Properties

Label 275.3.q.f.249.1
Level $275$
Weight $3$
Character 275.249
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,3,Mod(24,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.24");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 249.1
Character \(\chi\) \(=\) 275.249
Dual form 275.3.q.f.74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.85483 - 2.07416i) q^{2} +(-0.881935 - 0.286558i) q^{3} +(2.61187 + 8.03851i) q^{4} +(1.92341 + 2.64735i) q^{6} +(-1.21313 - 3.73363i) q^{7} +(4.85489 - 14.9418i) q^{8} +(-6.58546 - 4.78462i) q^{9} +O(q^{10})\) \(q+(-2.85483 - 2.07416i) q^{2} +(-0.881935 - 0.286558i) q^{3} +(2.61187 + 8.03851i) q^{4} +(1.92341 + 2.64735i) q^{6} +(-1.21313 - 3.73363i) q^{7} +(4.85489 - 14.9418i) q^{8} +(-6.58546 - 4.78462i) q^{9} +(-2.87880 + 10.6166i) q^{11} -7.83789i q^{12} +(-4.65009 - 3.37849i) q^{13} +(-4.28086 + 13.1751i) q^{14} +(-17.4997 + 12.7143i) q^{16} +(-7.28252 + 5.29106i) q^{17} +(8.87634 + 27.3186i) q^{18} +(27.7487 + 9.01609i) q^{19} +3.64045i q^{21} +(30.2390 - 24.3376i) q^{22} +36.7936i q^{23} +(-8.56339 + 11.7865i) q^{24} +(6.26771 + 19.2900i) q^{26} +(9.34246 + 12.8588i) q^{27} +(26.8443 - 19.5035i) q^{28} +(24.8274 - 8.06690i) q^{29} +(-39.1642 - 28.4544i) q^{31} +13.4870 q^{32} +(5.58119 - 8.53822i) q^{33} +31.7649 q^{34} +(21.2608 - 65.4341i) q^{36} +(20.7411 - 6.73919i) q^{37} +(-60.5170 - 83.2945i) q^{38} +(3.13294 + 4.31213i) q^{39} +(40.5371 + 13.1713i) q^{41} +(7.55087 - 10.3929i) q^{42} +70.3737 q^{43} +(-92.8608 + 4.58797i) q^{44} +(76.3156 - 105.039i) q^{46} +(16.8149 + 5.46351i) q^{47} +(19.0769 - 6.19847i) q^{48} +(27.1735 - 19.7427i) q^{49} +(7.93890 - 2.57951i) q^{51} +(15.0126 - 46.2040i) q^{52} +(-36.6485 + 50.4423i) q^{53} -56.0874i q^{54} -61.6768 q^{56} +(-21.8889 - 15.9032i) q^{57} +(-87.6100 - 28.4662i) q^{58} +(12.0295 + 37.0230i) q^{59} +(26.4166 + 36.3594i) q^{61} +(52.7881 + 162.465i) q^{62} +(-9.87498 + 30.3921i) q^{63} +(31.4956 + 22.8829i) q^{64} +(-33.6430 + 12.7989i) q^{66} -36.2530i q^{67} +(-61.5533 - 44.7211i) q^{68} +(10.5435 - 32.4495i) q^{69} +(1.98595 - 1.44287i) q^{71} +(-103.462 + 75.1699i) q^{72} +(40.7610 + 125.450i) q^{73} +(-73.1905 - 23.7810i) q^{74} +246.607i q^{76} +(43.1309 - 2.13097i) q^{77} -18.8086i q^{78} +(24.9427 - 34.3307i) q^{79} +(18.0841 + 55.6573i) q^{81} +(-88.4072 - 121.682i) q^{82} +(62.4666 - 45.3846i) q^{83} +(-29.2638 + 9.50839i) q^{84} +(-200.905 - 145.966i) q^{86} -24.2077 q^{87} +(144.655 + 94.5569i) q^{88} -105.316 q^{89} +(-6.97287 + 21.4603i) q^{91} +(-295.766 + 96.1001i) q^{92} +(26.3864 + 36.3177i) q^{93} +(-36.6717 - 50.4742i) q^{94} +(-11.8946 - 3.86481i) q^{96} +(-33.2937 + 45.8248i) q^{97} -118.525 q^{98} +(69.7546 - 56.1413i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 26 q^{4} + 40 q^{6} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 26 q^{4} + 40 q^{6} - 8 q^{9} + 24 q^{11} + 120 q^{14} - 86 q^{16} + 160 q^{19} - 420 q^{24} - 240 q^{26} - 10 q^{29} - 92 q^{31} - 20 q^{34} - 78 q^{36} + 570 q^{39} + 460 q^{41} - 976 q^{44} + 410 q^{46} + 424 q^{49} + 720 q^{51} - 820 q^{56} + 148 q^{59} - 580 q^{61} + 14 q^{64} + 370 q^{66} + 146 q^{69} - 552 q^{71} + 200 q^{74} - 470 q^{79} - 60 q^{81} + 1160 q^{84} - 960 q^{86} + 228 q^{89} + 320 q^{91} - 750 q^{94} + 530 q^{96} - 1338 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.85483 2.07416i −1.42742 1.03708i −0.990491 0.137581i \(-0.956067\pi\)
−0.436925 0.899498i \(-0.643933\pi\)
\(3\) −0.881935 0.286558i −0.293978 0.0955193i 0.158315 0.987389i \(-0.449394\pi\)
−0.452293 + 0.891869i \(0.649394\pi\)
\(4\) 2.61187 + 8.03851i 0.652968 + 2.00963i
\(5\) 0 0
\(6\) 1.92341 + 2.64735i 0.320568 + 0.441224i
\(7\) −1.21313 3.73363i −0.173304 0.533376i 0.826248 0.563307i \(-0.190471\pi\)
−0.999552 + 0.0299310i \(0.990471\pi\)
\(8\) 4.85489 14.9418i 0.606861 1.86773i
\(9\) −6.58546 4.78462i −0.731718 0.531624i
\(10\) 0 0
\(11\) −2.87880 + 10.6166i −0.261709 + 0.965147i
\(12\) 7.83789i 0.653158i
\(13\) −4.65009 3.37849i −0.357699 0.259884i 0.394393 0.918942i \(-0.370955\pi\)
−0.752092 + 0.659058i \(0.770955\pi\)
\(14\) −4.28086 + 13.1751i −0.305775 + 0.941080i
\(15\) 0 0
\(16\) −17.4997 + 12.7143i −1.09373 + 0.794641i
\(17\) −7.28252 + 5.29106i −0.428383 + 0.311239i −0.781002 0.624528i \(-0.785291\pi\)
0.352619 + 0.935767i \(0.385291\pi\)
\(18\) 8.87634 + 27.3186i 0.493130 + 1.51770i
\(19\) 27.7487 + 9.01609i 1.46046 + 0.474531i 0.928210 0.372058i \(-0.121348\pi\)
0.532247 + 0.846589i \(0.321348\pi\)
\(20\) 0 0
\(21\) 3.64045i 0.173355i
\(22\) 30.2390 24.3376i 1.37450 1.10625i
\(23\) 36.7936i 1.59972i 0.600186 + 0.799860i \(0.295093\pi\)
−0.600186 + 0.799860i \(0.704907\pi\)
\(24\) −8.56339 + 11.7865i −0.356808 + 0.491104i
\(25\) 0 0
\(26\) 6.26771 + 19.2900i 0.241066 + 0.741924i
\(27\) 9.34246 + 12.8588i 0.346017 + 0.476252i
\(28\) 26.8443 19.5035i 0.958726 0.696555i
\(29\) 24.8274 8.06690i 0.856116 0.278169i 0.152111 0.988363i \(-0.451393\pi\)
0.704006 + 0.710195i \(0.251393\pi\)
\(30\) 0 0
\(31\) −39.1642 28.4544i −1.26336 0.917885i −0.264442 0.964401i \(-0.585188\pi\)
−0.998918 + 0.0465167i \(0.985188\pi\)
\(32\) 13.4870 0.421469
\(33\) 5.58119 8.53822i 0.169127 0.258734i
\(34\) 31.7649 0.934261
\(35\) 0 0
\(36\) 21.2608 65.4341i 0.590579 1.81761i
\(37\) 20.7411 6.73919i 0.560571 0.182140i −0.0150073 0.999887i \(-0.504777\pi\)
0.575578 + 0.817747i \(0.304777\pi\)
\(38\) −60.5170 83.2945i −1.59255 2.19196i
\(39\) 3.13294 + 4.31213i 0.0803319 + 0.110567i
\(40\) 0 0
\(41\) 40.5371 + 13.1713i 0.988709 + 0.321251i 0.758345 0.651854i \(-0.226008\pi\)
0.230364 + 0.973105i \(0.426008\pi\)
\(42\) 7.55087 10.3929i 0.179783 0.247450i
\(43\) 70.3737 1.63660 0.818298 0.574794i \(-0.194918\pi\)
0.818298 + 0.574794i \(0.194918\pi\)
\(44\) −92.8608 + 4.58797i −2.11047 + 0.104272i
\(45\) 0 0
\(46\) 76.3156 105.039i 1.65904 2.28347i
\(47\) 16.8149 + 5.46351i 0.357765 + 0.116245i 0.482384 0.875960i \(-0.339771\pi\)
−0.124619 + 0.992205i \(0.539771\pi\)
\(48\) 19.0769 6.19847i 0.397436 0.129135i
\(49\) 27.1735 19.7427i 0.554561 0.402912i
\(50\) 0 0
\(51\) 7.93890 2.57951i 0.155665 0.0505785i
\(52\) 15.0126 46.2040i 0.288704 0.888538i
\(53\) −36.6485 + 50.4423i −0.691481 + 0.951742i 0.308519 + 0.951218i \(0.400167\pi\)
−1.00000 0.000523852i \(0.999833\pi\)
\(54\) 56.0874i 1.03866i
\(55\) 0 0
\(56\) −61.6768 −1.10137
\(57\) −21.8889 15.9032i −0.384016 0.279004i
\(58\) −87.6100 28.4662i −1.51052 0.490797i
\(59\) 12.0295 + 37.0230i 0.203890 + 0.627509i 0.999757 + 0.0220376i \(0.00701536\pi\)
−0.795867 + 0.605471i \(0.792985\pi\)
\(60\) 0 0
\(61\) 26.4166 + 36.3594i 0.433060 + 0.596055i 0.968652 0.248421i \(-0.0799117\pi\)
−0.535593 + 0.844477i \(0.679912\pi\)
