Properties

Label 55.3.i.d.46.2
Level $55$
Weight $3$
Character 55.46
Analytic conductor $1.499$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(6,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.6");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 25x^{10} + 235x^{8} + 1025x^{6} + 2090x^{4} + 1880x^{2} + 605 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 46.2
Root \(0.914937i\) of defining polynomial
Character \(\chi\) \(=\) 55.46
Dual form 55.3.i.d.6.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.289909 + 0.0941972i) q^{2} +(-4.17687 + 3.03467i) q^{3} +(-3.16089 - 2.29652i) q^{4} +(-0.690983 - 2.12663i) q^{5} +(-1.49677 + 0.486330i) q^{6} +(-5.94293 + 8.17974i) q^{7} +(-1.41674 - 1.94998i) q^{8} +(5.45583 - 16.7913i) q^{9} -0.681617i q^{10} +(-1.50807 + 10.8961i) q^{11} +20.1718 q^{12} +(4.61316 + 1.49891i) q^{13} +(-2.49342 + 1.81157i) q^{14} +(9.33976 + 6.78573i) q^{15} +(4.60237 + 14.1646i) q^{16} +(-2.71930 + 0.883556i) q^{17} +(3.16339 - 4.35403i) q^{18} +(-12.5616 - 17.2895i) q^{19} +(-2.69973 + 8.30890i) q^{20} -52.2005i q^{21} +(-1.46359 + 3.01683i) q^{22} -12.1155 q^{23} +(11.8351 + 3.84545i) q^{24} +(-4.04508 + 2.93893i) q^{25} +(1.19620 + 0.869094i) q^{26} +(13.8091 + 42.4999i) q^{27} +(37.5699 - 12.2072i) q^{28} +(-28.0610 + 38.6227i) q^{29} +(2.06848 + 2.84702i) q^{30} +(9.63737 - 29.6608i) q^{31} +14.1812i q^{32} +(-26.7672 - 50.0882i) q^{33} -0.871580 q^{34} +(21.5017 + 6.98633i) q^{35} +(-55.8070 + 40.5461i) q^{36} +(-16.0724 - 11.6773i) q^{37} +(-2.01309 - 6.19566i) q^{38} +(-23.8172 + 7.73869i) q^{39} +(-3.16793 + 4.36028i) q^{40} +(23.5474 + 32.4102i) q^{41} +(4.91714 - 15.1334i) q^{42} +28.7133i q^{43} +(29.7901 - 30.9782i) q^{44} -39.4788 q^{45} +(-3.51240 - 1.14125i) q^{46} +(3.18139 - 2.31141i) q^{47} +(-62.2085 - 45.1971i) q^{48} +(-16.4479 - 50.6214i) q^{49} +(-1.44955 + 0.470986i) q^{50} +(8.67687 - 11.9427i) q^{51} +(-11.1394 - 15.3321i) q^{52} +(-19.4659 + 59.9100i) q^{53} +13.6219i q^{54} +(24.2141 - 4.32195i) q^{55} +24.3699 q^{56} +(104.936 + 34.0958i) q^{57} +(-11.7733 + 8.55381i) q^{58} +(41.4758 + 30.1339i) q^{59} +(-13.9384 - 42.8979i) q^{60} +(31.6001 - 10.2675i) q^{61} +(5.58793 - 7.69112i) q^{62} +(104.925 + 144.417i) q^{63} +(17.0737 - 52.5473i) q^{64} -10.8462i q^{65} +(-3.04189 - 17.0424i) q^{66} -90.1298 q^{67} +(10.6245 + 3.45212i) q^{68} +(50.6049 - 36.7666i) q^{69} +(5.57545 + 4.05080i) q^{70} +(1.85591 + 5.71191i) q^{71} +(-40.4722 + 13.1502i) q^{72} +(76.9424 - 105.902i) q^{73} +(-3.55957 - 4.89933i) q^{74} +(7.97710 - 24.5510i) q^{75} +83.4983i q^{76} +(-80.1652 - 77.0905i) q^{77} -7.63380 q^{78} +(85.4604 + 27.7678i) q^{79} +(26.9428 - 19.5751i) q^{80} +(-58.1000 - 42.2121i) q^{81} +(3.77365 + 11.6141i) q^{82} +(-84.0686 + 27.3155i) q^{83} +(-119.880 + 165.000i) q^{84} +(3.75799 + 5.17242i) q^{85} +(-2.70472 + 8.32426i) q^{86} -246.478i q^{87} +(23.3837 - 12.4963i) q^{88} -118.531 q^{89} +(-11.4453 - 3.71879i) q^{90} +(-39.6764 + 28.8266i) q^{91} +(38.2959 + 27.8236i) q^{92} +(49.7567 + 153.135i) q^{93} +(1.14004 - 0.370422i) q^{94} +(-28.0885 + 38.6606i) q^{95} +(-43.0353 - 59.2330i) q^{96} +(-20.6501 + 63.5544i) q^{97} -16.2250i q^{98} +(174.733 + 84.7699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{2} - 13 q^{3} + 13 q^{4} - 15 q^{5} + 20 q^{6} - 5 q^{7} - 35 q^{8} + 4 q^{9} + 12 q^{11} - 2 q^{12} + 70 q^{13} - 60 q^{14} + 35 q^{15} - 43 q^{16} - 15 q^{17} - 30 q^{18} - 80 q^{19} + 20 q^{20}+ \cdots + 669 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.289909 + 0.0941972i 0.144955 + 0.0470986i 0.380596 0.924742i \(-0.375719\pi\)
−0.235641 + 0.971840i \(0.575719\pi\)
\(3\) −4.17687 + 3.03467i −1.39229 + 1.01156i −0.396679 + 0.917957i \(0.629837\pi\)
−0.995610 + 0.0935994i \(0.970163\pi\)
\(4\) −3.16089 2.29652i −0.790223 0.574131i
\(5\) −0.690983 2.12663i −0.138197 0.425325i
\(6\) −1.49677 + 0.486330i −0.249462 + 0.0810550i
\(7\) −5.94293 + 8.17974i −0.848990 + 1.16853i 0.135095 + 0.990833i \(0.456866\pi\)
−0.984084 + 0.177701i \(0.943134\pi\)
\(8\) −1.41674 1.94998i −0.177093 0.243747i
\(9\) 5.45583 16.7913i 0.606203 1.86570i
\(10\) 0.681617i 0.0681617i
\(11\) −1.50807 + 10.8961i −0.137097 + 0.990558i
\(12\) 20.1718 1.68099
\(13\) 4.61316 + 1.49891i 0.354859 + 0.115301i 0.481021 0.876709i \(-0.340266\pi\)
−0.126162 + 0.992010i \(0.540266\pi\)
\(14\) −2.49342 + 1.81157i −0.178101 + 0.129398i
\(15\) 9.33976 + 6.78573i 0.622650 + 0.452382i
\(16\) 4.60237 + 14.1646i 0.287648 + 0.885290i
\(17\) −2.71930 + 0.883556i −0.159959 + 0.0519739i −0.387902 0.921701i \(-0.626800\pi\)
0.227943 + 0.973675i \(0.426800\pi\)
\(18\) 3.16339 4.35403i 0.175744 0.241891i
\(19\) −12.5616 17.2895i −0.661136 0.909975i 0.338383 0.941009i \(-0.390120\pi\)
−0.999518 + 0.0310333i \(0.990120\pi\)
\(20\) −2.69973 + 8.30890i −0.134986 + 0.415445i
\(21\) 52.2005i 2.48574i
\(22\) −1.46359 + 3.01683i −0.0665267 + 0.137129i
\(23\) −12.1155 −0.526762 −0.263381 0.964692i \(-0.584838\pi\)
−0.263381 + 0.964692i \(0.584838\pi\)
\(24\) 11.8351 + 3.84545i 0.493128 + 0.160227i
\(25\) −4.04508 + 2.93893i −0.161803 + 0.117557i
\(26\) 1.19620 + 0.869094i 0.0460079 + 0.0334267i
\(27\) 13.8091 + 42.4999i 0.511447 + 1.57407i
\(28\) 37.5699 12.2072i 1.34178 0.435972i
\(29\) −28.0610 + 38.6227i −0.967622 + 1.33182i −0.0243833 + 0.999703i \(0.507762\pi\)
−0.943239 + 0.332115i \(0.892238\pi\)
\(30\) 2.06848 + 2.84702i 0.0689495 + 0.0949008i
\(31\) 9.63737 29.6608i 0.310883 0.956800i −0.666533 0.745476i \(-0.732222\pi\)
0.977416 0.211324i \(-0.0677776\pi\)
\(32\) 14.1812i 0.443163i
\(33\) −26.7672 50.0882i −0.811127 1.51782i
\(34\) −0.871580 −0.0256347
\(35\) 21.5017 + 6.98633i 0.614335 + 0.199609i
\(36\) −55.8070 + 40.5461i −1.55019 + 1.12628i
\(37\) −16.0724 11.6773i −0.434389 0.315602i 0.349012 0.937118i \(-0.386517\pi\)
−0.783402 + 0.621516i \(0.786517\pi\)
\(38\) −2.01309 6.19566i −0.0529761 0.163044i
\(39\) −23.8172 + 7.73869i −0.610699 + 0.198428i
\(40\) −3.16793 + 4.36028i −0.0791982 + 0.109007i
\(41\) 23.5474 + 32.4102i 0.574326 + 0.790493i 0.993059 0.117617i \(-0.0375255\pi\)
−0.418733 + 0.908110i \(0.637526\pi\)
\(42\) 4.91714 15.1334i 0.117075 0.360319i
\(43\) 28.7133i 0.667752i 0.942617 + 0.333876i \(0.108357\pi\)
−0.942617 + 0.333876i \(0.891643\pi\)
\(44\) 29.7901 30.9782i 0.677047 0.704050i
\(45\) −39.4788 −0.877306
\(46\) −3.51240 1.14125i −0.0763566 0.0248098i
\(47\) 3.18139 2.31141i 0.0676891 0.0491790i −0.553426 0.832898i \(-0.686680\pi\)
0.621115 + 0.783719i \(0.286680\pi\)
\(48\) −62.2085 45.1971i −1.29601 0.941607i
\(49\) −16.4479 50.6214i −0.335671 1.03309i
\(50\) −1.44955 + 0.470986i −0.0289909 + 0.00941972i
\(51\) 8.67687 11.9427i 0.170135 0.234170i
\(52\) −11.1394 15.3321i −0.214220 0.294848i
\(53\) −19.4659 + 59.9100i −0.367282 + 1.13038i 0.581258 + 0.813719i \(0.302561\pi\)
−0.948540 + 0.316658i \(0.897439\pi\)
\(54\) 13.6219i 0.252257i
\(55\) 24.2141 4.32195i 0.440256 0.0785809i
\(56\) 24.3699 0.435177
\(57\) 104.936 + 34.0958i 1.84098 + 0.598172i
\(58\) −11.7733 + 8.55381i −0.202988 + 0.147479i
\(59\) 41.4758 + 30.1339i 0.702979 + 0.510744i 0.880901 0.473300i \(-0.156937\pi\)
−0.177922 + 0.984045i \(0.556937\pi\)
\(60\) −13.9384 42.8979i −0.232306 0.714966i
\(61\) 31.6001 10.2675i 0.518035 0.168320i −0.0383184 0.999266i \(-0.512200\pi\)
0.556353 + 0.830946i \(0.312200\pi\)
\(62\) 5.58793 7.69112i 0.0901279 0.124050i
\(63\) 104.925 + 144.417i 1.66548 + 2.29233i
\(64\) 17.0737 52.5473i 0.266776 0.821052i
\(65\) 10.8462i 0.166865i
\(66\) −3.04189 17.0424i −0.0460892 0.258218i
