i
\(749\) −162.078 −0.216393
\(750\) 0 0
\(751\) −700.813 + 509.171i −0.933174 + 0.677990i −0.946768 0.321917i \(-0.895673\pi\)
0.0135942 + 0.999908i \(0.495673\pi\)
\(752\) −34.4252 + 47.3822i −0.0457782 + 0.0630083i
\(753\) 1664.72 540.902i 2.21079 0.718329i
\(754\) 67.1335 21.8130i 0.0890365 0.0289297i
\(755\) 0 0
\(756\) 1037.61 + 1428.15i 1.37250 + 1.88909i
\(757\) 117.605 + 38.2121i 0.155356 + 0.0504783i 0.385663 0.922640i \(-0.373973\pi\)
−0.230306 + 0.973118i \(0.573973\pi\)
\(758\) 24.9934 0.0329728
\(759\) −324.299 606.845i −0.427271 0.799532i
\(760\) 0 0
\(761\) 627.999 + 204.049i 0.825228 + 0.268133i 0.691034 0.722822i \(-0.257155\pi\)
0.134194 + 0.990955i \(0.457155\pi\)
\(762\) −99.7698 137.321i −0.130932 0.180212i
\(763\) −931.931 + 1282.69i −1.22140 + 1.68112i
\(764\) 90.6160 + 278.887i 0.118607 + 0.365036i
\(765\) 0 0
\(766\) 130.611 179.770i 0.170510 0.234687i
\(767\) −201.181 + 146.167i −0.262296 + 0.190569i
\(768\) −975.071 316.820i −1.26962 0.412526i
\(769\) 753.219i 0.979479i −0.871869 0.489739i \(-0.837092\pi\)
0.871869 0.489739i \(-0.162908\pi\)
\(770\) 0 0
\(771\) −1300.63 −1.68695
\(772\) 458.103 1409.90i 0.593398 1.82629i
\(773\) −97.8922 134.737i −0.126639 0.174304i 0.740989 0.671517i \(-0.234357\pi\)
−0.867629 + 0.497213i \(0.834357\pi\)
\(774\) −125.019 90.8315i −0.161523 0.117353i
\(775\) 0 0
\(776\) 153.185 49.7729i 0.197404 0.0641404i
\(777\) −838.988 609.560i −1.07978 0.784505i
\(778\) −58.9297 + 42.8149i −0.0757451 + 0.0550320i
\(779\) −264.565 + 814.247i −0.339621 + 1.04525i
\(780\) 0 0
\(781\) −65.0365 + 11.6083i −0.0832734 + 0.0148634i
\(782\) 10.5596i 0.0135034i
\(783\) −659.249 + 2028.96i −0.841953 + 2.59126i
\(784\) −641.335 + 465.957i −0.818030 + 0.594333i
\(785\) 0 0
\(786\) −23.6717 72.8539i −0.0301166 0.0926894i
\(787\) 107.043 + 329.445i 0.136014 + 0.418609i 0.995746 0.0921365i \(-0.0293696\pi\)
−0.859732 + 0.510745i \(0.829370\pi\)
\(788\) −289.190 210.108i −0.366992 0.266635i
\(789\) 1289.14 + 1774.34i 1.63389 + 2.24885i
\(790\) 0 0
\(791\) 323.556i 0.409047i
\(792\) 460.822 82.2517i 0.581846 0.103853i
\(793\) 161.167i 0.203236i
\(794\) 102.840 + 33.4149i 0.129522 + 0.0420843i
\(795\) 0 0
\(796\) −75.9289 55.1656i −0.0953880 0.0693035i
\(797\) −42.8487 + 13.9224i −0.0537625 + 0.0174685i −0.335775 0.941942i \(-0.608998\pi\)
0.282012 + 0.959411i \(0.408998\pi\)
\(798\) 105.084 + 323.417i 0.131685 + 0.405284i
\(799\) 6.60890 9.09636i 0.00827146 0.0113847i
\(800\) 0 0
\(801\) −646.683 + 1990.28i −0.807344 + 2.48475i
\(802\) −78.0690 −0.0973429
\(803\) 998.082 1037.89i 1.24294 1.29252i