\(62\) 52.7881 + 162.465i 0.851422 + 2.62041i
\(63\) −9.87498 + 30.3921i −0.156746 + 0.482414i
\(64\) 31.4956 + 22.8829i 0.492118 + 0.357545i
\(65\) 0 0
\(66\) −33.6430 + 12.7989i −0.509742 + 0.193923i
\(67\) 36.2530i 0.541090i −0.962707 0.270545i \(-0.912796\pi\)
0.962707 0.270545i \(-0.0872039\pi\)
\(68\) −61.5533 44.7211i −0.905195 0.657663i
\(69\) 10.5435 32.4495i 0.152804 0.470283i
\(70\) 0 0
\(71\) 1.98595 1.44287i 0.0279711 0.0203222i −0.573712 0.819057i \(-0.694497\pi\)
0.601683 + 0.798735i \(0.294497\pi\)
\(72\) −103.462 + 75.1699i −1.43698 + 1.04403i
\(73\) 40.7610 + 125.450i 0.558370 + 1.71849i 0.686873 + 0.726777i \(0.258983\pi\)
−0.128503 + 0.991709i \(0.541017\pi\)
\(74\) −73.1905 23.7810i −0.989061 0.321365i
\(75\) 0 0
\(76\) 246.607i 3.24483i
\(77\) 43.1309 2.13097i 0.560142 0.0276749i
\(78\) 18.8086i 0.241136i
\(79\) 24.9427 34.3307i 0.315730 0.434565i −0.621427 0.783472i \(-0.713447\pi\)
0.937158 + 0.348907i \(0.113447\pi\)
\(80\) 0 0
\(81\) 18.0841 + 55.6573i 0.223261 + 0.687127i
\(82\) −88.4072 121.682i −1.07814 1.48393i
\(83\) 62.4666 45.3846i 0.752609 0.546803i −0.144025 0.989574i \(-0.546005\pi\)
0.896635 + 0.442771i \(0.146005\pi\)
\(84\) −29.2638 + 9.50839i −0.348379 + 0.113195i
\(85\) 0 0
\(86\) −200.905 145.966i −2.33610 1.69728i
\(87\) −24.2077 −0.278250
\(88\) 144.655 + 94.5569i 1.64381 + 1.07451i
\(89\) −105.316 −1.18332 −0.591661 0.806187i \(-0.701528\pi\)
−0.591661 + 0.806187i \(0.701528\pi\)
\(90\) 0 0
\(91\) −6.97287 + 21.4603i −0.0766249 + 0.235827i
\(92\) −295.766 + 96.1001i −3.21484 + 1.04457i
\(93\) 26.3864 + 36.3177i 0.283725 + 0.390513i
\(94\) −36.6717 50.4742i −0.390124 0.536960i
\(95\) 0 0
\(96\) −11.8946 3.86481i −0.123903 0.0402584i
\(97\) −33.2937 + 45.8248i −0.343234 + 0.472421i −0.945382 0.325963i \(-0.894311\pi\)
0.602149 + 0.798384i \(0.294311\pi\)
\(98\) −118.525 −1.20944
\(99\) 69.7546 56.1413i 0.704592 0.567084i
\(100\) 0 0
\(101\) −54.3720 + 74.8367i −0.538337 + 0.740957i −0.988372 0.152054i \(-0.951411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(102\) −28.0145 9.10247i −0.274652 0.0892399i
\(103\) 41.6344 13.5278i 0.404218 0.131338i −0.0998498 0.995003i \(-0.531836\pi\)
0.504068 + 0.863664i \(0.331836\pi\)
\(104\) −73.0564 + 53.0786i −0.702465 + 0.510371i
\(105\) 0 0
\(106\) 209.251 67.9896i 1.97406 0.641412i
\(107\) 19.6680 60.5320i 0.183813 0.565719i −0.816113 0.577893i \(-0.803875\pi\)
0.999926 + 0.0121737i \(0.00387511\pi\)
\(108\) −78.9643 + 108.685i −0.731151 + 1.00634i
\(109\) 180.853i 1.65920i 0.558358 + 0.829600i \(0.311432\pi\)
−0.558358 + 0.829600i \(0.688568\pi\)
\(110\) 0 0
\(111\) −20.2235 −0.182193
\(112\) 68.6998 + 49.9133i 0.613391 + 0.445654i
\(113\) −69.2468 22.4996i −0.612803 0.199112i −0.0138608 0.999904i \(-0.504412\pi\)
−0.598942 + 0.800792i \(0.704412\pi\)
\(114\) 29.5033 + 90.8020i 0.258801 + 0.796508i
\(115\) 0 0
\(116\) 129.692 + 178.505i 1.11803 + 1.53884i
\(117\) 14.4582 + 44.4978i 0.123574 + 0.380323i
\(118\) 42.4493 130.646i 0.359740 1.10717i
\(119\) 28.5895 + 20.7715i 0.240248 + 0.174551i
\(120\) 0 0
\(121\) −104.425 61.1262i −0.863017 0.505175i
\(122\) 158.592i 1.29994i
\(123\) −31.9767 23.2324i −0.259973 0.188881i
\(124\) 126.440 389.141i 1.01967 3.13823i
\(125\) 0 0
\(126\) 91.2293 66.2820i 0.724042 0.526047i
\(127\) −94.5954 + 68.7276i −0.744846 + 0.541162i −0.894225 0.447618i \(-0.852273\pi\)
0.149379 + 0.988780i \(0.452273\pi\)
\(128\) −59.1227 181.961i −0.461896 1.42157i
\(129\) −62.0650 20.1661i −0.481124 0.156327i
\(130\) 0 0
\(131\) 41.6464i 0.317912i 0.987286 + 0.158956i \(0.0508127\pi\)
−0.987286 + 0.158956i \(0.949187\pi\)
\(132\) 83.2119 + 22.5637i 0.630393 + 0.170937i
\(133\) 114.541i 0.861211i
\(134\) −75.1945 + 103.496i −0.561153 + 0.772360i
\(135\) 0 0
\(136\) 43.7022 + 134.502i 0.321340 + 0.988982i
\(137\) 62.3011 + 85.7502i 0.454753 + 0.625914i 0.973410 0.229069i \(-0.0735680\pi\)
−0.518657 + 0.854982i \(0.673568\pi\)
\(138\) −97.4053 + 70.7691i −0.705835 + 0.512819i
\(139\) −31.5601 + 10.2545i −0.227051 + 0.0737733i −0.420333 0.907370i \(-0.638087\pi\)
0.193282 + 0.981143i \(0.438087\pi\)
\(140\) 0 0
\(141\) −13.2641 9.63691i −0.0940714 0.0683469i
\(142\) −8.66229 −0.0610020
\(143\) 49.2548 39.6422i 0.344439 0.277218i
\(144\) 176.076 1.22275
\(145\) 0 0
\(146\) 143.836 442.682i 0.985179 3.03207i
\(147\) −29.6227 + 9.62499i −0.201515 + 0.0654761i
\(148\) 108.346 + 149.126i 0.732069 + 1.00761i
\(149\) −70.8877 97.5686i −0.475757 0.654823i 0.501926 0.864911i \(-0.332625\pi\)
−0.977683 + 0.210088i \(0.932625\pi\)
\(150\) 0 0
\(151\) −65.2872 21.2131i −0.432366 0.140484i 0.0847449 0.996403i \(-0.472992\pi\)
−0.517111 + 0.855919i \(0.672992\pi\)
\(152\) 269.433 370.843i 1.77259 2.43976i
\(153\) 73.2744 0.478918
\(154\) −127.551 83.3767i −0.828256 0.541407i
\(155\) 0 0
\(156\) −26.4802 + 36.4469i −0.169745 + 0.233634i
\(157\) 178.042 + 57.8493i 1.13402 + 0.368467i 0.815104 0.579315i \(-0.196680\pi\)
0.318920 + 0.947782i \(0.396680\pi\)
\(158\) −142.414 + 46.2732i −0.901356 + 0.292868i
\(159\) 46.7762 33.9849i 0.294190 0.213742i
\(160\) 0 0
\(161\) 137.374 44.6354i 0.853253 0.277239i
\(162\) 63.8147 196.402i 0.393918 1.21236i
\(163\) 21.2260 29.2151i 0.130221 0.179234i −0.738928 0.673785i \(-0.764667\pi\)
0.869149 + 0.494551i \(0.164667\pi\)
\(164\) 360.259i 2.19670i
\(165\) 0 0
\(166\) −272.466 −1.64136
\(167\) 124.179 + 90.2211i 0.743585 + 0.540246i 0.893832 0.448403i \(-0.148007\pi\)
−0.150247 + 0.988648i \(0.548007\pi\)
\(168\) 54.3949 + 17.6740i 0.323779 + 0.105202i
\(169\) −42.0147 129.308i −0.248608 0.765136i
\(170\) 0 0
\(171\) −139.599 192.142i −0.816370 1.12364i
\(172\) 183.807 + 565.700i 1.06864 + 3.28895i
\(173\) 0.534955 1.64642i 0.00309223 0.00951689i −0.949498 0.313772i \(-0.898407\pi\)
0.952591 + 0.304255i \(0.0984074\pi\)
\(174\) 69.1090 + 50.2107i 0.397178 + 0.288567i
\(175\) 0 0
\(176\) −84.6043 222.389i −0.480706 1.26357i
\(177\) 36.0990i 0.203949i
\(178\) 300.659 + 218.441i 1.68909 + 1.22720i
\(179\) −26.7282 + 82.2609i −0.149320 + 0.459558i −0.997541 0.0700832i \(-0.977674\pi\)
0.848222 + 0.529641i \(0.177674\pi\)
\(180\) 0 0
\(181\) −144.912 + 105.285i −0.800619 + 0.581684i −0.911096 0.412195i \(-0.864762\pi\)
0.110477 + 0.993879i \(0.464762\pi\)
\(182\) 64.4184 46.8027i 0.353947 0.257158i
\(183\) −12.8787 39.6365i −0.0703753 0.216593i
\(184\) 549.762 + 178.629i 2.98784 + 0.970808i
\(185\) 0 0
\(186\) 158.411i 0.851670i
\(187\) −35.2082 92.5476i −0.188279 0.494907i
\(188\) 149.437i 0.794878i
\(189\) 36.6764 50.4807i 0.194055 0.267094i
\(190\) 0 0
\(191\) 104.623 + 321.997i 0.547765 + 1.68585i 0.714324 + 0.699815i \(0.246734\pi\)
−0.166559 + 0.986032i \(0.553266\pi\)
\(192\) −21.2198 29.2065i −0.110520 0.152117i