\(67\) −90.1298 −1.34522 −0.672611 0.739997i \(-0.734827\pi\)
−0.672611 + 0.739997i \(0.734827\pi\)
\(68\) 10.6245 + 3.45212i 0.156243 + 0.0507665i
\(69\) 50.6049 36.7666i 0.733405 0.532850i
\(70\) 5.57545 + 4.05080i 0.0796493 + 0.0578686i
\(71\) 1.85591 + 5.71191i 0.0261396 + 0.0804494i 0.963275 0.268516i \(-0.0865331\pi\)
−0.937136 + 0.348965i \(0.886533\pi\)
\(72\) −40.4722 + 13.1502i −0.562114 + 0.182642i
\(73\) 76.9424 105.902i 1.05401 1.45071i 0.168722 0.985664i \(-0.446036\pi\)
0.885284 0.465051i \(-0.153964\pi\)
\(74\) −3.55957 4.89933i −0.0481023 0.0662072i
\(75\) 7.97710 24.5510i 0.106361 0.327347i
\(76\) 83.4983i 1.09866i
\(77\) −80.1652 77.0905i −1.04111 1.00118i
\(78\) −7.63380 −0.0978693
\(79\) 85.4604 + 27.7678i 1.08178 + 0.351491i 0.795064 0.606525i \(-0.207437\pi\)
0.286714 + 0.958016i \(0.407437\pi\)
\(80\) 26.9428 19.5751i 0.336784 0.244688i
\(81\) −58.1000 42.2121i −0.717284 0.521137i
\(82\) 3.77365 + 11.6141i 0.0460202 + 0.141636i
\(83\) −84.0686 + 27.3155i −1.01287 + 0.329103i −0.767999 0.640451i \(-0.778747\pi\)
−0.244876 + 0.969554i \(0.578747\pi\)
\(84\) −119.880 + 165.000i −1.42714 + 1.96429i
\(85\) 3.75799 + 5.17242i 0.0442116 + 0.0608521i
\(86\) −2.70472 + 8.32426i −0.0314502 + 0.0967937i
\(87\) 246.478i 2.83308i
\(88\) 23.3837 12.4963i 0.265724 0.142003i
\(89\) −118.531 −1.33180 −0.665902 0.746039i \(-0.731953\pi\)
−0.665902 + 0.746039i \(0.731953\pi\)
\(90\) −11.4453 3.71879i −0.127169 0.0413199i
\(91\) −39.6764 + 28.8266i −0.436004 + 0.316775i
\(92\) 38.2959 + 27.8236i 0.416260 + 0.302430i
\(93\) 49.7567 + 153.135i 0.535018 + 1.64662i
\(94\) 1.14004 0.370422i 0.0121281 0.00394066i
\(95\) −28.0885 + 38.6606i −0.295669 + 0.406953i
\(96\) −43.0353 59.2330i −0.448284 0.617010i
\(97\) −20.6501 + 63.5544i −0.212887 + 0.655200i 0.786410 + 0.617705i \(0.211938\pi\)
−0.999297 + 0.0374942i \(0.988062\pi\)
\(98\) 16.2250i 0.165561i
\(99\) 174.733 + 84.7699i 1.76498 + 0.856262i
\(100\) 19.5354 0.195354
\(101\) 12.3073 + 3.99890i 0.121855 + 0.0395931i 0.369310 0.929306i \(-0.379594\pi\)
−0.247455 + 0.968899i \(0.579594\pi\)
\(102\) 3.64047 2.64496i 0.0356909 0.0259310i
\(103\) −91.4263 66.4251i −0.887634 0.644904i 0.0476260 0.998865i \(-0.484834\pi\)
−0.935260 + 0.353961i \(0.884834\pi\)
\(104\) −3.61282 11.1191i −0.0347387 0.106915i
\(105\) −111.011 + 36.0697i −1.05725 + 0.343521i
\(106\) −11.2867 + 15.5348i −0.106478 + 0.146555i
\(107\) −9.42241 12.9688i −0.0880599 0.121204i 0.762714 0.646736i \(-0.223866\pi\)
−0.850774 + 0.525532i \(0.823866\pi\)
\(108\) 53.9531 166.051i 0.499566 1.53751i
\(109\) 156.813i 1.43865i 0.694671 + 0.719327i \(0.255550\pi\)
−0.694671 + 0.719327i \(0.744450\pi\)
\(110\) 7.42699 + 1.02792i 0.0675181 + 0.00934477i
\(111\) 102.569 0.924045
\(112\) −143.215 46.5333i −1.27870 0.415476i
\(113\) −25.8896 + 18.8099i −0.229112 + 0.166459i −0.696419 0.717636i \(-0.745224\pi\)
0.467307 + 0.884095i \(0.345224\pi\)
\(114\) 27.2102 + 19.7694i 0.238686 + 0.173416i
\(115\) 8.37162 + 25.7652i 0.0727967 + 0.224045i
\(116\) 177.396 57.6394i 1.52928 0.496892i
\(117\) 50.3372 69.2833i 0.430233 0.592165i
\(118\) 9.18568 + 12.6430i 0.0778447 + 0.107144i
\(119\) 8.93338 27.4941i 0.0750704 0.231043i
\(120\) 27.8259i 0.231883i
\(121\) −116.451 32.8642i −0.962409 0.271605i
\(122\) 10.1283 0.0830192
\(123\) −196.709 63.9145i −1.59926 0.519630i
\(124\) −98.5794 + 71.6221i −0.794995 + 0.577598i
\(125\) 9.04508 + 6.57164i 0.0723607 + 0.0525731i
\(126\) 16.8151 + 51.7514i 0.133453 + 0.410726i
\(127\) 102.574 33.3284i 0.807671 0.262428i 0.124060 0.992275i \(-0.460408\pi\)
0.683611 + 0.729846i \(0.260408\pi\)
\(128\) 43.2416 59.5170i 0.337825 0.464977i
\(129\) −87.1355 119.932i −0.675469 0.929703i
\(130\) 1.02168 3.14441i 0.00785908 0.0241878i
\(131\) 48.6741i 0.371558i 0.982592 + 0.185779i \(0.0594808\pi\)
−0.982592 + 0.185779i \(0.940519\pi\)
\(132\) −30.4205 + 219.795i −0.230458 + 1.66511i
\(133\) 216.076 1.62463
\(134\) −26.1295 8.48998i −0.194996 0.0633580i
\(135\) 80.8397 58.7335i 0.598812 0.435063i
\(136\) 5.57546 + 4.05081i 0.0409961 + 0.0297854i
\(137\) −23.2157 71.4507i −0.169458 0.521538i 0.829879 0.557943i \(-0.188409\pi\)
−0.999337 + 0.0364052i \(0.988409\pi\)
\(138\) 18.1341 5.89214i 0.131407 0.0426967i
\(139\) −28.3745 + 39.0542i −0.204133 + 0.280965i −0.898793 0.438373i \(-0.855555\pi\)
0.694660 + 0.719338i \(0.255555\pi\)
\(140\) −51.9204 71.4623i −0.370860 0.510445i
\(141\) −6.27385 + 19.3089i −0.0444954 + 0.136943i
\(142\) 1.83076i 0.0128926i
\(143\) −23.2892 + 48.0052i −0.162862 + 0.335700i
\(144\) 262.953 1.82606
\(145\) 101.526 + 32.9877i 0.700178 + 0.227502i
\(146\) 32.2820 23.4542i 0.221110 0.160646i
\(147\) 222.320 + 161.525i 1.51238 + 1.09881i
\(148\) 23.9860 + 73.8213i 0.162068 + 0.498793i
\(149\) 114.600 37.2357i 0.769126 0.249904i 0.101935 0.994791i \(-0.467497\pi\)
0.667191 + 0.744887i \(0.267497\pi\)
\(150\) 4.62527 6.36614i 0.0308351 0.0424409i
\(151\) −45.4102 62.5018i −0.300730 0.413919i 0.631733 0.775186i \(-0.282344\pi\)
−0.932462 + 0.361268i \(0.882344\pi\)
\(152\) −15.9177 + 48.9896i −0.104722 + 0.322300i
\(153\) 50.4812i 0.329943i
\(154\) −15.9789 29.9006i −0.103759 0.194160i
\(155\) −69.7367 −0.449914
\(156\) 93.0559 + 30.2357i 0.596512 + 0.193819i
\(157\) −43.8515 + 31.8599i −0.279309 + 0.202930i −0.718616 0.695407i \(-0.755224\pi\)
0.439307 + 0.898337i \(0.355224\pi\)
\(158\) 22.1601 + 16.1003i 0.140254 + 0.101900i
\(159\) −100.501 309.309i −0.632079 1.94534i
\(160\) 30.1581 9.79897i 0.188488 0.0612436i
\(161\) 72.0017 99.1018i 0.447215 0.615539i
\(162\) −12.8675 17.7105i −0.0794287 0.109324i
\(163\) −62.7761 + 193.205i −0.385129 + 1.18531i 0.551257 + 0.834336i \(0.314148\pi\)
−0.936386 + 0.350971i \(0.885852\pi\)
\(164\) 156.522i 0.954404i
\(165\) −88.0232 + 91.5339i −0.533474 + 0.554751i
\(166\) −26.9453 −0.162321
\(167\) 126.214 + 41.0093i 0.755771 + 0.245565i 0.661462 0.749978i \(-0.269936\pi\)
0.0943081 + 0.995543i \(0.469936\pi\)
\(168\) −101.790 + 73.9546i −0.605891 + 0.440206i
\(169\) −117.689 85.5063i −0.696387 0.505954i
\(170\) 0.602247 + 1.85353i 0.00354263 + 0.0109031i
\(171\) −358.848 + 116.597i −2.09853 + 0.681852i
\(172\) 65.9408 90.7598i 0.383377 0.527673i
\(173\) −65.7416 90.4855i −0.380009 0.523037i 0.575578 0.817747i \(-0.304777\pi\)
−0.955587 + 0.294709i \(0.904777\pi\)
\(174\) 23.2175 71.4562i 0.133434 0.410668i
\(175\) 50.5536i 0.288878i
\(176\) −161.281 + 28.7868i −0.916367 + 0.163562i
\(177\) −264.685 −1.49540
\(178\) −34.3631 11.1652i −0.193051 0.0627261i
\(179\) 38.7619 28.1621i 0.216547 0.157330i −0.474224 0.880404i \(-0.657271\pi\)
0.690771 + 0.723074i \(0.257271\pi\)
\(180\) 124.788 + 90.6639i 0.693268 + 0.503688i
\(181\) 2.09873 + 6.45923i 0.0115952 + 0.0356864i 0.956687 0.291119i \(-0.0940277\pi\)
−0.945092 + 0.326806i \(0.894028\pi\)
\(182\) −14.2179 + 4.61968i −0.0781204 + 0.0253829i
\(183\) −100.831 + 138.782i −0.550989 + 0.758371i
\(184\) 17.1646 + 23.6250i 0.0932857 + 0.128397i
\(185\) −13.7275 + 42.2488i −0.0742026 + 0.228372i
\(186\) 49.0823i 0.263883i
\(187\) −5.52645 30.9624i −0.0295532 0.165574i
\(188\) −15.3642 −0.0817246
\(189\) −429.705 139.619i −2.27357 0.738728i
\(190\) −11.7848 + 8.56219i −0.0620255 + 0.0450642i
\(191\) 60.7195 + 44.1153i 0.317903 + 0.230970i 0.735280 0.677763i \(-0.237051\pi\)
−0.417377 + 0.908733i \(0.637051\pi\)
\(192\) 88.1494 + 271.296i 0.459112 + 1.41300i
\(193\) 360.857 117.250i 1.86973 0.607511i 0.878081 0.478513i \(-0.158824\pi\)
0.991645 0.128998i \(-0.0411761\pi\)
\(194\) −11.9733 + 16.4798i −0.0617180 + 0.0849475i
\(195\) 32.9146 + 45.3031i 0.168793 + 0.232324i