\(804\) 1818.08 2.26130
\(805\) 0 0
\(806\) 37.3063 27.1046i 0.0462857 0.0336285i
\(807\) 1515.29 2085.62i 1.87769 2.58441i
\(808\) −29.6644 + 9.63856i −0.0367134 + 0.0119289i
\(809\) 1187.16 385.731i 1.46744 0.476800i 0.537106 0.843515i \(-0.319518\pi\)
0.930333 + 0.366715i \(0.119518\pi\)
\(810\) 0 0
\(811\) −62.7425 86.3577i −0.0773644 0.106483i 0.768581 0.639753i \(-0.220963\pi\)
−0.845945 + 0.533270i \(0.820963\pi\)
\(812\) −1793.60 582.776i −2.20887 0.717704i
\(813\) −1212.41 −1.49128
\(814\) −58.7518 + 31.3971i −0.0721767 + 0.0385713i
\(815\) 0 0
\(816\) 209.098 + 67.9401i 0.256248 + 0.0832599i
\(817\) 360.685 + 496.440i 0.441475 + 0.607638i
\(818\) 49.2652 67.8077i 0.0602264 0.0828945i
\(819\) −267.568 823.491i −0.326701 1.00548i
\(820\) 0 0
\(821\) −361.534 + 497.608i −0.440358 + 0.606100i −0.970292 0.241939i \(-0.922217\pi\)
0.529934 + 0.848039i \(0.322217\pi\)
\(822\) −95.6547 + 69.4972i −0.116368 + 0.0845465i
\(823\) 363.528 + 118.117i 0.441711 + 0.143521i 0.521425 0.853297i \(-0.325401\pi\)
−0.0797139 + 0.996818i \(0.525401\pi\)
\(824\) 272.386i 0.330566i
\(825\) 0 0
\(826\) −158.006 −0.191291
\(827\) −295.494 + 909.438i −0.357309 + 1.09968i 0.597350 + 0.801981i \(0.296220\pi\)
−0.954659 + 0.297703i \(0.903780\pi\)
\(828\) −491.238 676.131i −0.593282 0.816583i
\(829\) −591.020 429.401i −0.712931 0.517975i 0.171187 0.985239i \(-0.445240\pi\)
−0.884118 + 0.467264i \(0.845240\pi\)
\(830\) 0 0
\(831\) −667.764 + 216.970i −0.803566 + 0.261095i
\(832\) 216.817 + 157.527i 0.260598 + 0.189335i
\(833\) 123.122 89.4537i 0.147806 0.107387i
\(834\) −23.4769 + 72.2545i −0.0281498 + 0.0866361i
\(835\) 0 0
\(836\) −909.809 125.921i −1.08829 0.150623i
\(837\) 1393.66i 1.66507i
\(838\) 4.15181 12.7780i 0.00495443 0.0152482i
\(839\) −739.591 + 537.345i −0.881515 + 0.640458i −0.933652 0.358182i \(-0.883397\pi\)
0.0521367 + 0.998640i \(0.483397\pi\)
\(840\) 0 0
\(841\) −444.409 1367.75i −0.528429 1.62634i
\(842\) 7.66845 + 23.6010i 0.00910742 + 0.0280297i
\(843\) −1264.68 918.847i −1.50022 1.08997i
\(844\) −844.394 1162.21i −1.00047 1.37702i
\(845\) 0 0
\(846\) 21.1638i 0.0250163i
\(847\) 757.233 + 960.883i 0.894018 + 1.13445i
\(848\) 938.193i 1.10636i
\(849\) −52.2888 16.9896i −0.0615887 0.0200114i
\(850\) 0 0
\(851\) 194.726 + 141.476i 0.228820 + 0.166247i
\(852\) −115.220 + 37.4371i −0.135234 + 0.0439403i
\(853\) 338.270 + 1041.09i 0.396565 + 1.22050i 0.927736 + 0.373237i \(0.121752\pi\)
−0.531171 + 0.847265i \(0.678248\pi\)
\(854\) 60.1920 82.8472i 0.0704824 0.0970107i
\(855\) 0 0