\(193\) 7.19818 5.22978i 0.0372963 0.0270973i −0.568981 0.822351i \(-0.692662\pi\)
0.606277 + 0.795253i \(0.292662\pi\)
\(194\) 190.096 61.7658i 0.979874 0.318381i
\(195\) 0 0
\(196\) 229.676 + 166.869i 1.17181 + 0.851373i
\(197\) −199.660 −1.01350 −0.506751 0.862093i \(-0.669154\pi\)
−0.506751 + 0.862093i \(0.669154\pi\)
\(198\) −315.584 + 15.5920i −1.59386 + 0.0787477i
\(199\) −182.624 −0.917706 −0.458853 0.888512i \(-0.651740\pi\)
−0.458853 + 0.888512i \(0.651740\pi\)
\(200\) 0 0
\(201\) −10.3886 + 31.9728i −0.0516845 + 0.159069i
\(202\) 310.446 100.870i 1.53686 0.499356i
\(203\) −60.2377 82.9101i −0.296737 0.408424i
\(204\) 41.4708 + 57.0796i 0.203288 + 0.279802i
\(205\) 0 0
\(206\) −146.918 47.7366i −0.713195 0.231731i
\(207\) 176.043 242.303i 0.850450 1.17054i
\(208\) 124.330 0.597740
\(209\) −175.603 + 268.642i −0.840207 + 1.28537i
\(210\) 0 0
\(211\) 80.0829 110.225i 0.379540 0.522392i −0.575923 0.817504i \(-0.695357\pi\)
0.955463 + 0.295112i \(0.0953571\pi\)
\(212\) −501.202 162.851i −2.36416 0.768163i
\(213\) −2.16494 + 0.703432i −0.0101640 + 0.00330250i
\(214\) −181.702 + 132.014i −0.849073 + 0.616888i
\(215\) 0 0
\(216\) 237.490 77.1653i 1.09949 0.357247i
\(217\) −58.7271 + 180.744i −0.270632 + 0.832920i
\(218\) 375.117 516.305i 1.72072 2.36837i
\(219\) 122.319i 0.558533i
\(220\) 0 0
\(221\) 51.7402 0.234118
\(222\) 57.7346 + 41.9466i 0.260066 + 0.188949i
\(223\) −38.5788 12.5350i −0.172999 0.0562108i 0.221237 0.975220i \(-0.428991\pi\)
−0.394236 + 0.919009i \(0.628991\pi\)
\(224\) −16.3615 50.3555i −0.0730424 0.224801i
\(225\) 0 0
\(226\) 151.020 + 207.861i 0.668230 + 0.919740i
\(227\) −58.8689 181.180i −0.259334 0.798148i −0.992945 0.118578i \(-0.962166\pi\)
0.733611 0.679570i \(-0.237834\pi\)
\(228\) 70.6672 217.491i 0.309944 0.953909i
\(229\) −185.982 135.124i −0.812148 0.590060i 0.102304 0.994753i \(-0.467378\pi\)
−0.914453 + 0.404693i \(0.867378\pi\)
\(230\) 0 0
\(231\) −38.6493 10.4801i −0.167313 0.0453685i
\(232\) 410.130i 1.76780i
\(233\) 153.190 + 111.299i 0.657467 + 0.477678i 0.865807 0.500379i \(-0.166806\pi\)
−0.208340 + 0.978057i \(0.566806\pi\)
\(234\) 51.0197 157.022i 0.218033 0.671036i
\(235\) 0 0
\(236\) −266.191 + 193.399i −1.12793 + 0.819486i
\(237\) −31.8355 + 23.1299i −0.134327 + 0.0975944i
\(238\) −38.5349 118.598i −0.161912 0.498312i
\(239\) 106.671 + 34.6595i 0.446322 + 0.145019i 0.523551 0.851994i \(-0.324607\pi\)
−0.0772283 + 0.997013i \(0.524607\pi\)
\(240\) 0 0
\(241\) 118.124i 0.490141i −0.969505 0.245070i \(-0.921189\pi\)
0.969505 0.245070i \(-0.0788110\pi\)
\(242\) 171.331 + 391.099i 0.707978 + 1.61611i
\(243\) 197.317i 0.812006i
\(244\) −223.278 + 307.316i −0.915076 + 1.25949i
\(245\) 0 0
\(246\) 43.1004 + 132.649i 0.175205 + 0.539225i
\(247\) −98.5731 135.674i −0.399081 0.549288i
\(248\) −615.298 + 447.040i −2.48104 + 1.80258i
\(249\) −68.0967 + 22.1260i −0.273481 + 0.0888593i
\(250\) 0 0
\(251\) 148.903 + 108.184i 0.593240 + 0.431014i 0.843473 0.537172i \(-0.180507\pi\)
−0.250233 + 0.968186i \(0.580507\pi\)
\(252\) −270.099 −1.07182
\(253\) −390.623 105.921i −1.54397 0.418661i
\(254\) 412.606 1.62443
\(255\) 0 0
\(256\) −160.509 + 493.997i −0.626990 + 1.92968i
\(257\) −381.685 + 124.017i −1.48516 + 0.482557i −0.935649 0.352932i \(-0.885185\pi\)
−0.549507 + 0.835489i \(0.685185\pi\)
\(258\) 135.357 + 186.303i 0.524641 + 0.722106i
\(259\) −50.3234 69.2642i −0.194299 0.267429i
\(260\) 0 0
\(261\) −202.097 65.6652i −0.774317 0.251591i
\(262\) 86.3812 118.894i 0.329699 0.453792i
\(263\) 72.9866 0.277516 0.138758 0.990326i \(-0.455689\pi\)
0.138758 + 0.990326i \(0.455689\pi\)
\(264\) −100.480 124.845i −0.380607 0.472898i
\(265\) 0 0
\(266\) −237.576 + 326.996i −0.893144 + 1.22931i
\(267\) 92.8816 + 30.1791i 0.347871 + 0.113030i
\(268\) 291.420 94.6882i 1.08739 0.353314i
\(269\) 161.917 117.640i 0.601923 0.437322i −0.244638 0.969614i \(-0.578669\pi\)
0.846561 + 0.532292i \(0.178669\pi\)
\(270\) 0 0
\(271\) 144.974 47.1049i 0.534959 0.173819i −0.0290645 0.999578i \(-0.509253\pi\)
0.564023 + 0.825759i \(0.309253\pi\)
\(272\) 60.1698 185.184i 0.221213 0.680822i
\(273\) 12.2992 16.9284i 0.0450521 0.0620089i
\(274\) 374.025i 1.36505i
\(275\) 0 0
\(276\) 288.384 1.04487
\(277\) 167.719 + 121.855i 0.605485 + 0.439911i 0.847822 0.530281i \(-0.177914\pi\)
−0.242336 + 0.970192i \(0.577914\pi\)
\(278\) 111.368 + 36.1857i 0.400605 + 0.130164i
\(279\) 121.770 + 374.771i 0.436453 + 1.34327i
\(280\) 0 0
\(281\) −72.0371 99.1506i −0.256360 0.352849i 0.661366 0.750063i \(-0.269977\pi\)
−0.917726 + 0.397214i \(0.869977\pi\)
\(282\) 17.8782 + 55.0235i 0.0633980 + 0.195119i
\(283\) −51.3970 + 158.184i −0.181615 + 0.558953i −0.999874 0.0158971i \(-0.994940\pi\)
0.818259 + 0.574850i \(0.194940\pi\)
\(284\) 16.7856 + 12.1954i 0.0591042 + 0.0429417i
\(285\) 0 0
\(286\) −222.838 + 11.0098i −0.779155 + 0.0384957i
\(287\) 167.329i 0.583028i
\(288\) −88.8181 64.5301i −0.308396 0.224063i
\(289\) −64.2661 + 197.791i −0.222374 + 0.684397i
\(290\) 0 0
\(291\) 42.4943 30.8739i 0.146028 0.106096i
\(292\) −901.965 + 655.316i −3.08892 + 2.24423i
\(293\) 15.7554 + 48.4902i 0.0537728 + 0.165496i 0.974336 0.225097i \(-0.0722700\pi\)
−0.920564 + 0.390593i \(0.872270\pi\)
\(294\) 104.531 + 33.9643i 0.355549 + 0.115525i
\(295\) 0 0
\(296\) 342.628i 1.15753i
\(297\) −163.412 + 62.1675i −0.550209 + 0.209318i
\(298\) 425.574i 1.42810i
\(299\) 124.307 171.093i 0.415741 0.572219i
\(300\) 0 0
\(301\) −85.3725 262.749i −0.283629 0.872922i
\(302\) 142.385 + 195.976i 0.471473 + 0.648927i
\(303\) 69.3976 50.4203i 0.229035 0.166404i
\(304\) −600.226 + 195.025i −1.97443 + 0.641530i
\(305\) 0 0
\(306\) −209.186 151.983i −0.683615 0.496675i
\(307\) 388.897 1.26676 0.633382 0.773839i \(-0.281666\pi\)
0.633382 + 0.773839i \(0.281666\pi\)
\(308\) 129.782 + 341.143i 0.421371 + 1.10761i
\(309\) −40.5954 −0.131377
\(310\) 0 0
\(311\) −12.6147 + 38.8239i −0.0405616 + 0.124836i −0.969287 0.245933i \(-0.920906\pi\)
0.928725 + 0.370769i \(0.120906\pi\)
\(312\) 79.6410 25.8769i 0.255260 0.0829389i
\(313\) 301.360 + 414.787i 0.962812 + 1.32520i 0.945595 + 0.325345i \(0.105480\pi\)
0.0172161 + 0.999852i \(0.494520\pi\)
\(314\) −388.291 534.437i −1.23660 1.70203i
\(315\) 0 0
\(316\) 341.114 + 110.835i 1.07948 + 0.350743i
\(317\) −103.368 + 142.274i −0.326083 + 0.448814i −0.940312 0.340313i \(-0.889467\pi\)
0.614230 + 0.789127i \(0.289467\pi\)
\(318\) −204.028 −0.641598
\(319\) 14.1702 + 286.806i 0.0444207 + 0.899077i
\(320\) 0 0
\(321\) −34.6918 + 47.7492i −0.108074 + 0.148751i
\(322\) −484.760 157.508i −1.50547 0.489155i
\(323\) −249.785 + 81.1601i −0.773328 + 0.251270i
\(324\) −400.168 + 290.739i −1.23509 + 0.897343i
\(325\) 0 0