\(196\) −64.2633 + 197.782i −0.327874 + 1.00909i
\(197\) 91.4898i 0.464415i 0.972666 + 0.232208i \(0.0745949\pi\)
−0.972666 + 0.232208i \(0.925405\pi\)
\(198\) 42.6715 + 41.0349i 0.215513 + 0.207247i
\(199\) 24.0213 0.120710 0.0603551 0.998177i \(-0.480777\pi\)
0.0603551 + 0.998177i \(0.480777\pi\)
\(200\) 11.4617 + 3.72412i 0.0573084 + 0.0186206i
\(201\) 376.460 273.514i 1.87294 1.36077i
\(202\) 3.19133 + 2.31864i 0.0157987 + 0.0114784i
\(203\) −149.159 459.064i −0.734773 2.26140i
\(204\) −54.8533 + 17.8229i −0.268889 + 0.0873673i
\(205\) 52.6536 72.4714i 0.256847 0.353519i
\(206\) −20.2483 27.8693i −0.0982926 0.135288i
\(207\) −66.1002 + 203.436i −0.319325 + 0.982781i
\(208\) 72.2423i 0.347319i
\(209\) 207.333 110.799i 0.992023 0.530138i
\(210\) −35.5808 −0.169432
\(211\) −349.688 113.620i −1.65729 0.538486i −0.676987 0.735995i \(-0.736715\pi\)
−0.980301 + 0.197509i \(0.936715\pi\)
\(212\) 199.115 144.665i 0.939219 0.682383i
\(213\) −25.0856 18.2258i −0.117773 0.0855671i
\(214\) −1.51002 4.64735i −0.00705615 0.0217166i
\(215\) 61.0625 19.8404i 0.284012 0.0922810i
\(216\) 63.3100 87.1387i 0.293102 0.403420i
\(217\) 185.343 + 255.103i 0.854117 + 1.17559i
\(218\) −14.7714 + 45.4616i −0.0677586 + 0.208540i
\(219\) 675.834i 3.08600i
\(220\) −86.4635 41.9470i −0.393016 0.190668i
\(221\) −13.8690 −0.0627555
\(222\) 29.7357 + 9.66172i 0.133945 + 0.0435212i
\(223\) 143.396 104.183i 0.643032 0.467190i −0.217858 0.975980i \(-0.569907\pi\)
0.860891 + 0.508790i \(0.169907\pi\)
\(224\) −115.999 84.2779i −0.517851 0.376241i
\(225\) 27.2792 + 83.9566i 0.121241 + 0.373140i
\(226\) −9.27747 + 3.01443i −0.0410508 + 0.0133382i
\(227\) 10.8732 14.9656i 0.0478994 0.0659279i −0.784395 0.620261i \(-0.787027\pi\)
0.832295 + 0.554333i \(0.187027\pi\)
\(228\) −253.390 348.761i −1.11136 1.52966i
\(229\) −41.3284 + 127.196i −0.180473 + 0.555440i −0.999841 0.0178283i \(-0.994325\pi\)
0.819368 + 0.573268i \(0.194325\pi\)
\(230\) 8.25815i 0.0359050i
\(231\) 568.784 + 78.7219i 2.46227 + 0.340787i
\(232\) 115.069 0.495985
\(233\) −41.8780 13.6070i −0.179734 0.0583991i 0.217767 0.976001i \(-0.430123\pi\)
−0.397501 + 0.917602i \(0.630123\pi\)
\(234\) 21.1195 15.3442i 0.0902544 0.0655736i
\(235\) −7.11379 5.16847i −0.0302715 0.0219935i
\(236\) −61.8973 190.500i −0.262277 0.807204i
\(237\) −441.223 + 143.362i −1.86170 + 0.604903i
\(238\) 5.17974 7.12930i 0.0217636 0.0299550i
\(239\) 97.2433 + 133.844i 0.406876 + 0.560017i 0.962453 0.271448i \(-0.0875026\pi\)
−0.555577 + 0.831465i \(0.687503\pi\)
\(240\) −53.1324 + 163.525i −0.221385 + 0.681353i
\(241\) 68.3979i 0.283809i −0.989880 0.141904i \(-0.954677\pi\)
0.989880 0.141904i \(-0.0453225\pi\)
\(242\) −30.6646 20.4970i −0.126713 0.0846985i
\(243\) −31.4080 −0.129251
\(244\) −123.464 40.1160i −0.506001 0.164410i
\(245\) −96.2877 + 69.9571i −0.393011 + 0.285539i
\(246\) −51.0071 37.0588i −0.207346 0.150645i
\(247\) −32.0332 98.5880i −0.129689 0.399142i
\(248\) −71.4915 + 23.2290i −0.288272 + 0.0936653i
\(249\) 268.250 369.214i 1.07731 1.48279i
\(250\) 2.00322 + 2.75720i 0.00801289 + 0.0110288i
\(251\) 104.767 322.440i 0.417399 1.28462i −0.492688 0.870206i \(-0.663986\pi\)
0.910087 0.414417i \(-0.136014\pi\)
\(252\) 697.449i 2.76766i
\(253\) 18.2710 132.012i 0.0722175 0.521788i
\(254\) 32.8767 0.129436
\(255\) −31.3932 10.2003i −0.123111 0.0400011i
\(256\) −160.655 + 116.723i −0.627559 + 0.455949i
\(257\) 203.807 + 148.075i 0.793025 + 0.576167i 0.908860 0.417102i \(-0.136954\pi\)
−0.115835 + 0.993269i \(0.536954\pi\)
\(258\) −13.9641 42.9772i −0.0541246 0.166578i
\(259\) 191.034 62.0708i 0.737584 0.239656i
\(260\) −24.9085 + 34.2837i −0.0958021 + 0.131860i
\(261\) 495.430 + 681.901i 1.89820 + 2.61265i
\(262\) −4.58496 + 14.1111i −0.0174999 + 0.0538590i
\(263\) 424.803i 1.61522i 0.589717 + 0.807610i \(0.299239\pi\)
−0.589717 + 0.807610i \(0.700761\pi\)
\(264\) −59.7486 + 123.157i −0.226320 + 0.466505i
\(265\) 140.857 0.531535
\(266\) 62.6425 + 20.3538i 0.235498 + 0.0765180i
\(267\) 495.086 359.701i 1.85426 1.34720i
\(268\) 284.891 + 206.985i 1.06303 + 0.772333i
\(269\) 154.300 + 474.888i 0.573608 + 1.76538i 0.640872 + 0.767648i \(0.278573\pi\)
−0.0672640 + 0.997735i \(0.521427\pi\)
\(270\) 28.9687 9.41250i 0.107291 0.0348611i
\(271\) −138.031 + 189.983i −0.509339 + 0.701045i −0.983808 0.179227i \(-0.942640\pi\)
0.474468 + 0.880273i \(0.342640\pi\)
\(272\) −25.0305 34.4515i −0.0920239 0.126660i
\(273\) 78.2437 240.809i 0.286607 0.882086i
\(274\) 22.9011i 0.0835806i
\(275\) −25.9227 48.5079i −0.0942643 0.176392i
\(276\) −244.392 −0.885479
\(277\) 129.339 + 42.0248i 0.466928 + 0.151714i 0.533026 0.846099i \(-0.321055\pi\)
−0.0660976 + 0.997813i \(0.521055\pi\)
\(278\) −11.9048 + 8.64937i −0.0428232 + 0.0311128i
\(279\) −445.464 323.648i −1.59664 1.16003i
\(280\) −16.8392 51.8257i −0.0601399 0.185092i
\(281\) −287.964 + 93.5652i −1.02478 + 0.332972i −0.772726 0.634740i \(-0.781107\pi\)
−0.252057 + 0.967712i \(0.581107\pi\)
\(282\) −3.63769 + 5.00685i −0.0128996 + 0.0177548i
\(283\) −6.25933 8.61523i −0.0221178 0.0304425i 0.797815 0.602902i \(-0.205989\pi\)
−0.819933 + 0.572460i \(0.805989\pi\)
\(284\) 7.25119 22.3169i 0.0255324 0.0785805i
\(285\) 246.720i 0.865683i
\(286\) −11.2737 + 11.7234i −0.0394186 + 0.0409908i
\(287\) −405.047 −1.41131
\(288\) 238.121 + 77.3703i 0.826810 + 0.268647i
\(289\) −227.192 + 165.065i −0.786131 + 0.571158i
\(290\) 26.3259 + 19.1269i 0.0907790 + 0.0659548i
\(291\) −106.614 328.124i −0.366371 1.12757i
\(292\) −486.414 + 158.045i −1.66580 + 0.541251i
\(293\) −193.994 + 267.010i −0.662095 + 0.911296i −0.999549 0.0300463i \(-0.990435\pi\)
0.337453 + 0.941342i \(0.390435\pi\)
\(294\) 49.2374 + 67.7695i 0.167474 + 0.230509i
\(295\) 35.4245 109.026i 0.120083 0.369578i
\(296\) 47.8845i 0.161772i
\(297\) −483.910 + 86.3727i −1.62933 + 0.290817i
\(298\) 36.7310 0.123259
\(299\) −55.8909 18.1600i −0.186926 0.0607359i
\(300\) −81.5967 + 59.2835i −0.271989 + 0.197612i
\(301\) −234.868 170.641i −0.780291 0.566914i
\(302\) −7.27734 22.3973i −0.0240971 0.0741634i
\(303\) −63.5415 + 20.6459i −0.209708 + 0.0681382i
\(304\) 187.087 257.503i 0.615418 0.847050i
\(305\) −43.6703 60.1070i −0.143181 0.197072i
\(306\) −4.75519 + 14.6350i −0.0155398 + 0.0478267i
\(307\) 111.473i 0.363104i −0.983381 0.181552i \(-0.941888\pi\)
0.983381 0.181552i \(-0.0581121\pi\)
\(308\) 76.3534 + 427.776i 0.247901 + 1.38888i
\(309\) 583.454 1.88820
\(310\) −20.2173 6.56900i −0.0652171 0.0211903i
\(311\) −327.747 + 238.122i −1.05385 + 0.765665i −0.972940 0.231057i \(-0.925782\pi\)
−0.0809071 + 0.996722i \(0.525782\pi\)
\(312\) 48.8331 + 35.4794i 0.156516 + 0.113716i
\(313\) 52.4582 + 161.450i 0.167598 + 0.515814i 0.999218 0.0395307i \(-0.0125863\pi\)
−0.831620 + 0.555345i \(0.812586\pi\)
\(314\) −15.7141 + 5.10581i −0.0500448 + 0.0162605i
\(315\) 234.619 322.926i 0.744824 1.02516i
\(316\) −206.362 284.033i −0.653044 0.898838i
\(317\) −119.372 + 367.389i −0.376567 + 1.15895i 0.565848 + 0.824510i \(0.308549\pi\)
−0.942415 + 0.334445i \(0.891451\pi\)
\(318\) 99.1383i 0.311756i
\(319\) −378.520 364.003i −1.18658 1.14107i
\(320\) −123.546 −0.386082
\(321\) 78.7123 + 25.5752i 0.245210 + 0.0796735i
\(322\) 30.2091 21.9482i 0.0938170 0.0681620i
\(323\) 49.4350 + 35.9167i 0.153050 + 0.111197i
\(324\) 86.7068 + 266.856i 0.267613 + 0.823630i
\(325\) −23.0658 + 7.49453i −0.0709717 + 0.0230601i
\(326\) −36.3987 + 50.0986i −0.111653 + 0.153677i
\(327\) −475.877 654.988i −1.45528 2.00302i
\(328\) 29.8386 91.8337i 0.0909713 0.279981i
\(329\) 39.7595i 0.120849i