\(856\) −11.9398 + 36.7470i −0.0139484 + 0.0429287i
\(857\) −1161.22 −1.35499 −0.677494 0.735528i \(-0.736934\pi\)
−0.677494 + 0.735528i \(0.736934\pi\)
\(858\) −83.1789 11.5123i −0.0969451 0.0134176i
\(859\) 465.631 0.542061 0.271031 0.962571i \(-0.412636\pi\)
0.271031 + 0.962571i \(0.412636\pi\)
\(860\) 0 0
\(861\) 1691.83 1229.19i 1.96496 1.42763i
\(862\) −130.095 + 179.061i −0.150922 + 0.207727i
\(863\) 738.720 240.025i 0.855990 0.278128i 0.152037 0.988375i \(-0.451417\pi\)
0.703953 + 0.710247i \(0.251417\pi\)
\(864\) 602.700 195.829i 0.697570 0.226654i
\(865\) 0 0
\(866\) −62.1952 85.6043i −0.0718189 0.0988502i
\(867\) 1378.91 + 448.034i 1.59043 + 0.516763i
\(868\) −1232.00 −1.41935
\(869\) 431.442 889.313i 0.496480 1.02337i
\(870\) 0 0
\(871\) −415.783 135.096i −0.477363 0.155105i
\(872\) 222.164 + 305.782i 0.254775 + 0.350668i
\(873\) 693.484 954.498i 0.794368 1.09335i
\(874\) −24.3897 75.0637i −0.0279058 0.0858852i
\(875\) 0 0
\(876\) 1552.07 2136.24i 1.77177 2.43863i
\(877\) −1120.57 + 814.144i −1.27773 + 0.928329i −0.999482 0.0321793i \(-0.989755\pi\)
−0.278253 + 0.960508i \(0.589755\pi\)
\(878\) −20.9290 6.80023i −0.0238371 0.00774514i
\(879\) 1703.97i 1.93853i
\(880\) 0 0
\(881\) −1570.42 −1.78255 −0.891273 0.453467i \(-0.850187\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(882\) 88.5206 272.439i 0.100364 0.308887i
\(883\) 643.690 + 885.963i 0.728981 + 1.00336i 0.999177 + 0.0405507i \(0.0129112\pi\)
−0.270197 + 0.962805i \(0.587089\pi\)
\(884\) −43.8383 31.8504i −0.0495908 0.0360299i
\(885\) 0 0
\(886\) 108.946 35.3987i 0.122964 0.0399534i
\(887\) −716.448 520.530i −0.807720 0.586843i 0.105449 0.994425i \(-0.466372\pi\)
−0.913169 + 0.407582i \(0.866372\pi\)
\(888\) −200.007 + 145.314i −0.225233 + 0.163642i
\(889\) 336.974 1037.10i 0.379048 1.16659i
\(890\) 0 0
\(891\) 547.567 569.407i 0.614554 0.639065i
\(892\) 692.520i 0.776368i
\(893\) −25.9697 + 79.9265i −0.0290814 + 0.0895033i
\(894\) 153.421 111.467i 0.171611 0.124683i
\(895\) 0 0
\(896\) 229.852 + 707.411i 0.256531 + 0.789521i
\(897\) 93.7583 + 288.558i 0.104524 + 0.321693i
\(898\) −27.6735 20.1060i −0.0308168 0.0223897i
\(899\) −875.145 1204.53i −0.973465 1.33986i
\(900\) 0 0
\(901\) 180.113i 0.199903i
\(902\) −23.6034 132.240i −0.0261678 0.146607i
\(903\) 1498.85i 1.65986i
\(904\) −73.3577 23.8354i −0.0811479 0.0263666i
\(905\) 0 0
\(906\) 98.3650 + 71.4664i 0.108571 + 0.0788812i
\(907\) 297.496 96.6622i 0.327999 0.106573i −0.140388 0.990097i \(-0.544835\pi\)
0.468388 + 0.883523i \(0.344835\pi\)
\(908\) 22.3343 + 68.7378i 0.0245972 + 0.0757025i