\(326\) −121.193 + 39.3781i −0.371759 + 0.120792i
\(327\) 51.8248 159.500i 0.158486 0.487769i
\(328\) 393.606 541.752i 1.20002 1.65168i
\(329\) 69.4088i 0.210969i
\(330\) 0 0
\(331\) −97.5050 −0.294577 −0.147289 0.989094i \(-0.547055\pi\)
−0.147289 + 0.989094i \(0.547055\pi\)
\(332\) 527.979 + 383.600i 1.59030 + 1.15542i
\(333\) −168.834 54.8576i −0.507010 0.164737i
\(334\) −167.377 515.132i −0.501127 1.54231i
\(335\) 0 0
\(336\) −46.2856 63.7067i −0.137755 0.189603i
\(337\) −47.9448 147.559i −0.142269 0.437860i 0.854380 0.519648i \(-0.173937\pi\)
−0.996650 + 0.0817878i \(0.973937\pi\)
\(338\) −148.260 + 456.298i −0.438639 + 1.34999i
\(339\) 54.6237 + 39.6864i 0.161132 + 0.117069i
\(340\) 0 0
\(341\) 414.835 333.876i 1.21653 0.979109i
\(342\) 838.084i 2.45054i
\(343\) −262.302 190.574i −0.764729 0.555608i
\(344\) 341.656 1051.51i 0.993187 3.05671i
\(345\) 0 0
\(346\) −4.94214 + 3.59068i −0.0142837 + 0.0103777i
\(347\) 40.6288 29.5186i 0.117086 0.0850680i −0.527701 0.849430i \(-0.676946\pi\)
0.644787 + 0.764362i \(0.276946\pi\)
\(348\) −63.2275 194.594i −0.181688 0.559179i
\(349\) 146.948 + 47.7462i 0.421053 + 0.136809i 0.511878 0.859058i \(-0.328950\pi\)
−0.0908242 + 0.995867i \(0.528950\pi\)
\(350\) 0 0
\(351\) 91.3580i 0.260279i
\(352\) −38.8263 + 143.186i −0.110302 + 0.406779i
\(353\) 559.143i 1.58397i −0.610538 0.791987i \(-0.709047\pi\)
0.610538 0.791987i \(-0.290953\pi\)
\(354\) −74.8751 + 103.057i −0.211511 + 0.291121i
\(355\) 0 0
\(356\) −275.071 846.582i −0.772672 2.37804i
\(357\) −19.2619 26.5117i −0.0539548 0.0742624i
\(358\) 246.927 179.403i 0.689739 0.501125i
\(359\) 646.648 210.109i 1.80125 0.585261i 0.801331 0.598221i \(-0.204126\pi\)
0.999916 + 0.0129603i \(0.00412551\pi\)
\(360\) 0 0
\(361\) 396.644 + 288.179i 1.09874 + 0.798279i
\(362\) 632.077 1.74607
\(363\) 74.5799 + 83.8331i 0.205454 + 0.230945i
\(364\) −190.721 −0.523959
\(365\) 0 0
\(366\) −45.4458 + 139.868i −0.124169 + 0.382153i
\(367\) 428.051 139.082i 1.16635 0.378970i 0.339071 0.940761i \(-0.389887\pi\)
0.827279 + 0.561791i \(0.189887\pi\)
\(368\) −467.803 643.875i −1.27120 1.74966i
\(369\) −203.936 280.693i −0.552671 0.760686i
\(370\) 0 0
\(371\) 232.793 + 75.6389i 0.627473 + 0.203878i
\(372\) −223.023 + 306.965i −0.599524 + 0.825173i
\(373\) −396.273 −1.06239 −0.531197 0.847248i \(-0.678258\pi\)
−0.531197 + 0.847248i \(0.678258\pi\)
\(374\) −91.4446 + 337.235i −0.244504 + 0.901699i
\(375\) 0 0
\(376\) 163.269 224.721i 0.434227 0.597662i
\(377\) −142.703 46.3672i −0.378524 0.122990i
\(378\) −209.410 + 68.0414i −0.553995 + 0.180004i
\(379\) 429.812 312.277i 1.13407 0.823950i 0.147787 0.989019i \(-0.452785\pi\)
0.986282 + 0.165069i \(0.0527848\pi\)
\(380\) 0 0
\(381\) 103.121 33.5062i 0.270660 0.0879427i
\(382\) 369.190 1136.25i 0.966467 2.97448i
\(383\) −363.276 + 500.006i −0.948500 + 1.30550i 0.00368998 + 0.999993i \(0.498825\pi\)
−0.952190 + 0.305506i \(0.901175\pi\)
\(384\) 177.420i 0.462031i
\(385\) 0 0
\(386\) −31.3970 −0.0813393
\(387\) −463.443 336.711i −1.19753 0.870054i
\(388\) −455.322 147.943i −1.17351 0.381297i
\(389\) −3.92137 12.0687i −0.0100806 0.0310250i 0.945890 0.324488i \(-0.105192\pi\)
−0.955970 + 0.293463i \(0.905192\pi\)
\(390\) 0 0
\(391\) −194.677 267.950i −0.497895 0.685294i
\(392\) −163.067 501.870i −0.415988 1.28028i
\(393\) 11.9341 36.7294i 0.0303667 0.0934591i
\(394\) 569.995 + 414.126i 1.44669 + 1.05108i
\(395\) 0 0
\(396\) 633.483 + 414.090i 1.59970 + 1.04568i
\(397\) 240.779i 0.606497i 0.952911 + 0.303249i \(0.0980713\pi\)
−0.952911 + 0.303249i \(0.901929\pi\)
\(398\) 521.359 + 378.790i 1.30995 + 0.951733i
\(399\) −32.8227 + 101.018i −0.0822623 + 0.253177i
\(400\) 0 0
\(401\) 581.860 422.746i 1.45102 1.05423i 0.465431 0.885084i \(-0.345899\pi\)
0.985591 0.169145i \(-0.0541008\pi\)
\(402\) 95.9743 69.7294i 0.238742 0.173456i
\(403\) 85.9839 + 264.631i 0.213360 + 0.656653i
\(404\) −743.588 241.606i −1.84056 0.598036i
\(405\) 0 0
\(406\) 361.637i 0.890731i
\(407\) 11.8380 + 239.601i 0.0290859 + 0.588701i
\(408\) 131.145i 0.321433i
\(409\) 62.9642 86.6628i 0.153947 0.211890i −0.725077 0.688668i \(-0.758196\pi\)
0.879023 + 0.476779i \(0.158196\pi\)
\(410\) 0 0
\(411\) −30.3731 93.4789i −0.0739006 0.227443i
\(412\) 217.488 + 299.346i 0.527882 + 0.726568i
\(413\) 123.637 89.8276i 0.299363 0.217500i
\(414\) −1005.15 + 326.592i −2.42789 + 0.788870i
\(415\) 0 0
\(416\) −62.7158 45.5657i −0.150759 0.109533i
\(417\) 30.7724 0.0737948
\(418\) 1058.52 402.698i 2.53235 0.963392i
\(419\) −29.4752 −0.0703464 −0.0351732 0.999381i \(-0.511198\pi\)
−0.0351732 + 0.999381i \(0.511198\pi\)
\(420\) 0 0
\(421\) −127.694 + 393.002i −0.303311 + 0.933496i 0.676991 + 0.735991i \(0.263284\pi\)
−0.980302 + 0.197504i \(0.936716\pi\)
\(422\) −457.247 + 148.568i −1.08352 + 0.352058i
\(423\) −84.5934 116.433i −0.199984 0.275255i
\(424\) 575.775 + 792.487i 1.35796 + 1.86907i
\(425\) 0 0
\(426\) 7.63957 + 2.48225i 0.0179333 + 0.00582687i
\(427\) 103.706 142.739i 0.242871 0.334283i
\(428\) 537.957 1.25691
\(429\) −54.7993 + 20.8475i −0.127737 + 0.0485956i
\(430\) 0 0
\(431\) 115.324 158.730i 0.267574 0.368284i −0.653995 0.756499i \(-0.726908\pi\)
0.921569 + 0.388215i \(0.126908\pi\)
\(432\) −326.980 106.242i −0.756898 0.245931i
\(433\) 79.8895 25.9577i 0.184502 0.0599484i −0.215309 0.976546i \(-0.569076\pi\)
0.399811 + 0.916598i \(0.369076\pi\)
\(434\) 542.547 394.183i 1.25011 0.908256i
\(435\) 0 0
\(436\) −1453.79 + 472.364i −3.33438 + 1.08340i
\(437\) −331.734 + 1020.97i −0.759117 + 2.33632i
\(438\) −253.708 + 349.199i −0.579242 + 0.797258i
\(439\) 139.738i 0.318309i −0.987254 0.159154i \(-0.949123\pi\)
0.987254 0.159154i \(-0.0508768\pi\)
\(440\) 0 0
\(441\) −273.411 −0.619980
\(442\) −147.709 107.317i −0.334184 0.242799i
\(443\) 281.315 + 91.4047i 0.635022 + 0.206331i 0.608799 0.793325i \(-0.291652\pi\)
0.0262237 + 0.999656i \(0.491652\pi\)
\(444\) −52.8211 162.567i −0.118966 0.366141i
\(445\) 0 0
\(446\) 84.1364 + 115.804i 0.188647 + 0.259650i
\(447\) 34.5593 + 106.363i 0.0773139 + 0.237948i
\(448\) 47.2280 145.353i 0.105420 0.324448i
\(449\) 532.550 + 386.920i 1.18608 + 0.861737i 0.992844 0.119415i \(-0.0381021\pi\)
0.193235 + 0.981153i \(0.438102\pi\)
\(450\) 0 0
\(451\) −256.532 + 392.449i −0.568808 + 0.870175i
\(452\) 615.407i 1.36152i
\(453\) 51.5003 + 37.4171i 0.113687 + 0.0825986i
\(454\) −207.734 + 639.341i −0.457565 + 1.40824i
\(455\) 0 0
\(456\) −343.891 + 249.851i −0.754146 + 0.547919i
\(457\) 120.056 87.2258i 0.262705 0.190866i −0.448634 0.893716i \(-0.648089\pi\)
0.711339 + 0.702849i \(0.248089\pi\)
\(458\) 250.679 + 771.512i 0.547335 + 1.68452i
\(459\) −136.073 44.2129i −0.296456 0.0963244i
\(460\) 0 0