\(330\) −34.1410 + 18.2450i −0.103457 + 0.0552878i
\(331\) 118.966 0.359413 0.179706 0.983720i \(-0.442485\pi\)
0.179706 + 0.983720i \(0.442485\pi\)
\(332\) 328.463 + 106.724i 0.989346 + 0.321458i
\(333\) −283.765 + 206.168i −0.852148 + 0.619122i
\(334\) 32.7275 + 23.7780i 0.0979867 + 0.0711915i
\(335\) 62.2782 + 191.672i 0.185905 + 0.572157i
\(336\) 739.402 240.246i 2.20060 0.715018i
\(337\) 260.717 358.847i 0.773642 1.06483i −0.222313 0.974975i \(-0.571361\pi\)
0.995955 0.0898516i \(-0.0286393\pi\)
\(338\) −26.0648 35.8751i −0.0771147 0.106139i
\(339\) 51.0556 157.133i 0.150606 0.463519i
\(340\) 24.9798i 0.0734700i
\(341\) 308.654 + 149.741i 0.905144 + 0.439122i
\(342\) −115.016 −0.336305
\(343\) 40.6417 + 13.2053i 0.118489 + 0.0384993i
\(344\) 55.9903 40.6793i 0.162763 0.118254i
\(345\) −113.156 82.2127i −0.327989 0.238298i
\(346\) −10.5356 32.4252i −0.0304497 0.0937146i
\(347\) 501.898 163.076i 1.44639 0.469961i 0.522507 0.852635i \(-0.324997\pi\)
0.923883 + 0.382674i \(0.124997\pi\)
\(348\) −566.042 + 779.091i −1.62656 + 2.23877i
\(349\) 318.255 + 438.040i 0.911905 + 1.25513i 0.966512 + 0.256622i \(0.0826096\pi\)
−0.0546065 + 0.998508i \(0.517390\pi\)
\(350\) 4.76200 14.6559i 0.0136057 0.0418741i
\(351\) 216.758i 0.617543i
\(352\) −154.520 21.3862i −0.438978 0.0607563i
\(353\) 216.813 0.614201 0.307101 0.951677i \(-0.400641\pi\)
0.307101 + 0.951677i \(0.400641\pi\)
\(354\) −76.7347 24.9326i −0.216765 0.0704311i
\(355\) 10.8647 7.89366i 0.0306048 0.0222357i
\(356\) 374.662 + 272.208i 1.05242 + 0.764630i
\(357\) 46.1221 + 141.949i 0.129193 + 0.397616i
\(358\) 13.8902 4.51321i 0.0387995 0.0126067i
\(359\) −329.315 + 453.263i −0.917311 + 1.26257i 0.0472967 + 0.998881i \(0.484939\pi\)
−0.964608 + 0.263689i \(0.915061\pi\)
\(360\) 55.9312 + 76.9827i 0.155364 + 0.213841i
\(361\) −29.5795 + 91.0363i −0.0819376 + 0.252178i
\(362\) 2.07029i 0.00571902i
\(363\) 586.134 216.123i 1.61469 0.595379i
\(364\) 191.614 0.526411
\(365\) −278.380 90.4512i −0.762686 0.247812i
\(366\) −42.3047 + 30.7362i −0.115587 + 0.0839786i
\(367\) −25.0380 18.1911i −0.0682233 0.0495671i 0.553151 0.833081i \(-0.313425\pi\)
−0.621374 + 0.783514i \(0.713425\pi\)
\(368\) −55.7602 171.612i −0.151522 0.466337i
\(369\) 672.680 218.567i 1.82298 0.592323i
\(370\) −7.95944 + 10.9552i −0.0215120 + 0.0296087i
\(371\) −374.364 515.267i −1.00907 1.38886i
\(372\) 194.403 598.312i 0.522590 1.60837i
\(373\) 483.806i 1.29707i −0.761186 0.648534i \(-0.775383\pi\)
0.761186 0.648534i \(-0.224617\pi\)
\(374\) 1.31440 9.49685i 0.00351444 0.0253927i
\(375\) −57.7229 −0.153928
\(376\) −9.01440 2.92896i −0.0239745 0.00778977i
\(377\) −187.342 + 136.112i −0.496928 + 0.361040i
\(378\) −111.424 80.9540i −0.294771 0.214164i
\(379\) 25.3368 + 77.9786i 0.0668517 + 0.205748i 0.978902 0.204330i \(-0.0655015\pi\)
−0.912050 + 0.410078i \(0.865501\pi\)
\(380\) 177.570 57.6959i 0.467289 0.151831i
\(381\) −327.298 + 450.487i −0.859050 + 1.18238i
\(382\) 13.4476 + 18.5090i 0.0352031 + 0.0484530i
\(383\) 225.261 693.283i 0.588150 1.81014i 0.00191562 0.999998i \(-0.499390\pi\)
0.586234 0.810141i \(-0.300610\pi\)
\(384\) 379.819i 0.989111i
\(385\) −108.550 + 223.750i −0.281948 + 0.581168i
\(386\) 115.660 0.299638
\(387\) 482.135 + 156.655i 1.24583 + 0.404793i
\(388\) 211.227 153.465i 0.544399 0.395529i
\(389\) −193.321 140.456i −0.496969 0.361069i 0.310889 0.950446i \(-0.399373\pi\)
−0.807858 + 0.589377i \(0.799373\pi\)
\(390\) 5.27483 + 16.2342i 0.0135252 + 0.0416263i
\(391\) 32.9458 10.7047i 0.0842604 0.0273779i
\(392\) −75.4082 + 103.790i −0.192368 + 0.264772i
\(393\) −147.710 203.305i −0.375852 0.517316i
\(394\) −8.61808 + 26.5237i −0.0218733 + 0.0673191i
\(395\) 200.930i 0.508682i
\(396\) −357.635 669.226i −0.903120 1.68997i
\(397\) −354.733 −0.893535 −0.446768 0.894650i \(-0.647425\pi\)
−0.446768 + 0.894650i \(0.647425\pi\)
\(398\) 6.96401 + 2.26274i 0.0174975 + 0.00568528i
\(399\) −902.522 + 655.721i −2.26196 + 1.64341i
\(400\) −60.2458 43.7712i −0.150615 0.109428i
\(401\) 79.1417 + 243.573i 0.197361 + 0.607414i 0.999941 + 0.0108700i \(0.00346008\pi\)
−0.802580 + 0.596545i \(0.796540\pi\)
\(402\) 134.904 43.8328i 0.335581 0.109037i
\(403\) 88.9175 122.384i 0.220639 0.303684i
\(404\) −29.7187 40.9042i −0.0735610 0.101248i
\(405\) −49.6233 + 152.725i −0.122527 + 0.377098i
\(406\) 147.137i 0.362407i
\(407\) 151.476 157.517i 0.372176 0.387020i
\(408\) −35.5808 −0.0872079
\(409\) 261.500 + 84.9666i 0.639365 + 0.207742i 0.610719 0.791847i \(-0.290881\pi\)
0.0286458 + 0.999590i \(0.490881\pi\)
\(410\) 22.0914 16.0503i 0.0538813 0.0391471i
\(411\) 313.798 + 227.988i 0.763500 + 0.554715i
\(412\) 136.442 + 419.925i 0.331170 + 1.01924i
\(413\) −492.975 + 160.177i −1.19364 + 0.387839i
\(414\) −38.3261 + 52.7514i −0.0925752 + 0.127419i
\(415\) 116.180 + 159.908i 0.279952 + 0.385320i
\(416\) −21.2563 + 65.4202i −0.0510969 + 0.157260i
\(417\) 249.232i 0.597678i
\(418\) 70.5446 12.5914i 0.168767 0.0301231i
\(419\) 44.0757 0.105193 0.0525963 0.998616i \(-0.483250\pi\)
0.0525963 + 0.998616i \(0.483250\pi\)
\(420\) 433.729 + 140.927i 1.03269 + 0.335541i
\(421\) 65.8608 47.8507i 0.156439 0.113660i −0.506812 0.862057i \(-0.669176\pi\)
0.663251 + 0.748397i \(0.269176\pi\)
\(422\) −90.6750 65.8792i −0.214870 0.156112i
\(423\) −21.4546 66.0303i −0.0507200 0.156100i
\(424\) 144.401 46.9188i 0.340569 0.110658i
\(425\) 8.40311 11.5659i 0.0197720 0.0272139i
\(426\) −5.55574 7.64682i −0.0130416 0.0179503i
\(427\) −103.812 + 319.500i −0.243119 + 0.748243i
\(428\) 62.6319i 0.146336i
\(429\) −48.4038 271.186i −0.112829 0.632136i
\(430\) 19.5715 0.0455151
\(431\) 690.547 + 224.372i 1.60220 + 0.520585i 0.967649 0.252299i \(-0.0811866\pi\)
0.634547 + 0.772884i \(0.281187\pi\)
\(432\) −538.442 + 391.201i −1.24639 + 0.905558i
\(433\) −280.828 204.033i −0.648563 0.471208i 0.214218 0.976786i \(-0.431280\pi\)
−0.862781 + 0.505577i \(0.831280\pi\)
\(434\) 29.7027 + 91.4156i 0.0684394 + 0.210635i
\(435\) −524.167 + 170.312i −1.20498 + 0.391522i
\(436\) 360.126 495.670i 0.825976 1.13686i
\(437\) 152.190 + 209.472i 0.348261 + 0.479340i
\(438\) −63.6617 + 195.930i −0.145346 + 0.447330i
\(439\) 72.1914i 0.164445i −0.996614 0.0822226i \(-0.973798\pi\)
0.996614 0.0822226i \(-0.0262018\pi\)
\(440\) −42.7327 41.0938i −0.0971199 0.0933949i
\(441\) −939.738 −2.13092
\(442\) −4.02074 1.30642i −0.00909669 0.00295569i
\(443\) 304.024 220.886i 0.686284 0.498614i −0.189153 0.981948i \(-0.560574\pi\)
0.875436 + 0.483333i \(0.160574\pi\)
\(444\) −324.210 235.552i −0.730202 0.530523i
\(445\) 81.9026 + 252.070i 0.184051 + 0.566450i
\(446\) 51.3857 16.6962i 0.115214 0.0374355i
\(447\) −365.670 + 503.301i −0.818053 + 1.12595i
\(448\) 328.356 + 451.943i 0.732937 + 1.00880i
\(449\) 34.6764 106.723i 0.0772302 0.237690i −0.904987 0.425440i \(-0.860119\pi\)
0.982217 + 0.187750i \(0.0601194\pi\)
\(450\) 26.9094i 0.0597987i
\(451\) −388.657 + 207.699i −0.861767 + 0.460529i
\(452\) 125.032 0.276619
\(453\) 379.344 + 123.256i 0.837405 + 0.272089i
\(454\) 4.56195 3.31445i 0.0100483 0.00730055i
\(455\) 88.7190 + 64.4581i 0.194987 + 0.141666i
\(456\) −82.1812 252.928i −0.180222 0.554666i
\(457\) −177.567 + 57.6949i −0.388549 + 0.126247i −0.496775 0.867879i \(-0.665483\pi\)
0.108227 + 0.994126i \(0.465483\pi\)
\(458\) −23.9630 + 32.9822i −0.0523209 + 0.0720136i
\(459\) −75.1021 103.369i −0.163621 0.225205i
\(460\) 32.7086 100.667i 0.0711056 0.218841i
\(461\) 559.922i 1.21458i −0.794479 0.607291i \(-0.792256\pi\)
0.794479 0.607291i \(-0.207744\pi\)
\(462\) 157.480 + 76.4000i 0.340866 + 0.165368i