\(909\) −134.294 + 184.839i −0.147738 + 0.203344i
\(910\) 0 0
\(911\) −140.671 + 432.942i −0.154414 + 0.475238i −0.998101 0.0615976i \(-0.980380\pi\)
0.843687 + 0.536836i \(0.180380\pi\)
\(912\) −1643.30 −1.80187
\(913\) −957.216 + 170.853i −1.04843 + 0.187133i
\(914\) 56.9129 0.0622680
\(915\) 0 0
\(916\) 422.743 307.141i 0.461510 0.335306i
\(917\) 289.267 398.141i 0.315449 0.434178i
\(918\) −37.0421 + 12.0357i −0.0403509 + 0.0131108i
\(919\) −981.783 + 319.001i −1.06832 + 0.347117i −0.789832 0.613324i \(-0.789832\pi\)
−0.278485 + 0.960441i \(0.589832\pi\)
\(920\) 0 0
\(921\) 338.284 + 465.607i 0.367300 + 0.505545i
\(922\) 162.327 + 52.7431i 0.176059 + 0.0572051i
\(923\) 29.1318 0.0315621
\(924\) 1617.08 + 1555.06i 1.75008 + 1.68296i
\(925\) 0 0
\(926\) −188.038 61.0973i −0.203065 0.0659798i
\(927\) −1172.76 1614.17i −1.26512 1.74129i
\(928\) −397.939 + 547.717i −0.428814 + 0.590212i
\(929\) 431.640 + 1328.45i 0.464629 + 1.42998i 0.859449 + 0.511222i \(0.170807\pi\)
−0.394820 + 0.918758i \(0.629193\pi\)
\(930\) 0 0
\(931\) −668.609 + 920.262i −0.718162 + 0.988466i
\(932\) −139.184 + 101.123i −0.149339 + 0.108501i
\(933\) −1989.21 646.332i −2.13205 0.692746i
\(934\) 274.470i 0.293865i
\(935\) 0 0
\(936\) −206.416 −0.220530
\(937\) −370.868 + 1141.42i −0.395804 + 1.21816i 0.532530 + 0.846411i \(0.321241\pi\)
−0.928334 + 0.371748i \(0.878759\pi\)
\(938\) −163.277 224.731i −0.174069 0.239586i
\(939\) 709.058 + 515.161i 0.755120 + 0.548627i
\(940\) 0 0
\(941\) 29.9217 9.72215i 0.0317978 0.0103317i −0.293075 0.956089i \(-0.594679\pi\)
0.324873 + 0.945758i \(0.394679\pi\)
\(942\) 69.0133 + 50.1411i 0.0732625 + 0.0532283i
\(943\) −392.667 + 285.289i −0.416401 + 0.302533i
\(944\) 235.949 726.177i 0.249946 0.769255i
\(945\) 0 0
\(946\) −86.6233 42.0245i −0.0915680 0.0444233i
\(947\) 540.682i 0.570942i −0.958387 0.285471i \(-0.907850\pi\)
0.958387 0.285471i \(-0.0921501\pi\)
\(948\) 560.127 1723.89i 0.590851 1.81845i
\(949\) −513.685 + 373.214i −0.541291 + 0.393271i
\(950\) 0 0
\(951\) −616.304 1896.79i −0.648059 1.99452i
\(952\) −21.5322 66.2692i −0.0226178 0.0696105i
\(953\) 462.279 + 335.865i 0.485077 + 0.352429i 0.803288 0.595591i \(-0.203082\pi\)
−0.318211 + 0.948020i \(0.603082\pi\)
\(954\) −199.272 274.274i −0.208880 0.287499i
\(955\) 0 0
\(956\) 646.388i 0.676138i
\(957\) −371.705 + 2685.66i −0.388407 + 2.80633i
\(958\) 141.601i 0.147809i
\(959\) −722.418 234.728i −0.753303 0.244763i
\(960\) 0 0
\(961\) −9.41808 6.84263i −0.00980029 0.00712033i
\(962\) 27.9369 9.07724i 0.0290404 0.00943580i
\(963\) 87.4590 + 269.171i 0.0908193 + 0.279513i