\(461\) 500.817i 1.08637i 0.839613 + 0.543185i \(0.182782\pi\)
−0.839613 + 0.543185i \(0.817218\pi\)
\(462\) 88.5998 + 110.084i 0.191774 + 0.238276i
\(463\) 398.770i 0.861275i −0.902525 0.430638i \(-0.858289\pi\)
0.902525 0.430638i \(-0.141711\pi\)
\(464\) −331.906 + 456.830i −0.715315 + 0.984547i
\(465\) 0 0
\(466\) −206.480 635.479i −0.443090 1.36369i
\(467\) −369.661 508.794i −0.791564 1.08949i −0.993912 0.110181i \(-0.964857\pi\)
0.202347 0.979314i \(-0.435143\pi\)
\(468\) −319.933 + 232.445i −0.683618 + 0.496677i
\(469\) −135.356 + 43.9797i −0.288604 + 0.0937733i
\(470\) 0 0
\(471\) −140.444 102.039i −0.298183 0.216642i
\(472\) 611.593 1.29575
\(473\) −202.592 + 747.130i −0.428312 + 1.57956i
\(474\) 138.860 0.292954
\(475\) 0 0
\(476\) −92.2999 + 284.070i −0.193907 + 0.596785i
\(477\) 482.694 156.837i 1.01194 0.328799i
\(478\) −232.639 320.200i −0.486692 0.669874i
\(479\) 56.6925 + 78.0306i 0.118356 + 0.162903i 0.864084 0.503347i \(-0.167898\pi\)
−0.745728 + 0.666250i \(0.767898\pi\)
\(480\) 0 0
\(481\) −119.216 38.7357i −0.247851 0.0805317i
\(482\) −245.007 + 337.224i −0.508314 + 0.699634i
\(483\) −133.945 −0.277319
\(484\) 218.619 999.076i 0.451692 2.06421i
\(485\) 0 0
\(486\) −409.267 + 563.308i −0.842114 + 1.15907i
\(487\) −760.849 247.215i −1.56232 0.507628i −0.604892 0.796307i \(-0.706784\pi\)
−0.957426 + 0.288680i \(0.906784\pi\)
\(488\) 671.525 218.192i 1.37607 0.447114i
\(489\) −27.0918 + 19.6833i −0.0554024 + 0.0402522i
\(490\) 0 0
\(491\) −800.353 + 260.050i −1.63005 + 0.529634i −0.974282 0.225332i \(-0.927653\pi\)
−0.655764 + 0.754966i \(0.727653\pi\)
\(492\) 103.235 317.725i 0.209828 0.645783i
\(493\) −138.123 + 190.110i −0.280169 + 0.385620i
\(494\) 591.783i 1.19794i
\(495\) 0 0
\(496\) 1047.14 2.11116
\(497\) −7.79638 5.66440i −0.0156869 0.0113972i
\(498\) 240.298 + 78.0774i 0.482525 + 0.156782i
\(499\) 220.886 + 679.818i 0.442658 + 1.36236i 0.885032 + 0.465530i \(0.154136\pi\)
−0.442374 + 0.896830i \(0.645864\pi\)
\(500\) 0 0
\(501\) −83.6639 115.153i −0.166994 0.229847i
\(502\) −200.702 617.697i −0.399805 1.23047i
\(503\) 214.625 660.549i 0.426690 1.31322i −0.474676 0.880161i \(-0.657435\pi\)
0.901366 0.433057i \(-0.142565\pi\)
\(504\) 406.170 + 295.100i 0.805894 + 0.585516i
\(505\) 0 0
\(506\) 895.466 + 1112.60i 1.76970 + 2.19882i
\(507\) 126.081i 0.248680i
\(508\) −799.539 580.899i −1.57390 1.14350i
\(509\) 7.78172 23.9497i 0.0152883 0.0470524i −0.943121 0.332449i \(-0.892125\pi\)
0.958410 + 0.285396i \(0.0921252\pi\)
\(510\) 0 0
\(511\) 418.934 304.373i 0.819832 0.595643i
\(512\) 863.714 627.525i 1.68694 1.22563i
\(513\) 143.305 + 441.047i 0.279347 + 0.859741i
\(514\) 1346.88 + 437.627i 2.62038 + 0.851415i
\(515\) 0 0
\(516\) 551.581i 1.06896i
\(517\) −106.411 + 162.789i −0.205824 + 0.314873i
\(518\) 302.116i 0.583236i
\(519\) −0.943590 + 1.29874i −0.00181809 + 0.00250239i
\(520\) 0 0
\(521\) 144.330 + 444.202i 0.277025 + 0.852596i 0.988676 + 0.150063i \(0.0479476\pi\)
−0.711651 + 0.702533i \(0.752052\pi\)
\(522\) 440.752 + 606.643i 0.844353 + 1.16215i
\(523\) 646.608 469.788i 1.23634 0.898257i 0.238995 0.971021i \(-0.423182\pi\)
0.997349 + 0.0727642i \(0.0231820\pi\)
\(524\) −334.775 + 108.775i −0.638884 + 0.207586i
\(525\) 0 0
\(526\) −208.365 151.386i −0.396130 0.287806i
\(527\) 435.768 0.826884
\(528\) 10.8881 + 220.377i 0.0206215 + 0.417380i
\(529\) −824.767 −1.55911
\(530\) 0 0
\(531\) 97.9211 301.370i 0.184409 0.567552i
\(532\) 920.740 299.167i 1.73071 0.562343i
\(533\) −144.002 198.202i −0.270172 0.371860i
\(534\) −202.565 278.807i −0.379336 0.522111i
\(535\) 0 0
\(536\) −541.686 176.004i −1.01061 0.328366i
\(537\) 47.1450 64.8896i 0.0877934 0.120837i
\(538\) −706.250 −1.31273
\(539\) 131.374 + 345.326i 0.243736 + 0.640679i
\(540\) 0 0
\(541\) 631.800 869.598i 1.16784 1.60739i 0.491272 0.871006i \(-0.336532\pi\)
0.676564 0.736383i \(-0.263468\pi\)
\(542\) −511.579 166.222i −0.943872 0.306683i
\(543\) 157.973 51.3286i 0.290927 0.0945278i
\(544\) −98.2193 + 71.3605i −0.180550 + 0.131177i
\(545\) 0 0
\(546\) −70.2245 + 22.8173i −0.128616 + 0.0417899i
\(547\) 104.930 322.941i 0.191828 0.590386i −0.808171 0.588948i \(-0.799542\pi\)
0.999999 0.00143823i \(-0.000457802\pi\)
\(548\) −526.581 + 724.777i −0.960915 + 1.32259i
\(549\) 365.837i 0.666369i
\(550\) 0 0
\(551\) 761.659 1.38232
\(552\) −433.667 315.078i −0.785629 0.570793i
\(553\) −158.437 51.4792i −0.286504 0.0930909i
\(554\) −226.064 695.753i −0.408057 1.25587i
\(555\) 0 0
\(556\) −164.862 226.913i −0.296514 0.408116i
\(557\) −128.015 393.990i −0.229830 0.707344i −0.997765 0.0668164i \(-0.978716\pi\)
0.767935 0.640527i \(-0.221284\pi\)
\(558\) 429.700 1322.48i 0.770071 2.37003i
\(559\) −327.244 237.757i −0.585409 0.425325i
\(560\) 0 0
\(561\) 4.53112 + 91.7101i 0.00807686 + 0.163476i
\(562\) 432.475i 0.769528i
\(563\) −649.518 471.902i −1.15367 0.838193i −0.164708 0.986342i \(-0.552668\pi\)
−0.988965 + 0.148150i \(0.952668\pi\)
\(564\) 42.8224 131.794i 0.0759262 0.233677i
\(565\) 0 0
\(566\) 474.827 344.982i 0.838918 0.609509i
\(567\) 185.865 135.039i 0.327805 0.238164i
\(568\) −11.9176 36.6786i −0.0209817 0.0645750i
\(569\) −436.517 141.833i −0.767165 0.249267i −0.100814 0.994905i \(-0.532145\pi\)
−0.666351 + 0.745638i \(0.732145\pi\)
\(570\) 0 0
\(571\) 203.201i 0.355869i 0.984042 + 0.177935i \(0.0569416\pi\)
−0.984042 + 0.177935i \(0.943058\pi\)
\(572\) 447.312 + 292.395i 0.782014 + 0.511180i
\(573\) 313.961i 0.547924i
\(574\) −347.067 + 477.696i −0.604646 + 0.832223i
\(575\) 0 0
\(576\) −97.9271 301.388i −0.170012 0.523244i
\(577\) 476.608 + 655.994i 0.826010 + 1.13690i 0.988653 + 0.150220i \(0.0479981\pi\)
−0.162643 + 0.986685i \(0.552002\pi\)
\(578\) 593.718 431.362i 1.02719 0.746300i
\(579\) −7.84696 + 2.54963i −0.0135526 + 0.00440351i
\(580\) 0 0
\(581\) −245.230 178.170i −0.422082 0.306661i
\(582\) −185.351 −0.318473
\(583\) −430.023 534.296i −0.737604 0.916460i
\(584\) 2072.33 3.54851
\(585\) 0 0
\(586\) 55.5972 171.111i 0.0948758 0.291998i
\(587\) 56.4895 18.3545i 0.0962342 0.0312684i −0.260504 0.965473i \(-0.583889\pi\)
0.356738 + 0.934204i \(0.383889\pi\)
\(588\) −154.741 212.983i −0.263165 0.362216i
\(589\) −830.206 1142.68i −1.40952 1.94003i
\(590\) 0 0
\(591\) 176.087 + 57.2141i 0.297947 + 0.0968090i
\(592\) −277.279 + 381.641i −0.468376 + 0.644665i
\(593\) 1164.75 1.96416 0.982081 0.188457i \(-0.0603486\pi\)
0.982081 + 0.188457i \(0.0603486\pi\)
\(594\) 595.459 + 161.464i 1.00246 + 0.271826i
\(595\) 0 0
\(596\) 599.157 824.669i 1.00530 1.38367i
\(597\) 161.062 + 52.3322i 0.269786 + 0.0876586i
\(598\) −709.749 + 230.612i −1.18687 + 0.385638i
\(599\) 196.571 142.817i 0.328165 0.238426i −0.411487 0.911416i \(-0.634990\pi\)
0.739651 + 0.672990i \(0.234990\pi\)