\(463\) −648.611 −1.40089 −0.700444 0.713708i \(-0.747014\pi\)
−0.700444 + 0.713708i \(0.747014\pi\)
\(464\) −676.224 219.719i −1.45738 0.473532i
\(465\) 291.281 211.628i 0.626410 0.455114i
\(466\) −10.8591 7.88958i −0.0233028 0.0169304i
\(467\) −278.242 856.339i −0.595806 1.83370i −0.550671 0.834722i \(-0.685628\pi\)
−0.0451348 0.998981i \(-0.514372\pi\)
\(468\) −318.221 + 103.396i −0.679960 + 0.220932i
\(469\) 535.635 737.238i 1.14208 1.57194i
\(470\) −1.57550 2.16849i −0.00335212 0.00461380i
\(471\) 86.4772 266.149i 0.183603 0.565073i
\(472\) 123.569i 0.261798i
\(473\) −312.864 43.3016i −0.661447 0.0915468i
\(474\) −141.419 −0.298352
\(475\) 101.625 + 33.0201i 0.213948 + 0.0695159i
\(476\) −91.3783 + 66.3902i −0.191971 + 0.139475i
\(477\) 899.765 + 653.718i 1.88630 + 1.37048i
\(478\) 15.5840 + 47.9626i 0.0326025 + 0.100340i
\(479\) −441.790 + 143.546i −0.922317 + 0.299679i −0.731417 0.681930i \(-0.761141\pi\)
−0.190900 + 0.981609i \(0.561141\pi\)
\(480\) −96.2298 + 132.449i −0.200479 + 0.275935i
\(481\) −56.6415 77.9603i −0.117758 0.162080i
\(482\) 6.44289 19.8292i 0.0133670 0.0411394i
\(483\) 632.437i 1.30939i
\(484\) 292.617 + 371.314i 0.604581 + 0.767177i
\(485\) 149.425 0.308093
\(486\) −9.10546 2.95854i −0.0187355 0.00608753i
\(487\) −26.6567 + 19.3672i −0.0547366 + 0.0397685i −0.614817 0.788670i \(-0.710770\pi\)
0.560081 + 0.828438i \(0.310770\pi\)
\(488\) −64.7906 47.0731i −0.132768 0.0964613i
\(489\) −324.106 997.496i −0.662794 2.03987i
\(490\) −34.5044 + 11.2112i −0.0704172 + 0.0228799i
\(491\) −469.003 + 645.528i −0.955200 + 1.31472i −0.00602158 + 0.999982i \(0.501917\pi\)
−0.949179 + 0.314738i \(0.898083\pi\)
\(492\) 474.994 + 653.773i 0.965434 + 1.32881i
\(493\) 42.1812 129.820i 0.0855603 0.263327i
\(494\) 31.5990i 0.0639656i
\(495\) 59.5366 430.166i 0.120276 0.869022i
\(496\) 464.489 0.936470
\(497\) −57.7514 18.7646i −0.116200 0.0377557i
\(498\) 112.547 81.7701i 0.225998 0.164197i
\(499\) −479.816 348.607i −0.961555 0.698611i −0.00804363 0.999968i \(-0.502560\pi\)
−0.953511 + 0.301357i \(0.902560\pi\)
\(500\) −13.4986 41.5445i −0.0269973 0.0830890i
\(501\) −651.627 + 211.727i −1.30065 + 0.422608i
\(502\) 60.7459 83.6096i 0.121008 0.166553i
\(503\) 461.015 + 634.532i 0.916530 + 1.26150i 0.964887 + 0.262665i \(0.0846015\pi\)
−0.0483569 + 0.998830i \(0.515398\pi\)
\(504\) 132.958 409.203i 0.263806 0.811910i
\(505\) 28.9363i 0.0572996i
\(506\) 17.7321 36.5505i 0.0350437 0.0722342i
\(507\) 751.056 1.48137
\(508\) −400.766 130.217i −0.788909 0.256332i
\(509\) 639.768 464.819i 1.25691 0.913200i 0.258310 0.966062i \(-0.416835\pi\)
0.998602 + 0.0528625i \(0.0168345\pi\)
\(510\) −8.14034 5.91431i −0.0159615 0.0115967i
\(511\) 408.989 + 1258.74i 0.800369 + 2.46328i
\(512\) −337.436 + 109.640i −0.659055 + 0.214140i
\(513\) 561.340 772.619i 1.09423 1.50608i
\(514\) 45.1374 + 62.1263i 0.0878160 + 0.120868i
\(515\) −78.0874 + 240.328i −0.151626 + 0.466657i
\(516\) 579.200i 1.12248i
\(517\) 20.3877 + 38.1506i 0.0394346 + 0.0737922i
\(518\) 61.2295 0.118204
\(519\) 549.187 + 178.442i 1.05816 + 0.343818i
\(520\) −21.1498 + 15.3662i −0.0406727 + 0.0295505i
\(521\) −514.280 373.646i −0.987101 0.717171i −0.0278170 0.999613i \(-0.508856\pi\)
−0.959284 + 0.282442i \(0.908856\pi\)
\(522\) 79.3966 + 244.357i 0.152101 + 0.468118i
\(523\) 180.831 58.7556i 0.345757 0.112343i −0.130990 0.991384i \(-0.541816\pi\)
0.476747 + 0.879040i \(0.341816\pi\)
\(524\) 111.781 153.854i 0.213323 0.293614i
\(525\) 153.413 + 211.155i 0.292216 + 0.402201i
\(526\) −40.0152 + 123.154i −0.0760746 + 0.234134i
\(527\) 89.1719i 0.169207i
\(528\) 586.289 609.672i 1.11040 1.15468i
\(529\) −382.214 −0.722522
\(530\) 40.8357 + 13.2683i 0.0770485 + 0.0250346i
\(531\) 732.273 532.027i 1.37905 1.00193i
\(532\) −682.995 496.225i −1.28382 0.932753i
\(533\) 60.0480 + 184.809i 0.112660 + 0.346733i
\(534\) 177.413 57.6449i 0.332234 0.107949i
\(535\) −21.0692 + 28.9992i −0.0393816 + 0.0542041i
\(536\) 127.691 + 175.751i 0.238229 + 0.327894i
\(537\) −76.4403 + 235.259i −0.142347 + 0.438099i
\(538\) 152.209i 0.282917i
\(539\) 576.382 102.878i 1.06936 0.190868i
\(540\) −390.408 −0.722979
\(541\) 37.6026 + 12.2178i 0.0695058 + 0.0225838i 0.343563 0.939129i \(-0.388366\pi\)
−0.274058 + 0.961713i \(0.588366\pi\)
\(542\) −57.9123 + 42.0758i −0.106849 + 0.0776306i
\(543\) −28.3678 20.6104i −0.0522427 0.0379565i
\(544\) −12.5299 38.5630i −0.0230329 0.0708879i
\(545\) 333.484 108.355i 0.611896 0.198817i
\(546\) 45.3671 62.4425i 0.0830900 0.114364i
\(547\) 347.554 + 478.368i 0.635383 + 0.874529i 0.998359 0.0572690i \(-0.0182393\pi\)
−0.362976 + 0.931799i \(0.618239\pi\)
\(548\) −90.7057 + 279.164i −0.165521 + 0.509423i
\(549\) 586.626i 1.06853i
\(550\) −2.94591 16.5047i −0.00535621 0.0300086i
\(551\) 1020.26 1.85165
\(552\) −143.388 46.5896i −0.259761 0.0844015i
\(553\) −735.018 + 534.022i −1.32915 + 0.965682i
\(554\) 33.5380 + 24.3668i 0.0605379 + 0.0439833i
\(555\) −70.8735 218.126i −0.127700 0.393020i
\(556\) 179.378 58.2834i 0.322622 0.104826i
\(557\) 128.305 176.596i 0.230350 0.317049i −0.678159 0.734915i \(-0.737222\pi\)
0.908509 + 0.417866i \(0.137222\pi\)
\(558\) −98.6573 135.790i −0.176805 0.243351i
\(559\) −43.0386 + 132.459i −0.0769921 + 0.236957i
\(560\) 336.718i 0.601282i
\(561\) 117.044 + 112.555i 0.208634 + 0.200632i
\(562\) −92.2970 −0.164229
\(563\) −356.595 115.865i −0.633383 0.205799i −0.0253101 0.999680i \(-0.508057\pi\)
−0.608073 + 0.793881i \(0.708057\pi\)
\(564\) 64.1743 46.6254i 0.113784 0.0826691i
\(565\) 57.8909 + 42.0602i 0.102462 + 0.0744428i
\(566\) −1.00311 3.08725i −0.00177227 0.00545450i
\(567\) 690.568 224.379i 1.21793 0.395730i
\(568\) 8.50874 11.7113i 0.0149802 0.0206184i
\(569\) −131.674 181.234i −0.231413 0.318513i 0.677480 0.735541i \(-0.263072\pi\)
−0.908894 + 0.417028i \(0.863072\pi\)
\(570\) 23.2403 71.5263i 0.0407724 0.125485i
\(571\) 176.017i 0.308262i −0.988050 0.154131i \(-0.950742\pi\)
0.988050 0.154131i \(-0.0492577\pi\)
\(572\) 183.860 98.2549i 0.321433 0.171774i
\(573\) −387.492 −0.676252
\(574\) −117.427 38.1543i −0.204577 0.0664710i
\(575\) 49.0083 35.6066i 0.0852319 0.0619246i
\(576\) −789.188 573.378i −1.37012 0.995449i
\(577\) 206.377 + 635.162i 0.357672 + 1.10080i 0.954444 + 0.298391i \(0.0964498\pi\)
−0.596772 + 0.802411i \(0.703550\pi\)
\(578\) −81.4137 + 26.4529i −0.140854 + 0.0457663i
\(579\) −1151.44 + 1584.82i −1.98867 + 2.73716i
\(580\) −245.155 337.427i −0.422681 0.581771i
\(581\) 276.180 849.994i 0.475352 1.46298i
\(582\) 105.169i 0.180703i
\(583\) −623.432 302.452i −1.06935 0.518785i
\(584\) −315.514 −0.540264
\(585\) −182.122 59.1750i −0.311319 0.101154i
\(586\) −81.3922 + 59.1349i −0.138895 + 0.100913i
\(587\) 79.0311 + 57.4195i 0.134636 + 0.0978185i 0.653065 0.757302i \(-0.273483\pi\)
−0.518429 + 0.855121i \(0.673483\pi\)
\(588\) −331.784 1021.13i −0.564259 1.73661i
\(589\) −633.882 + 205.961i −1.07620 + 0.349679i
\(590\) 20.5398 28.2706i 0.0348132 0.0479163i
\(591\) −277.641 382.141i −0.469782 0.646600i
\(592\) 91.4335 281.403i 0.154448 0.475343i
\(593\) 479.081i 0.807893i −0.914783 0.403947i \(-0.867638\pi\)
0.914783 0.403947i \(-0.132362\pi\)
\(594\) −148.426 20.5427i −0.249875 0.0345837i
\(595\) −64.6425 −0.108643
\(596\) −447.751 145.483i −0.751259 0.244099i
\(597\) −100.334 + 72.8968i −0.168063 + 0.122105i
\(598\) −14.4927 10.5295i −0.0242352 0.0176079i
\(599\) 146.829 + 451.894i 0.245124 + 0.754414i 0.995616 + 0.0935345i \(0.0298165\pi\)
−0.750492 + 0.660879i \(0.770183\pi\)
\(600\) −59.1754 + 19.2272i −0.0986256 + 0.0320454i