\(964\) 157.077 216.198i 0.162943 0.224272i
\(965\) 0 0
\(966\) −59.5738 + 183.349i −0.0616705 + 0.189802i
\(967\) −1228.33 −1.27025 −0.635125 0.772410i \(-0.719051\pi\)
−0.635125 + 0.772410i \(0.719051\pi\)
\(968\) 273.638 100.897i 0.282684 0.104233i
\(969\) 315.479 0.325571
\(970\) 0 0
\(971\) −1282.98 + 932.137i −1.32129 + 0.959976i −0.321379 + 0.946951i \(0.604146\pi\)
−0.999915 + 0.0130253i \(0.995854\pi\)
\(972\) −72.1291 + 99.2772i −0.0742069 + 0.102137i
\(973\) −464.193 + 150.825i −0.477074 + 0.155011i
\(974\) 9.55237 3.10375i 0.00980736 0.00318660i
\(975\) 0 0
\(976\) 290.871 + 400.350i 0.298024 + 0.410194i
\(977\) 895.345 + 290.915i 0.916422 + 0.297764i 0.728998 0.684515i \(-0.239986\pi\)
0.187424 + 0.982279i \(0.439986\pi\)
\(978\) −319.713 −0.326905
\(979\) −178.752 + 1291.52i −0.182586 + 1.31923i
\(980\) 0 0
\(981\) 2633.10 + 855.547i 2.68410 + 0.872117i
\(982\) −142.966 196.775i −0.145586 0.200382i
\(983\) 410.154 564.528i 0.417247 0.574291i −0.547720 0.836662i \(-0.684504\pi\)
0.964967 + 0.262370i \(0.0845042\pi\)
\(984\) −154.053 474.127i −0.156558 0.481837i
\(985\) 0 0
\(986\) 24.4574 33.6628i 0.0248047 0.0341408i
\(987\) 166.070 120.657i 0.168257 0.122246i
\(988\) 385.191 + 125.156i 0.389870 + 0.126676i
\(989\) 347.877i 0.351746i
\(990\) 0 0
\(991\) 1202.24 1.21315 0.606577 0.795025i \(-0.292542\pi\)
0.606577 + 0.795025i \(0.292542\pi\)
\(992\) −136.670 + 420.626i −0.137772 + 0.424018i
\(993\) 361.021 + 496.903i 0.363566 + 0.500406i
\(994\) 14.9751 + 10.8800i 0.0150655 + 0.0109457i
\(995\) 0 0
\(996\) −1695.82 + 551.004i −1.70263 + 0.553217i
\(997\) −655.602 476.323i −0.657575 0.477756i 0.208268 0.978072i \(-0.433217\pi\)
−0.865843 + 0.500316i \(0.833217\pi\)
\(998\) −146.262 + 106.265i −0.146555 + 0.106478i
\(999\) −274.339 + 844.329i −0.274614 + 0.845174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.f.24.3 24
5.2 odd 4 275.3.x.f.101.2 12
5.3 odd 4 55.3.i.d.46.2 yes 12
5.4 even 2 inner 275.3.q.f.24.4 24
11.6 odd 10 inner 275.3.q.f.149.4 24
55.17 even 20 275.3.x.f.226.2 12
55.18 even 20 605.3.c.d.241.5 12
55.28 even 20 55.3.i.d.6.2 12
55.39 odd 10 inner 275.3.q.f.149.3 24
55.48 odd 20 605.3.c.d.241.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.d.6.2 12 55.28 even 20
55.3.i.d.46.2 yes 12 5.3 odd 4
275.3.q.f.24.3 24 1.1 even 1 trivial
275.3.q.f.24.4 24 5.4 even 2 inner
275.3.q.f.149.3 24 55.39 odd 10 inner
275.3.q.f.149.4 24 11.6 odd 10 inner
275.3.x.f.101.2 12 5.2 odd 4
275.3.x.f.226.2 12 55.17 even 20
605.3.c.d.241.5 12 55.18 even 20
605.3.c.d.241.8 12 55.48 odd 20