\(600\) 0 0
\(601\) −572.415 + 185.989i −0.952438 + 0.309466i −0.743706 0.668507i \(-0.766934\pi\)
−0.208732 + 0.977973i \(0.566934\pi\)
\(602\) −301.260 + 927.181i −0.500431 + 1.54017i
\(603\) −173.457 + 238.743i −0.287656 + 0.395925i
\(604\) 580.218i 0.960626i
\(605\) 0 0
\(606\) −302.698 −0.499502
\(607\) −186.849 135.753i −0.307823 0.223646i 0.423139 0.906065i \(-0.360928\pi\)
−0.730962 + 0.682418i \(0.760928\pi\)
\(608\) 374.246 + 121.600i 0.615537 + 0.200000i
\(609\) 29.3672 + 90.3829i 0.0482220 + 0.148412i
\(610\) 0 0
\(611\) −59.7326 82.2149i −0.0977621 0.134558i
\(612\) 191.383 + 589.017i 0.312718 + 0.962447i
\(613\) −217.900 + 670.628i −0.355465 + 1.09401i 0.600274 + 0.799794i \(0.295058\pi\)
−0.955739 + 0.294215i \(0.904942\pi\)
\(614\) −1110.23 806.633i −1.80820 1.31373i
\(615\) 0 0
\(616\) 177.555 654.799i 0.288239 1.06299i
\(617\) 181.458i 0.294097i 0.989129 + 0.147049i \(0.0469774\pi\)
−0.989129 + 0.147049i \(0.953023\pi\)
\(618\) 115.893 + 84.2011i 0.187529 + 0.136248i
\(619\) −323.645 + 996.077i −0.522852 + 1.60917i 0.245674 + 0.969352i \(0.420991\pi\)
−0.768526 + 0.639819i \(0.779009\pi\)
\(620\) 0 0
\(621\) −473.121 + 343.743i −0.761870 + 0.553531i
\(622\) 116.540 84.6710i 0.187363 0.136127i
\(623\) 127.762 + 393.210i 0.205075 + 0.631156i
\(624\) −109.651 35.6277i −0.175723 0.0570958i
\(625\) 0 0
\(626\) 1809.21i 2.89012i
\(627\) 231.852 186.604i 0.369780 0.297614i
\(628\) 1582.29i 2.51956i
\(629\) −115.390 + 158.821i −0.183450 + 0.252497i
\(630\) 0 0
\(631\) −104.631 322.020i −0.165817 0.510333i 0.833278 0.552854i \(-0.186461\pi\)
−0.999096 + 0.0425205i \(0.986461\pi\)
\(632\) −391.868 539.360i −0.620044 0.853418i
\(633\) −102.214 + 74.2626i −0.161475 + 0.117318i
\(634\) 590.197 191.767i 0.930911 0.302471i
\(635\) 0 0
\(636\) 395.362 + 287.247i 0.621638 + 0.451646i
\(637\) −193.060 −0.303076
\(638\) 554.426 848.173i 0.869007 1.32942i
\(639\) −19.9820 −0.0312707
\(640\) 0 0
\(641\) −218.541 + 672.600i −0.340937 + 1.04930i 0.622786 + 0.782393i \(0.286001\pi\)
−0.963723 + 0.266905i \(0.913999\pi\)
\(642\) 198.079 64.3596i 0.308534 0.100249i
\(643\) 576.696 + 793.754i 0.896884 + 1.23445i 0.971451 + 0.237238i \(0.0762422\pi\)
−0.0745679 + 0.997216i \(0.523758\pi\)
\(644\) 717.605 + 987.698i 1.11429 + 1.53369i
\(645\) 0 0
\(646\) 881.433 + 286.395i 1.36445 + 0.443336i
\(647\) −203.966 + 280.736i −0.315250 + 0.433904i −0.937009 0.349304i \(-0.886418\pi\)
0.621760 + 0.783208i \(0.286418\pi\)
\(648\) 919.417 1.41885
\(649\) −427.690 + 21.1309i −0.658998 + 0.0325591i
\(650\) 0 0
\(651\) 103.587 142.575i 0.159120 0.219010i
\(652\) 290.286 + 94.3195i 0.445223 + 0.144662i
\(653\) −1060.87 + 344.696i −1.62460 + 0.527866i −0.973022 0.230712i \(-0.925894\pi\)
−0.651582 + 0.758578i \(0.725894\pi\)
\(654\) −478.780 + 347.854i −0.732079 + 0.531887i
\(655\) 0 0
\(656\) −876.848 + 284.905i −1.33666 + 0.434307i
\(657\) 331.798 1021.17i 0.505019 1.55429i
\(658\) −143.965 + 198.150i −0.218791 + 0.301141i
\(659\) 68.8178i 0.104428i −0.998636 0.0522138i \(-0.983372\pi\)
0.998636 0.0522138i \(-0.0166277\pi\)
\(660\) 0 0
\(661\) −56.9620 −0.0861754 −0.0430877 0.999071i \(-0.513719\pi\)
−0.0430877 + 0.999071i \(0.513719\pi\)
\(662\) 278.360 + 202.241i 0.420484 + 0.305500i
\(663\) −45.6314 14.8266i −0.0688257 0.0223628i
\(664\) −374.860 1153.70i −0.564548 1.73750i
\(665\) 0 0
\(666\) 368.210 + 506.798i 0.552868 + 0.760958i
\(667\) 296.810 + 913.487i 0.444993 + 1.36955i
\(668\) −400.905 + 1233.86i −0.600157 + 1.84709i
\(669\) 30.4320 + 22.1101i 0.0454888 + 0.0330495i
\(670\) 0 0
\(671\) −462.062 + 175.784i −0.688617 + 0.261973i
\(672\) 49.0988i 0.0730637i
\(673\) 303.417 + 220.445i 0.450842 + 0.327556i 0.789928 0.613199i \(-0.210118\pi\)
−0.339086 + 0.940755i \(0.610118\pi\)
\(674\) −169.186 + 520.701i −0.251018 + 0.772554i
\(675\) 0 0
\(676\) 929.707 675.472i 1.37531 0.999218i
\(677\) −470.259 + 341.663i −0.694621 + 0.504672i −0.878176 0.478338i \(-0.841240\pi\)
0.183555 + 0.983009i \(0.441240\pi\)
\(678\) −73.6255 226.596i −0.108592 0.334212i
\(679\) 211.483 + 68.7149i 0.311462 + 0.101200i
\(680\) 0 0
\(681\) 176.658i 0.259410i
\(682\) −1876.80 + 92.7269i −2.75190 + 0.135963i
\(683\) 688.418i 1.00793i −0.863723 0.503966i \(-0.831874\pi\)
0.863723 0.503966i \(-0.168126\pi\)
\(684\) 1179.92 1624.02i 1.72503 2.37430i
\(685\) 0 0
\(686\) 353.549 + 1088.11i 0.515377 + 1.58617i
\(687\) 125.303 + 172.465i 0.182392 + 0.251041i
\(688\) −1231.52 + 894.749i −1.78999 + 1.30051i
\(689\) 340.838 110.745i 0.494685 0.160733i
\(690\) 0 0
\(691\) −479.696 348.519i −0.694205 0.504369i 0.183835 0.982957i \(-0.441149\pi\)
−0.878040 + 0.478588i \(0.841149\pi\)
\(692\) 14.6320 0.0211445
\(693\) −294.233 192.331i −0.424578 0.277535i
\(694\) −177.215 −0.255353
\(695\) 0 0
\(696\) −117.526 + 361.707i −0.168859 + 0.519695i
\(697\) −364.902 + 118.564i −0.523532 + 0.170106i
\(698\) −320.478 441.100i −0.459137 0.631948i
\(699\) −103.210 142.056i −0.147654 0.203228i
\(700\) 0 0
\(701\) −563.333 183.038i −0.803613 0.261110i −0.121723 0.992564i \(-0.538842\pi\)
−0.681890 + 0.731455i \(0.738842\pi\)
\(702\) −189.491 + 260.812i −0.269930 + 0.371527i
\(703\) 636.300 0.905120
\(704\) −333.608 + 268.501i −0.473875 + 0.381394i
\(705\) 0 0
\(706\) −1159.75 + 1596.26i −1.64270 + 2.26099i
\(707\) 345.373 + 112.219i 0.488505 + 0.158725i
\(708\) 290.183 94.2860i 0.409862 0.133172i
\(709\) −238.019 + 172.931i −0.335711 + 0.243909i −0.742850 0.669458i \(-0.766527\pi\)
0.407139 + 0.913366i \(0.366527\pi\)
\(710\) 0 0
\(711\) −328.518 + 106.742i −0.462051 + 0.150129i
\(712\) −511.296 + 1573.61i −0.718112 + 2.21012i
\(713\) 1046.94 1440.99i 1.46836 2.02102i
\(714\) 115.638i 0.161959i
\(715\) 0 0
\(716\) −731.066 −1.02104
\(717\) −84.1449 61.1349i −0.117357 0.0852648i
\(718\) −2281.87 741.424i −3.17809 1.03262i
\(719\) −184.687 568.407i −0.256866 0.790552i −0.993456 0.114213i \(-0.963565\pi\)
0.736590 0.676339i \(-0.236435\pi\)
\(720\) 0 0
\(721\) −101.016 139.037i −0.140105 0.192839i
\(722\) −534.624 1645.40i −0.740477 2.27895i
\(723\) −33.8493 + 104.178i −0.0468179 + 0.144091i
\(724\) −1224.82 889.887i −1.69175 1.22913i
\(725\) 0 0
\(726\) −39.0299 394.020i −0.0537602 0.542727i
\(727\) 165.031i 0.227003i −0.993538 0.113502i \(-0.963793\pi\)
0.993538 0.113502i \(-0.0362067\pi\)
\(728\) 286.803 + 208.375i 0.393960 + 0.286229i
\(729\) 106.214 326.894i 0.145699 0.448415i
\(730\) 0 0
\(731\) −512.498 + 372.351i −0.701091 + 0.509372i
\(732\) 284.981 207.051i 0.389318 0.282856i
\(733\) −11.4769 35.3224i −0.0156575 0.0481888i 0.942923 0.333012i \(-0.108065\pi\)
−0.958580 + 0.284823i \(0.908065\pi\)
\(734\) −1510.49 490.788i −2.05789 0.668649i
\(735\) 0 0
\(736\) 496.235i 0.674232i