\(601\) 316.409 435.499i 0.526470 0.724624i −0.460117 0.887858i \(-0.652193\pi\)
0.986587 + 0.163234i \(0.0521926\pi\)
\(602\) −52.0163 71.5943i −0.0864059 0.118927i
\(603\) −491.733 + 1513.40i −0.815477 + 2.50978i
\(604\) 301.847i 0.499747i
\(605\) 10.5761 + 270.357i 0.0174811 + 0.446872i
\(606\) −20.3660 −0.0336073
\(607\) −391.027 127.052i −0.644196 0.209312i −0.0313426 0.999509i \(-0.509978\pi\)
−0.612853 + 0.790197i \(0.709978\pi\)
\(608\) 245.186 178.138i 0.403267 0.292991i
\(609\) 2016.13 + 1464.80i 3.31055 + 2.40526i
\(610\) −6.99851 21.5392i −0.0114730 0.0353102i
\(611\) 18.1408 5.89431i 0.0296904 0.00964700i
\(612\) 115.931 159.566i 0.189430 0.260728i
\(613\) 146.092 + 201.079i 0.238324 + 0.328025i 0.911379 0.411567i \(-0.135019\pi\)
−0.673056 + 0.739592i \(0.735019\pi\)
\(614\) 10.5004 32.3170i 0.0171017 0.0526336i
\(615\) 462.490i 0.752016i
\(616\) −36.7514 + 265.538i −0.0596614 + 0.431067i
\(617\) −1141.96 −1.85082 −0.925411 0.378964i \(-0.876280\pi\)
−0.925411 + 0.378964i \(0.876280\pi\)
\(618\) 169.149 + 54.9597i 0.273703 + 0.0889316i
\(619\) −4.57281 + 3.32234i −0.00738742 + 0.00536727i −0.591473 0.806325i \(-0.701453\pi\)
0.584085 + 0.811692i \(0.301453\pi\)
\(620\) 220.430 + 160.152i 0.355533 + 0.258310i
\(621\) −167.304 514.909i −0.269411 0.829161i
\(622\) −117.447 + 38.1609i −0.188822 + 0.0613519i
\(623\) 704.418 969.549i 1.13069 1.55626i
\(624\) −219.232 301.746i −0.351333 0.483568i
\(625\) 7.72542 23.7764i 0.0123607 0.0380423i
\(626\) 51.7472i 0.0826633i
\(627\) −529.763 + 1091.98i −0.844917 + 1.74159i
\(628\) 211.777 0.337224
\(629\) 54.0233 + 17.5532i 0.0858876 + 0.0279066i
\(630\) 98.4370 71.5187i 0.156249 0.113522i
\(631\) 601.402 + 436.944i 0.953094 + 0.692463i 0.951537 0.307536i \(-0.0995043\pi\)
0.00155713 + 0.999999i \(0.499504\pi\)
\(632\) −66.9288 205.986i −0.105900 0.325927i
\(633\) 1805.40 586.610i 2.85213 0.926714i
\(634\) −69.2140 + 95.2649i −0.109170 + 0.150260i
\(635\) −141.754 195.108i −0.223235 0.307256i
\(636\) −392.664 + 1208.49i −0.617396 + 1.90015i
\(637\) 258.179i 0.405304i
\(638\) −75.4485 141.183i −0.118258 0.221290i
\(639\) 106.036 0.165940
\(640\) −156.450 50.8336i −0.244453 0.0794275i
\(641\) −292.789 + 212.724i −0.456769 + 0.331862i −0.792263 0.610180i \(-0.791097\pi\)
0.335493 + 0.942043i \(0.391097\pi\)
\(642\) 20.4103 + 14.8290i 0.0317918 + 0.0230981i
\(643\) 200.009 + 615.565i 0.311056 + 0.957333i 0.977347 + 0.211641i \(0.0678809\pi\)
−0.666291 + 0.745692i \(0.732119\pi\)
\(644\) −455.179 + 147.897i −0.706800 + 0.229653i
\(645\) −194.841 + 268.175i −0.302079 + 0.415776i
\(646\) 10.9484 + 15.0692i 0.0169480 + 0.0233269i
\(647\) 225.784 694.892i 0.348971 1.07402i −0.610453 0.792053i \(-0.709012\pi\)
0.959423 0.281969i \(-0.0909876\pi\)
\(648\) 173.097i 0.267125i
\(649\) −390.891 + 406.482i −0.602298 + 0.626320i
\(650\) −7.39295 −0.0113738
\(651\) −1548.31 503.076i −2.37835 0.772774i
\(652\) 642.128 466.534i 0.984859 0.715542i
\(653\) −243.570 176.964i −0.373001 0.271001i 0.385453 0.922727i \(-0.374045\pi\)
−0.758454 + 0.651726i \(0.774045\pi\)
\(654\) −76.2630 234.713i −0.116610 0.358889i
\(655\) 103.512 33.6330i 0.158033 0.0513480i
\(656\) −350.705 + 482.704i −0.534611 + 0.735829i
\(657\) −1358.45 1869.75i −2.06766 2.84589i
\(658\) −3.74523 + 11.5266i −0.00569184 + 0.0175177i
\(659\) 596.433i 0.905057i −0.891750 0.452529i \(-0.850522\pi\)
0.891750 0.452529i \(-0.149478\pi\)
\(660\) 488.442 87.1816i 0.740063 0.132093i
\(661\) 882.175 1.33461 0.667303 0.744786i \(-0.267449\pi\)
0.667303 + 0.744786i \(0.267449\pi\)
\(662\) 34.4892 + 11.2062i 0.0520985 + 0.0169278i
\(663\) 57.9288 42.0877i 0.0873737 0.0634807i
\(664\) 172.368 + 125.233i 0.259591 + 0.188604i
\(665\) −149.305 459.514i −0.224519 0.690998i
\(666\) −101.687 + 33.0400i −0.152683 + 0.0496096i
\(667\) 339.974 467.934i 0.509707 0.701551i
\(668\) −304.769 419.479i −0.456241 0.627962i
\(669\) −282.784 + 870.320i −0.422697 + 1.30093i
\(670\) 61.4340i 0.0916926i
\(671\) 64.2210 + 359.803i 0.0957094 + 0.536220i
\(672\) 740.266 1.10159
\(673\) 383.533 + 124.617i 0.569886 + 0.185167i 0.579764 0.814784i \(-0.303145\pi\)
−0.00987877 + 0.999951i \(0.503145\pi\)
\(674\) 109.387 79.4741i 0.162295 0.117914i
\(675\) −180.763 131.332i −0.267797 0.194566i
\(676\) 175.636 + 540.553i 0.259817 + 0.799634i
\(677\) −595.604 + 193.523i −0.879769 + 0.285854i −0.713861 0.700287i \(-0.753055\pi\)
−0.165908 + 0.986141i \(0.553055\pi\)
\(678\) 29.6029 40.7450i 0.0436622 0.0600958i
\(679\) −397.136 546.611i −0.584884 0.805024i
\(680\) 4.76201 14.6560i 0.00700296 0.0215529i
\(681\) 95.5059i 0.140244i
\(682\) 75.3765 + 72.4855i 0.110523 + 0.106284i
\(683\) 935.585 1.36982 0.684909 0.728629i \(-0.259842\pi\)
0.684909 + 0.728629i \(0.259842\pi\)
\(684\) 1402.05 + 455.553i 2.04978 + 0.666013i
\(685\) −135.907 + 98.7424i −0.198405 + 0.144150i
\(686\) 10.5385 + 7.65666i 0.0153622 + 0.0111613i
\(687\) −213.374 656.698i −0.310588 0.955892i
\(688\) −406.714 + 132.149i −0.591154 + 0.192078i
\(689\) −179.599 + 247.197i −0.260666 + 0.358776i
\(690\) −25.0608 34.4932i −0.0363200 0.0499901i
\(691\) 255.366 785.937i 0.369561 1.13739i −0.577515 0.816380i \(-0.695977\pi\)
0.947076 0.321011i \(-0.104023\pi\)
\(692\) 436.992i 0.631491i
\(693\) −1731.82 + 925.486i −2.49902 + 1.33548i
\(694\) 160.866 0.231795
\(695\) 102.660 + 33.3563i 0.147712 + 0.0479946i
\(696\) −480.626 + 349.195i −0.690555 + 0.501718i
\(697\) −92.6687 67.3278i −0.132954 0.0965965i
\(698\) 51.0029 + 156.971i 0.0730700 + 0.224886i
\(699\) 216.212 70.2514i 0.309316 0.100503i
\(700\) −116.097 + 159.794i −0.165854 + 0.228278i
\(701\) −139.111 191.469i −0.198446 0.273138i 0.698184 0.715919i \(-0.253992\pi\)
−0.896630 + 0.442781i \(0.853992\pi\)
\(702\) −20.4180 + 62.8400i −0.0290854 + 0.0895157i
\(703\) 424.570i 0.603940i
\(704\) 546.814 + 265.282i 0.776725 + 0.376821i
\(705\) 45.3980 0.0643943
\(706\) 62.8561 + 20.4232i 0.0890313 + 0.0289280i
\(707\) −105.852 + 76.9057i −0.149719 + 0.108778i
\(708\) 836.642 + 607.856i 1.18170 + 0.858554i
\(709\) −278.848 858.205i −0.393297 1.21044i −0.930280 0.366851i \(-0.880436\pi\)
0.536982 0.843593i \(-0.319564\pi\)
\(710\) 3.89333 1.26502i 0.00548357 0.00178172i
\(711\) 932.515 1283.50i 1.31155 1.80520i
\(712\) 167.927 + 231.132i 0.235853 + 0.324623i
\(713\) −116.762 + 359.356i −0.163761 + 0.504006i
\(714\) 45.4969i 0.0637212i
\(715\) 118.182 + 16.3568i 0.165289 + 0.0228766i
\(716\) −187.197 −0.261449
\(717\) −812.345 263.947i −1.13298 0.368127i
\(718\) −138.167 + 100.385i −0.192434 + 0.139811i
\(719\) 318.157 + 231.154i 0.442499 + 0.321494i 0.786627 0.617428i \(-0.211826\pi\)
−0.344128 + 0.938923i \(0.611826\pi\)
\(720\) −181.696 559.203i −0.252355 0.776670i
\(721\) 1086.68 353.084i 1.50718 0.489714i
\(722\) −17.1507 + 23.6060i −0.0237545 + 0.0326952i
\(723\) 207.565 + 285.689i 0.287089 + 0.395144i
\(724\) 8.19991 25.2367i 0.0113258 0.0348574i
\(725\) 238.702i 0.329243i
\(726\) 190.284 7.44370i 0.262099 0.0102530i
\(727\) 1284.55 1.76691 0.883456 0.468514i \(-0.155210\pi\)
0.883456 + 0.468514i \(0.155210\pi\)
\(728\) 112.422 + 36.5282i 0.154426 + 0.0501761i
\(729\) 654.087 475.222i 0.897238 0.651882i
\(730\) −72.1847 52.4453i −0.0988832 0.0718429i
\(731\) −25.3698 78.0803i −0.0347056 0.106813i
\(732\) 637.432 207.114i 0.870809 0.282943i
\(733\) −246.425 + 339.175i −0.336187 + 0.462722i −0.943323 0.331876i \(-0.892318\pi\)
0.607136 + 0.794598i \(0.292318\pi\)
\(734\) −5.54518 7.63228i −0.00755474 0.0103982i
\(735\) 189.884 584.403i 0.258346 0.795106i
\(736\) 171.813i 0.233441i
\(737\) 135.922 982.066i 0.184426 1.33252i
\(738\) 215.605 0.292147
\(739\) −269.243 87.4823i −0.364334 0.118379i 0.121128 0.992637i \(-0.461349\pi\)
−0.485462 + 0.874258i \(0.661349\pi\)
\(740\) 140.417 102.019i 0.189752 0.137863i
\(741\) 432.981 + 314.579i 0.584319 + 0.424533i
\(742\) −59.9947 184.645i −0.0808554 0.248847i
\(743\) −10.6813 + 3.47057i −0.0143759 + 0.00467102i −0.316196 0.948694i \(-0.602406\pi\)
0.301820 + 0.953365i \(0.402406\pi\)
\(744\) 228.118 313.978i 0.306610 0.422013i
\(745\) −158.373 217.982i −0.212581 0.292593i
\(746\) 45.5732 140.260i 0.0610901 0.188016i
\(747\) 1560.65i 2.08923i
\(748\) −53.6373 + 110.560i −0.0717076 + 0.147808i
\(749\) 162.078 0.216393
\(750\) −16.7344 5.43733i −0.0223125 0.00724978i
\(751\) −700.813 + 509.171i −0.933174 + 0.677990i −0.946768 0.321917i \(-0.895673\pi\)
0.0135942 + 0.999908i \(0.495673\pi\)
\(752\) 47.3822 + 34.4252i 0.0630083 + 0.0457782i
\(753\) 540.902 + 1664.72i 0.718329 + 2.21079i
\(754\) −67.1335 + 21.8130i −0.0890365 + 0.0289297i
\(755\) −101.540 + 139.758i −0.134490 + 0.185110i
\(756\) 1037.61 + 1428.15i 1.37250 + 1.88909i
\(757\) 38.2121 117.605i 0.0504783 0.155356i −0.922640 0.385663i \(-0.873973\pi\)
0.973118 + 0.230306i \(0.0739728\pi\)
\(758\) 24.9934i 0.0329728i
\(759\) 324.299 + 606.845i 0.427271 + 0.799532i
\(760\) 115.181 0.151554
\(761\) 627.999 + 204.049i 0.825228 + 0.268133i 0.691034 0.722822i \(-0.257155\pi\)
0.134194 + 0.990955i \(0.457155\pi\)
\(762\) −137.321 + 99.7698i −0.180212 + 0.130932i
\(763\) −1282.69 931.931i −1.68112 1.22140i
\(764\) −90.6160 278.887i −0.118607 0.365036i
\(765\) 107.355 34.8817i 0.140333 0.0455970i
\(766\) 130.611 179.770i 0.170510 0.234687i
\(767\) 146.167 + 201.181i 0.190569 + 0.262296i
\(768\) 316.820 975.071i 0.412526 1.26962i
\(769\) 753.219i 0.979479i 0.871869 + 0.489739i \(0.162908\pi\)
−0.871869 + 0.489739i \(0.837092\pi\)
\(770\) −52.5462 + 54.6420i −0.0682419 + 0.0709636i
\(771\) −1300.63 −1.68695
\(772\) −1409.90 458.103i −1.82629 0.593398i
\(773\) 134.737 97.8922i 0.174304 0.126639i −0.497213 0.867629i \(-0.665643\pi\)
0.671517 + 0.740989i \(0.265643\pi\)
\(774\) 125.019 + 90.8315i 0.161523 + 0.117353i
\(775\) 48.1869 + 148.304i 0.0621766 + 0.191360i
\(776\) 153.185 49.7729i 0.197404 0.0641404i
\(777\) −609.560 + 838.988i −0.784505 + 1.07978i
\(778\) −42.8149 58.9297i −0.0550320 0.0757451i
\(779\) 264.565 814.247i 0.339621 1.04525i
\(780\) 218.787i 0.280497i
\(781\) −65.0365 + 11.6083i −0.0832734 + 0.0148634i
\(782\) 10.5596 0.0135034
\(783\) −2028.96 659.249i −2.59126 0.841953i
\(784\) 641.335 465.957i 0.818030 0.594333i
\(785\) 98.0548 + 71.2410i 0.124911 + 0.0907529i
\(786\) −23.6717 72.8539i −0.0301166 0.0926894i
\(787\) 329.445 107.043i 0.418609 0.136014i −0.0921365 0.995746i \(-0.529370\pi\)
0.510745 + 0.859732i \(0.329370\pi\)
\(788\) 210.108 289.190i 0.266635 0.366992i
\(789\) −1289.14 1774.34i −1.63389 2.24885i
\(790\) 18.9270 58.2513i 0.0239582 0.0737359i
\(791\) 323.556i 0.409047i
\(792\) −82.2517 460.822i −0.103853 0.581846i
\(793\) 161.167 0.203236
\(794\) −102.840 33.4149i −0.129522 0.0420843i
\(795\) −588.340 + 427.454i −0.740051 + 0.537678i
\(796\) −75.9289 55.1656i −0.0953880 0.0693035i
\(797\) 13.9224 + 42.8487i 0.0174685 + 0.0537625i 0.959411 0.282012i \(-0.0910019\pi\)
−0.941942 + 0.335775i \(0.891002\pi\)
\(798\) −323.417 + 105.084i −0.405284 + 0.131685i
\(799\) −6.60890 + 9.09636i −0.00827146 + 0.0113847i
\(800\) −41.6775 57.3642i −0.0520969 0.0717052i
\(801\) −646.683 + 1990.28i −0.807344 + 2.48475i
\(802\) 78.0690i 0.0973429i
\(803\) 1037.89 + 998.082i 1.29252 + 1.24294i
\(804\) −1818.08 −2.26130
\(805\) −260.505 84.6431i −0.323608 0.105147i
\(806\) 37.3063 27.1046i 0.0462857 0.0336285i
\(807\) −2085.62 1515.29i −2.58441 1.87769i
\(808\) −9.63856 29.6644i −0.0119289 0.0367134i
\(809\) −1187.16 + 385.731i −1.46744 + 0.476800i −0.930333 0.366715i \(-0.880482\pi\)
−0.537106 + 0.843515i \(0.680482\pi\)
\(810\) −28.7725 + 39.6020i −0.0355216 + 0.0488913i
\(811\) −62.7425 86.3577i −0.0773644 0.106483i 0.768581 0.639753i \(-0.220963\pi\)
−0.845945 + 0.533270i \(0.820963\pi\)
\(812\) −582.776 + 1793.60i −0.717704 + 2.20887i
\(813\) 1212.41i 1.49128i
\(814\) 58.7518 31.3971i 0.0721767 0.0385713i
\(815\) 454.252 0.557365
\(816\) 209.098 + 67.9401i 0.256248 + 0.0832599i
\(817\) 496.440 360.685i 0.607638 0.441475i
\(818\) 67.8077 + 49.2652i 0.0828945 + 0.0602264i
\(819\) 267.568 + 823.491i 0.326701 + 1.00548i
\(820\) −332.865 + 108.154i −0.405932 + 0.131895i
\(821\) −361.534 + 497.608i −0.440358 + 0.606100i −0.970292 0.241939i \(-0.922217\pi\)
0.529934 + 0.848039i \(0.322217\pi\)
\(822\) 69.4972 + 95.6547i 0.0845465 + 0.116368i
\(823\) −118.117 + 363.528i −0.143521 + 0.441711i −0.996818 0.0797139i \(-0.974599\pi\)
0.853297 + 0.521425i \(0.174599\pi\)
\(824\) 272.386i 0.330566i
\(825\) 255.481 + 123.944i 0.309674 + 0.150235i
\(826\) −158.006 −0.191291
\(827\) 909.438 + 295.494i 1.09968 + 0.357309i 0.801981 0.597350i \(-0.203780\pi\)
0.297703 + 0.954659i \(0.403780\pi\)
\(828\) 676.131 491.238i 0.816583 0.593282i
\(829\) 591.020 + 429.401i 0.712931 + 0.517975i 0.884118 0.467264i \(-0.154760\pi\)
−0.171187 + 0.985239i \(0.554760\pi\)
\(830\) 18.6187 + 57.3026i 0.0224322 + 0.0690393i
\(831\) −667.764 + 216.970i −0.803566 + 0.261095i
\(832\) 157.527 216.817i 0.189335 0.260598i
\(833\) 89.4537 + 123.122i 0.107387 + 0.147806i
\(834\) 23.4769 72.2545i 0.0281498 0.0866361i
\(835\) 296.746i 0.355385i
\(836\) −909.809 125.921i −1.08829 0.150623i
\(837\) 1393.66 1.66507
\(838\) 12.7780 + 4.15181i 0.0152482 + 0.00495443i
\(839\) 739.591 537.345i 0.881515 0.640458i −0.0521367 0.998640i \(-0.516603\pi\)
0.933652 + 0.358182i \(0.116603\pi\)
\(840\) 227.609 + 165.367i 0.270963 + 0.196866i
\(841\) −444.409 1367.75i −0.528429 1.62634i
\(842\) 23.6010 7.66845i 0.0280297 0.00910742i
\(843\) 918.847 1264.68i 1.08997 1.50022i
\(844\) 844.394 + 1162.21i 1.00047 + 1.37702i
\(845\) −100.519 + 309.365i −0.118957 + 0.366112i
\(846\) 21.1638i 0.0250163i
\(847\) 960.883 757.233i 1.13445 0.894018i
\(848\) −938.193 −1.10636
\(849\) 52.2888 + 16.9896i 0.0615887 + 0.0200114i
\(850\) 3.52561 2.56151i 0.00414778 0.00301354i
\(851\) 194.726 + 141.476i 0.228820 + 0.166247i
\(852\) 37.4371 + 115.220i 0.0439403 + 0.135234i
\(853\) −1041.09 + 338.270i −1.22050 + 0.396565i −0.847265 0.531171i \(-0.821752\pi\)
−0.373237 + 0.927736i \(0.621752\pi\)
\(854\) −60.1920 + 82.8472i −0.0704824 + 0.0970107i
\(855\) 495.916 + 682.569i 0.580018 + 0.798327i
\(856\) −11.9398 + 36.7470i −0.0139484 + 0.0429287i
\(857\) 1161.22i 1.35499i 0.735528 + 0.677494i \(0.236934\pi\)
−0.735528 + 0.677494i \(0.763066\pi\)
\(858\) 11.5123 83.1789i 0.0134176 0.0969451i
\(859\) −465.631 −0.542061 −0.271031 0.962571i \(-0.587364\pi\)
−0.271031 + 0.962571i \(0.587364\pi\)
\(860\) −238.576 77.5181i −0.277414 0.0901373i
\(861\) 1691.83 1229.19i 1.96496 1.42763i
\(862\) 179.061 + 130.095i 0.207727 + 0.150922i
\(863\) 240.025 + 738.720i 0.278128 + 0.855990i 0.988375 + 0.152037i \(0.0485834\pi\)
−0.710247 + 0.703953i \(0.751417\pi\)
\(864\) −602.700 + 195.829i −0.697570 + 0.226654i
\(865\) −147.003 + 202.332i −0.169945 + 0.233909i
\(866\) −62.1952 85.6043i −0.0718189 0.0988502i
\(867\) 448.034 1378.91i 0.516763 1.59043i
\(868\) 1232.00i 1.41935i
\(869\) −431.442 + 889.313i −0.496480 + 1.02337i
\(870\) −168.004 −0.193108
\(871\) −415.783 135.096i −0.477363 0.155105i
\(872\) 305.782 222.164i 0.350668 0.254775i
\(873\) 954.498 + 693.484i 1.09335 + 0.794368i
\(874\) 24.3897 + 75.0637i 0.0279058 + 0.0858852i