\(737\) 384.884 + 104.365i 0.522231 + 0.141608i
\(738\) 1224.33i 1.65898i
\(739\) 152.133 209.393i 0.205864 0.283347i −0.693584 0.720376i \(-0.743969\pi\)
0.899447 + 0.437029i \(0.143969\pi\)
\(740\) 0 0
\(741\) 48.0565 + 147.903i 0.0648536 + 0.199599i
\(742\) −507.697 698.785i −0.684228 0.941758i
\(743\) 453.181 329.255i 0.609933 0.443143i −0.239457 0.970907i \(-0.576970\pi\)
0.849391 + 0.527764i \(0.176970\pi\)
\(744\) 670.756 217.942i 0.901553 0.292932i
\(745\) 0 0
\(746\) 1131.29 + 821.932i 1.51648 + 1.10179i
\(747\) −628.519 −0.841391
\(748\) 651.986 524.744i 0.871639 0.701530i
\(749\) −249.864 −0.333597
\(750\) 0 0
\(751\) −231.599 + 712.788i −0.308387 + 0.949119i 0.670004 + 0.742358i \(0.266292\pi\)
−0.978391 + 0.206761i \(0.933708\pi\)
\(752\) −363.720 + 118.180i −0.483671 + 0.157154i
\(753\) −100.322 138.081i −0.133229 0.183374i
\(754\) 311.222 + 428.360i 0.412761 + 0.568116i
\(755\) 0 0
\(756\) 501.584 + 162.975i 0.663471 + 0.215575i
\(757\) −503.392 + 692.859i −0.664982 + 0.915270i −0.999633 0.0270725i \(-0.991382\pi\)
0.334651 + 0.942342i \(0.391382\pi\)
\(758\) −1874.75 −2.47329
\(759\) 314.151 + 205.352i 0.413902 + 0.270556i
\(760\) 0 0
\(761\) −94.4945 + 130.061i −0.124172 + 0.170907i −0.866577 0.499043i \(-0.833685\pi\)
0.742405 + 0.669951i \(0.233685\pi\)
\(762\) −363.891 118.235i −0.477548 0.155165i
\(763\) 675.238 219.398i 0.884978 0.287547i
\(764\) −2315.11 + 1682.03i −3.03025 + 2.20161i
\(765\) 0 0
\(766\) 2074.18 673.942i 2.70781 0.879820i
\(767\) 69.1436 212.802i 0.0901481 0.277447i
\(768\) 283.118 389.678i 0.368643 0.507393i
\(769\) 81.4227i 0.105881i −0.998598 0.0529407i \(-0.983141\pi\)
0.998598 0.0529407i \(-0.0168594\pi\)
\(770\) 0 0
\(771\) 372.159 0.482697
\(772\) 60.8404 + 44.2031i 0.0788088 + 0.0572579i
\(773\) 433.209 + 140.758i 0.560426 + 0.182094i 0.575513 0.817793i \(-0.304802\pi\)
−0.0150867 + 0.999886i \(0.504802\pi\)
\(774\) 624.660 + 1922.51i 0.807055 + 2.48386i
\(775\) 0 0
\(776\) 523.068 + 719.942i 0.674057 + 0.927760i
\(777\) 24.5337 + 75.5070i 0.0315749 + 0.0971776i
\(778\) −13.8376 + 42.5877i −0.0177861 + 0.0547400i
\(779\) 1006.10 + 730.972i 1.29152 + 0.938346i
\(780\) 0 0
\(781\) 9.60130 + 25.2378i 0.0122936 + 0.0323147i
\(782\) 1168.74i 1.49456i
\(783\) 335.679 + 243.885i 0.428709 + 0.311476i
\(784\) −224.514 + 690.982i −0.286369 + 0.881354i
\(785\) 0 0
\(786\) −110.252 + 80.1031i −0.140270 + 0.101912i
\(787\) 96.6224 70.2003i 0.122773 0.0891999i −0.524704 0.851285i \(-0.675824\pi\)
0.647477 + 0.762085i \(0.275824\pi\)
\(788\) −521.486 1604.97i −0.661784 2.03676i
\(789\) −64.3694 20.9149i −0.0815836 0.0265081i
\(790\) 0 0
\(791\) 285.837i 0.361362i
\(792\) −500.202 1314.82i −0.631568 1.66013i
\(793\) 258.323i 0.325754i
\(794\) 499.414 687.385i 0.628985 0.865724i
\(795\) 0 0
\(796\) −476.989 1468.02i −0.599233 1.84425i
\(797\) −806.080 1109.47i −1.01139 1.39206i −0.918066 0.396427i \(-0.870250\pi\)
−0.0933265 0.995636i \(-0.529750\pi\)
\(798\) 303.230 220.309i 0.379987 0.276077i
\(799\) −151.363 + 49.1808i −0.189440 + 0.0615529i
\(800\) 0 0
\(801\) 693.553 + 503.895i 0.865858 + 0.629083i
\(802\) −2537.95 −3.16453
\(803\) −1449.19 + 71.6002i −1.80472 + 0.0891659i
\(804\) −284.147 −0.353417
\(805\) 0 0
\(806\) 303.417 933.822i 0.376448 1.15859i
\(807\) −176.511 + 57.3519i −0.218725 + 0.0710680i
\(808\) 854.225 + 1175.74i 1.05721 + 1.45512i
\(809\) 7.99326 + 11.0018i 0.00988042 + 0.0135992i 0.813929 0.580965i \(-0.197325\pi\)
−0.804048 + 0.594564i \(0.797325\pi\)
\(810\) 0 0
\(811\) −203.261 66.0435i −0.250630 0.0814346i 0.181008 0.983482i \(-0.442064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(812\) 509.141 700.772i 0.627020 0.863020i
\(813\) −141.356 −0.173869
\(814\) 463.175 708.575i 0.569011 0.870485i
\(815\) 0 0
\(816\) −106.132 + 146.078i −0.130063 + 0.179017i
\(817\) 1952.78 + 634.495i 2.39018 + 0.776616i
\(818\) −359.505 + 116.810i −0.439492 + 0.142800i
\(819\) 148.599 107.963i 0.181439 0.131823i
\(820\) 0 0
\(821\) 1240.59 403.092i 1.51107 0.490977i 0.567848 0.823134i \(-0.307776\pi\)
0.943224 + 0.332157i \(0.107776\pi\)
\(822\) −107.180 + 329.865i −0.130389 + 0.401296i
\(823\) 168.077 231.338i 0.204225 0.281091i −0.694603 0.719393i \(-0.744420\pi\)
0.898828 + 0.438302i \(0.144420\pi\)
\(824\) 687.770i 0.834672i
\(825\) 0 0
\(826\) −539.279 −0.652881
\(827\) 452.602 + 328.834i 0.547282 + 0.397623i 0.826782 0.562522i \(-0.190169\pi\)
−0.279501 + 0.960146i \(0.590169\pi\)
\(828\) 2407.55 + 782.262i 2.90767 + 0.944761i
\(829\) 279.385 + 859.857i 0.337014 + 1.03722i 0.965721 + 0.259580i \(0.0835843\pi\)
−0.628707 + 0.777642i \(0.716416\pi\)
\(830\) 0 0
\(831\) −112.999 155.530i −0.135980 0.187160i
\(832\) −69.1477 212.815i −0.0831103 0.255787i
\(833\) −93.4317 + 287.553i −0.112163 + 0.345202i
\(834\) −87.8501 63.8268i −0.105336 0.0765310i
\(835\) 0 0
\(836\) −2618.13 709.932i −3.13174 0.849201i
\(837\) 769.439i 0.919281i
\(838\) 84.1466 + 61.1361i 0.100414 + 0.0729548i
\(839\) 49.7340 153.066i 0.0592778 0.182438i −0.917033 0.398811i \(-0.869423\pi\)
0.976311 + 0.216373i \(0.0694228\pi\)
\(840\) 0 0
\(841\) −129.060 + 93.7676i −0.153460 + 0.111495i
\(842\) 1179.69 857.096i 1.40106 1.01793i
\(843\) 35.1196 + 108.087i 0.0416603 + 0.128217i
\(844\) 1095.21 + 355.855i 1.29764 + 0.421629i
\(845\) 0 0
\(846\) 507.856i 0.600303i
\(847\) −101.542 + 464.039i −0.119884 + 0.547862i
\(848\) 1348.68i 1.59043i
\(849\) 90.6575 124.779i 0.106782 0.146972i
\(850\) 0 0
\(851\) 247.959 + 763.139i 0.291374 + 0.896756i
\(852\) −11.3091 15.5656i −0.0132736 0.0182695i
\(853\) −1183.22 + 859.656i −1.38712 + 1.00780i −0.390948 + 0.920413i \(0.627853\pi\)
−0.996174 + 0.0873903i \(0.972147\pi\)
\(854\) −592.125 + 192.393i −0.693355 + 0.225285i
\(855\) 0 0
\(856\) −808.971 587.752i −0.945059 0.686626i
\(857\) 874.204 1.02007 0.510037 0.860152i \(-0.329632\pi\)
0.510037 + 0.860152i \(0.329632\pi\)
\(858\) 199.684 + 54.1462i 0.232732 + 0.0631075i
\(859\) −984.004 −1.14552 −0.572761 0.819722i \(-0.694128\pi\)
−0.572761 + 0.819722i \(0.694128\pi\)
\(860\) 0 0
\(861\) −47.9494 + 147.573i −0.0556904 + 0.171397i
\(862\) −658.463 + 213.948i −0.763878 + 0.248199i
\(863\) 806.939 + 1110.66i 0.935039 + 1.28697i 0.957861 + 0.287232i \(0.0927350\pi\)
−0.0228217 + 0.999740i \(0.507265\pi\)
\(864\) 126.002 + 173.427i 0.145835 + 0.200725i
\(865\) 0 0
\(866\) −281.911 91.5985i −0.325533 0.105772i
\(867\) 113.357 156.023i 0.130746 0.179957i
\(868\) −1606.30 −1.85057
\(869\) 292.670 + 363.638i 0.336790 + 0.418456i
\(870\) 0 0
\(871\) −122.480 + 168.580i −0.140620 + 0.193547i
\(872\) 2702.27 + 878.020i 3.09893 + 1.00690i
\(873\) 438.508 142.480i 0.502300 0.163207i
\(874\) 3064.70 2226.64i 3.50653 2.54764i
\(875\) 0 0
\(876\) 983.260 319.481i 1.12244 0.364704i
\(877\) −250.622 + 771.335i −0.285772 + 0.879516i 0.700394 + 0.713756i \(0.253008\pi\)
−0.986166 + 0.165760i \(0.946992\pi\)
\(878\) −289.838 + 398.927i −0.330111 + 0.454359i
\(879\) 47.2800i 0.0537884i
\(880\) 0 0
\(881\) −348.997 −0.396137 −0.198069 0.980188i \(-0.563467\pi\)
−0.198069 + 0.980188i \(0.563467\pi\)
\(882\) 780.543 + 567.098i 0.884970 + 0.642968i
\(883\) 929.644 + 302.060i 1.05282 + 0.342084i 0.783776 0.621043i \(-0.213291\pi\)
0.269049 + 0.963127i \(0.413291\pi\)
\(884\) 135.139 + 415.914i 0.152872 + 0.470491i
\(885\) 0 0
\(886\) −613.519 844.436i −0.692459 0.953088i
\(887\) −4.68686 14.4247i −0.00528395 0.0162623i 0.948380 0.317137i \(-0.102721\pi\)
−0.953664 + 0.300875i \(0.902721\pi\)
\(888\) −98.1827 + 302.175i −0.110566 + 0.340287i
\(889\) 371.360 + 269.809i 0.417728 + 0.303497i
\(890\) 0 0
\(891\) −642.952 + 31.7663i −0.721608 + 0.0356525i
\(892\) 342.856i 0.384368i
\(893\) 417.333 + 303.210i 0.467338 + 0.339541i
\(894\) 121.952 375.329i 0.136411 0.419831i
\(895\) 0 0
\(896\) −607.652 + 441.485i −0.678184 + 0.492729i
\(897\) −158.659 + 115.272i −0.176877 + 0.128509i
\(898\) −717.807 2209.18i −0.799340 2.46011i
\(899\) −1201.88 390.515i −1.33691 0.434388i
\(900\) 0 0
\(901\) 561.257i 0.622926i
\(902\) 1546.36 588.287i 1.71437 0.652203i
\(903\) 256.192i 0.283712i
\(904\) −672.370 + 925.438i −0.743773 + 1.02372i
\(905\) 0 0
\(906\) −69.4156 213.639i −0.0766177 0.235805i
\(907\) 327.095 + 450.207i 0.360634 + 0.496369i 0.950325 0.311259i \(-0.100751\pi\)
−0.589692 + 0.807629i \(0.700751\pi\)
\(908\) 1302.66 946.436i 1.43464 1.04233i
\(909\) 716.130 232.685i 0.787821 0.255979i
\(910\) 0 0
\(911\) 264.619 + 192.257i 0.290471 + 0.211039i 0.723472 0.690354i \(-0.242545\pi\)
−0.433001 + 0.901394i \(0.642545\pi\)
\(912\) 585.246 0.641717
\(913\) 302.002 + 793.837i 0.330780 + 0.869482i
\(914\) −523.660 −0.572932
\(915\) 0 0
\(916\) 600.434 1847.94i 0.655495 2.01741i
\(917\) 155.492 50.5226i 0.169567 0.0550955i
\(918\) 296.762 + 408.458i 0.323270 + 0.444943i
\(919\) −312.999 430.806i −0.340586 0.468776i 0.604026 0.796964i \(-0.293562\pi\)
−0.944612 + 0.328188i \(0.893562\pi\)
\(920\) 0 0
\(921\) −342.981 111.441i −0.372401 0.121000i
\(922\) 1038.77 1429.75i 1.12665 1.55070i
\(923\) −14.1096 −0.0152866
\(924\) −16.7023 338.056i −0.0180761 0.365861i
\(925\) 0 0
\(926\) −827.113 + 1138.42i −0.893210 + 1.22940i
\(927\) −338.907 110.118i −0.365596 0.118789i
\(928\) 334.847 108.798i 0.360826 0.117240i
\(929\) 617.340 448.524i 0.664521 0.482803i −0.203666 0.979041i \(-0.565286\pi\)
0.868187 + 0.496238i \(0.165286\pi\)
\(930\) 0 0
\(931\) 932.031 302.835i 1.00111 0.325279i
\(932\) −494.566 + 1522.12i −0.530650 + 1.63317i
\(933\) 22.2506 30.6253i 0.0238484 0.0328246i
\(934\) 2219.26i 2.37608i
\(935\) 0 0
\(936\) 735.071 0.785332
\(937\) −1280.72 930.495i −1.36683 0.993058i −0.997977 0.0635691i \(-0.979752\pi\)
−0.368850 0.929489i \(-0.620248\pi\)
\(938\) 477.638 + 155.194i 0.509209 + 0.165452i
\(939\) −146.919 452.172i −0.156464 0.481546i
\(940\) 0 0
\(941\) −325.495 448.005i −0.345903 0.476094i 0.600251 0.799812i \(-0.295067\pi\)
−0.946154 + 0.323717i \(0.895067\pi\)
\(942\) 189.300 + 582.606i 0.200956 + 0.618477i
\(943\) −484.619 + 1491.50i −0.513912 + 1.58166i
\(944\) −681.233 494.945i −0.721645 0.524306i
\(945\) 0 0
\(946\) 2128.03 1712.72i 2.24950 1.81049i
\(947\) 945.630i 0.998553i −0.866443 0.499276i \(-0.833599\pi\)
0.866443 0.499276i \(-0.166401\pi\)
\(948\) −269.080 195.498i −0.283840 0.206222i
\(949\) 234.287 721.062i 0.246878 0.759813i
\(950\) 0 0
\(951\) 131.934 95.8555i 0.138732 0.100794i
\(952\) 449.163 326.336i 0.471810 0.342790i
\(953\) −195.755 602.472i −0.205409 0.632185i −0.999696 0.0246421i \(-0.992155\pi\)
0.794287 0.607543i \(-0.207845\pi\)
\(954\) −1703.32 553.441i −1.78545 0.580127i
\(955\) 0 0
\(956\) 948.003i 0.991635i
\(957\) 69.6892 257.004i 0.0728205 0.268552i
\(958\) 340.353i 0.355275i
\(959\) 244.580 336.636i 0.255037 0.351028i
\(960\) 0 0
\(961\) 427.212 + 1314.82i 0.444549 + 1.36818i
\(962\) 259.999 + 357.857i 0.270269 + 0.371993i
\(963\) −419.145 + 304.527i −0.435249 + 0.316227i
\(964\) 949.540 308.524i 0.985000 0.320046i
\(965\) 0 0
\(966\) 382.391 + 277.823i 0.395850 + 0.287602i
\(967\) 855.136 0.884318 0.442159 0.896937i \(-0.354213\pi\)
0.442159 + 0.896937i \(0.354213\pi\)
\(968\) −1420.31 + 1263.54i −1.46726 + 1.30531i
\(969\) 243.551 0.251343
\(970\) 0 0
\(971\) 306.329 942.784i 0.315478 0.970942i −0.660079 0.751196i \(-0.729477\pi\)
0.975557 0.219746i \(-0.0705227\pi\)
\(972\) 1586.14 515.368i 1.63183 0.530214i
\(973\) 76.5730 + 105.394i 0.0786979 + 0.108318i
\(974\) 1659.33 + 2283.88i 1.70363 + 2.34484i
\(975\) 0 0
\(976\) −924.565 300.409i −0.947300 0.307796i
\(977\) −33.7732 + 46.4848i −0.0345682 + 0.0475791i −0.825951 0.563742i \(-0.809361\pi\)
0.791383 + 0.611321i \(0.209361\pi\)
\(978\) 118.169 0.120827
\(979\) 303.183 1118.10i 0.309686 1.14208i
\(980\) 0 0
\(981\) 865.312 1191.00i 0.882071 1.21407i
\(982\) 2824.26 + 917.657i 2.87603 + 0.934477i
\(983\) −673.476 + 218.826i −0.685123 + 0.222610i −0.630837 0.775915i \(-0.717288\pi\)
−0.0542862 + 0.998525i \(0.517288\pi\)
\(984\) −502.378 + 364.999i −0.510546 + 0.370934i
\(985\) 0 0
\(986\) 788.638 256.244i 0.799835 0.259882i
\(987\) −19.8896 + 61.2140i −0.0201516 + 0.0620203i
\(988\) 833.159 1146.74i 0.843278 1.16067i
\(989\) 2589.30i 2.61810i
\(990\) 0 0
\(991\) 1006.83 1.01598 0.507989 0.861363i \(-0.330389\pi\)
0.507989 + 0.861363i \(0.330389\pi\)
\(992\) −528.207 383.765i −0.532467 0.386860i
\(993\) 85.9930 + 27.9408i 0.0865992 + 0.0281378i
\(994\) 10.5085 + 32.3418i 0.0105719 + 0.0325370i
\(995\) 0 0
\(996\) −355.720 489.606i −0.357148 0.491573i
\(997\) −174.686 537.627i −0.175211 0.539245i 0.824432 0.565961i \(-0.191495\pi\)
−0.999643 + 0.0267164i \(0.991495\pi\)
\(998\) 779.456 2398.92i 0.781018 2.40373i
\(999\) 280.431 + 203.745i 0.280712 + 0.203949i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.f.249.1 24
5.2 odd 4 55.3.i.d.51.3 yes 12
5.3 odd 4 275.3.x.f.51.1 12
5.4 even 2 inner 275.3.q.f.249.6 24
11.8 odd 10 inner 275.3.q.f.74.6 24
55.8 even 20 275.3.x.f.151.1 12
55.17 even 20 605.3.c.d.241.2 12
55.19 odd 10 inner 275.3.q.f.74.1 24
55.27 odd 20 605.3.c.d.241.11 12
55.52 even 20 55.3.i.d.41.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.d.41.3 12 55.52 even 20
55.3.i.d.51.3 yes 12 5.2 odd 4
275.3.q.f.74.1 24 55.19 odd 10 inner
275.3.q.f.74.6 24 11.8 odd 10 inner
275.3.q.f.249.1 24 1.1 even 1 trivial
275.3.q.f.249.6 24 5.4 even 2 inner
275.3.x.f.51.1 12 5.3 odd 4
275.3.x.f.151.1 12 55.8 even 20
605.3.c.d.241.2 12 55.17 even 20
605.3.c.d.241.11 12 55.27 odd 20