\(875\) −107.509 + 34.9317i −0.122867 + 0.0399219i
\(876\) 1552.07 2136.24i 1.77177 2.43863i
\(877\) 814.144 + 1120.57i 0.928329 + 1.27773i 0.960508 + 0.278253i \(0.0897553\pi\)
−0.0321793 + 0.999482i \(0.510245\pi\)
\(878\) 6.80023 20.9290i 0.00774514 0.0238371i
\(879\) 1703.97i 1.93853i
\(880\) 172.661 + 323.092i 0.196206 + 0.367150i
\(881\) −1570.42 −1.78255 −0.891273 0.453467i \(-0.850187\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(882\) −272.439 88.5206i −0.308887 0.100364i
\(883\) −885.963 + 643.690i −1.00336 + 0.728981i −0.962805 0.270197i \(-0.912911\pi\)
−0.0405507 + 0.999177i \(0.512911\pi\)
\(884\) 43.8383 + 31.8504i 0.0495908 + 0.0360299i
\(885\) 182.893 + 562.887i 0.206659 + 0.636030i
\(886\) 108.946 35.3987i 0.122964 0.0399534i
\(887\) −520.530 + 716.448i −0.586843 + 0.807720i −0.994425 0.105449i \(-0.966372\pi\)
0.407582 + 0.913169i \(0.366372\pi\)
\(888\) −145.314 200.007i −0.163642 0.225233i
\(889\) −336.974 + 1037.10i −0.379048 + 1.16659i
\(890\) 80.7925i 0.0907781i
\(891\) 547.567 569.407i 0.614554 0.639065i
\(892\) −692.520 −0.776368
\(893\) −79.9265 25.9697i −0.0895033 0.0290814i
\(894\) −153.421 + 111.467i −0.171611 + 0.124683i
\(895\) −86.6742 62.9725i −0.0968427 0.0703603i
\(896\) 229.852 + 707.411i 0.256531 + 0.789521i
\(897\) 288.558 93.7583i 0.321693 0.104524i
\(898\) 20.1060 27.6735i 0.0223897 0.0308168i
\(899\) 875.145 + 1204.53i 0.973465 + 1.33986i
\(900\) 106.582 328.025i 0.118424 0.364472i
\(901\) 180.113i 0.199903i
\(902\) −132.240 + 23.6034i −0.146607 + 0.0261678i
\(903\) 1498.85 1.65986
\(904\) 73.3577 + 23.8354i 0.0811479 + 0.0263666i
\(905\) 12.2862 8.92644i 0.0135759 0.00986347i
\(906\) 98.3650 + 71.4664i 0.108571 + 0.0788812i
\(907\) −96.6622 297.496i −0.106573 0.327999i 0.883523 0.468388i \(-0.155165\pi\)
−0.990097 + 0.140388i \(0.955165\pi\)
\(908\) −68.7378 + 22.3343i −0.0757025 + 0.0245972i
\(909\) 134.294 184.839i 0.147738 0.203344i
\(910\) 19.6487 + 27.0441i 0.0215920 + 0.0297188i
\(911\) −140.671 + 432.942i −0.154414 + 0.475238i −0.998101 0.0615976i \(-0.980380\pi\)
0.843687 + 0.536836i \(0.180380\pi\)
\(912\) 1643.30i 1.80187i
\(913\) −170.853 957.216i −0.187133 1.04843i
\(914\) −56.9129 −0.0622680
\(915\) 364.810 + 118.534i 0.398699 + 0.129545i
\(916\) 422.743 307.141i 0.461510 0.335306i
\(917\) −398.141 289.267i −0.434178 0.315449i
\(918\) −12.0357 37.0421i −0.0131108 0.0403509i
\(919\) 981.783 319.001i 1.06832 0.347117i 0.278485 0.960441i \(-0.410168\pi\)
0.789832 + 0.613324i \(0.210168\pi\)
\(920\) 38.3811 52.8271i 0.0417186 0.0574207i
\(921\) 338.284 + 465.607i 0.367300 + 0.505545i
\(922\) 52.7431 162.327i 0.0572051 0.176059i
\(923\) 29.1318i 0.0315621i
\(924\) −1617.08 1555.06i −1.75008 1.68296i
\(925\) 99.3330 0.107387
\(926\) −188.038 61.0973i −0.203065 0.0659798i
\(927\) −1614.17 + 1172.76i −1.74129 + 1.26512i
\(928\) −547.717 397.939i −0.590212 0.428814i
\(929\) −431.640 1328.45i −0.464629 1.42998i −0.859449 0.511222i \(-0.829193\pi\)
0.394820 0.918758i \(-0.370807\pi\)
\(930\) 104.380 33.9150i 0.112236 0.0364678i
\(931\) −668.609 + 920.262i −0.718162 + 0.988466i
\(932\) 101.123 + 139.184i 0.108501 + 0.149339i
\(933\) 646.332 1989.21i 0.692746 2.13205i
\(934\) 274.470i 0.293865i
\(935\) −62.0267 + 33.1472i −0.0663387 + 0.0354515i
\(936\) −206.416 −0.220530
\(937\) 1141.42 + 370.868i 1.21816 + 0.395804i 0.846411 0.532530i \(-0.178759\pi\)
0.371748 + 0.928334i \(0.378759\pi\)
\(938\) 224.731 163.277i 0.239586 0.174069i
\(939\) −709.058 515.161i −0.755120 0.548627i
\(940\) 10.6164 + 32.6740i 0.0112941 + 0.0347596i
\(941\) 29.9217 9.72215i 0.0317978 0.0103317i −0.293075 0.956089i \(-0.594679\pi\)
0.324873 + 0.945758i \(0.394679\pi\)
\(942\) 50.1411 69.0133i 0.0532283 0.0732625i
\(943\) −285.289 392.667i −0.302533 0.416401i
\(944\) −235.949 + 726.177i −0.249946 + 0.769255i
\(945\) 1010.30i 1.06910i
\(946\) −86.6233 42.0245i −0.0915680 0.0444233i
\(947\) −540.682 −0.570942 −0.285471 0.958387i \(-0.592150\pi\)
−0.285471 + 0.958387i \(0.592150\pi\)
\(948\) 1723.89 + 560.127i 1.81845 + 0.590851i
\(949\) 513.685 373.214i 0.541291 0.393271i
\(950\) 26.3517 + 19.1456i 0.0277386 + 0.0201533i
\(951\) −616.304 1896.79i −0.648059 1.99452i
\(952\) −66.2692 + 21.5322i −0.0696105 + 0.0226178i
\(953\) −335.865 + 462.279i −0.352429 + 0.485077i −0.948020 0.318211i \(-0.896918\pi\)
0.595591 + 0.803288i \(0.296918\pi\)
\(954\) 199.272 + 274.274i 0.208880 + 0.287499i
\(955\) 51.8606 159.611i 0.0543043 0.167132i
\(956\) 646.388i 0.676138i
\(957\) 2685.66 + 371.705i 2.80633 + 0.388407i
\(958\) −141.601 −0.147809
\(959\) 722.418 + 234.728i 0.753303 + 0.244763i
\(960\) 516.036 374.922i 0.537537 0.390544i
\(961\) −9.41808 6.84263i −0.00980029 0.00712033i
\(962\) −9.07724 27.9369i −0.00943580 0.0290404i
\(963\) −269.171 + 87.4590i −0.279513 + 0.0908193i
\(964\) −157.077 + 216.198i −0.162943 + 0.224272i
\(965\) −498.692 686.391i −0.516779 0.711286i
\(966\) −59.5738 + 183.349i −0.0616705 + 0.189802i
\(967\) 1228.33i 1.27025i 0.772410 + 0.635125i \(0.219051\pi\)
−0.772410 + 0.635125i \(0.780949\pi\)
\(968\) 100.897 + 273.638i 0.104233 + 0.282684i
\(969\) −315.479 −0.325571
\(970\) 43.3198 + 14.0754i 0.0446595 + 0.0145108i
\(971\) −1282.98 + 932.137i −1.32129 + 0.959976i −0.321379 + 0.946951i \(0.604146\pi\)
−0.999915 + 0.0130253i \(0.995854\pi\)
\(972\) 99.2772 + 72.1291i 0.102137 + 0.0742069i
\(973\) −150.825 464.193i −0.155011 0.477074i
\(974\) −9.55237 + 3.10375i −0.00980736 + 0.00318660i
\(975\) 73.5993 101.301i 0.0754865 0.103898i
\(976\) 290.871 + 400.350i 0.298024 + 0.410194i
\(977\) 290.915 895.345i 0.297764 0.916422i −0.684515 0.728998i \(-0.739986\pi\)
0.982279 0.187424i \(-0.0600139\pi\)
\(978\) 319.713i 0.326905i
\(979\) 178.752 1291.52i 0.182586 1.31923i
\(980\) 465.013 0.474503
\(981\) 2633.10 + 855.547i 2.68410 + 0.872117i
\(982\) −196.775 + 142.966i −0.200382 + 0.145586i
\(983\) 564.528 + 410.154i 0.574291 + 0.417247i 0.836662 0.547720i \(-0.184504\pi\)
−0.262370 + 0.964967i \(0.584504\pi\)
\(984\) 154.053 + 474.127i 0.156558 + 0.481837i
\(985\) 194.565 63.2179i 0.197528 0.0641806i
\(986\) 24.4574 33.6628i 0.0248047 0.0341408i
\(987\) −120.657 166.070i −0.122246 0.168257i
\(988\) −125.156 + 385.191i −0.126676 + 0.389870i
\(989\) 347.877i 0.351746i
\(990\) 57.7806 119.101i 0.0583643 0.120304i
\(991\) 1202.24 1.21315 0.606577 0.795025i \(-0.292542\pi\)
0.606577 + 0.795025i \(0.292542\pi\)
\(992\) 420.626 + 136.670i 0.424018 + 0.137772i
\(993\) −496.903 + 361.021i −0.500406 + 0.363566i
\(994\) −14.9751 10.8800i −0.0150655 0.0109457i
\(995\) −16.5983 51.0844i −0.0166817 0.0513411i
\(996\) −1695.82 + 551.004i −1.70263 + 0.553217i
\(997\) −476.323 + 655.602i −0.477756 + 0.657575i −0.978072 0.208268i \(-0.933217\pi\)
0.500316 + 0.865843i \(0.333217\pi\)
\(998\) −106.265 146.262i −0.106478 0.146555i
\(999\) 274.339 844.329i 0.274614 0.845174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.i.d.46.2 yes 12
5.2 odd 4 275.3.q.f.24.3 24
5.3 odd 4 275.3.q.f.24.4 24
5.4 even 2 275.3.x.f.101.2 12
11.4 even 5 605.3.c.d.241.8 12
11.6 odd 10 inner 55.3.i.d.6.2 12
11.7 odd 10 605.3.c.d.241.5 12
55.17 even 20 275.3.q.f.149.4 24
55.28 even 20 275.3.q.f.149.3 24
55.39 odd 10 275.3.x.f.226.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.d.6.2 12 11.6 odd 10 inner
55.3.i.d.46.2 yes 12 1.1 even 1 trivial
275.3.q.f.24.3 24 5.2 odd 4
275.3.q.f.24.4 24 5.3 odd 4
275.3.q.f.149.3 24 55.28 even 20
275.3.q.f.149.4 24 55.17 even 20
275.3.x.f.101.2 12 5.4 even 2
275.3.x.f.226.2 12 55.39 odd 10
605.3.c.d.241.5 12 11.7 odd 10
605.3.c.d.241.8 12 11.4 even 5