Properties

Label 55.3.i.d.41.3
Level $55$
Weight $3$
Character 55.41
Analytic conductor $1.499$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(6,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.6");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 25x^{10} + 235x^{8} + 1025x^{6} + 2090x^{4} + 1880x^{2} + 605 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 41.3
Root \(2.63198i\) of defining polynomial
Character \(\chi\) \(=\) 55.41
Dual form 55.3.i.d.51.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.07416 + 2.85483i) q^{2} +(-0.286558 - 0.881935i) q^{3} +(-2.61187 + 8.03851i) q^{4} +(-1.80902 - 1.31433i) q^{5} +(1.92341 - 2.64735i) q^{6} +(3.73363 + 1.21313i) q^{7} +(-14.9418 + 4.85489i) q^{8} +(6.58546 - 4.78462i) q^{9} +O(q^{10})\) \(q+(2.07416 + 2.85483i) q^{2} +(-0.286558 - 0.881935i) q^{3} +(-2.61187 + 8.03851i) q^{4} +(-1.80902 - 1.31433i) q^{5} +(1.92341 - 2.64735i) q^{6} +(3.73363 + 1.21313i) q^{7} +(-14.9418 + 4.85489i) q^{8} +(6.58546 - 4.78462i) q^{9} -7.89056i q^{10} +(-2.87880 - 10.6166i) q^{11} +7.83789 q^{12} +(-3.37849 - 4.65009i) q^{13} +(4.28086 + 13.1751i) q^{14} +(-0.640763 + 1.97207i) q^{15} +(-17.4997 - 12.7143i) q^{16} +(-5.29106 + 7.28252i) q^{17} +(27.3186 + 8.87634i) q^{18} +(-27.7487 + 9.01609i) q^{19} +(15.2902 - 11.1090i) q^{20} -3.64045i q^{21} +(24.3376 - 30.2390i) q^{22} +36.7936 q^{23} +(8.56339 + 11.7865i) q^{24} +(1.54508 + 4.75528i) q^{25} +(6.26771 - 19.2900i) q^{26} +(-12.8588 - 9.34246i) q^{27} +(-19.5035 + 26.8443i) q^{28} +(-24.8274 - 8.06690i) q^{29} +(-6.95896 + 2.26110i) q^{30} +(-39.1642 + 28.4544i) q^{31} -13.4870i q^{32} +(-8.53822 + 5.58119i) q^{33} -31.7649 q^{34} +(-5.15975 - 7.10179i) q^{35} +(21.2608 + 65.4341i) q^{36} +(6.73919 - 20.7411i) q^{37} +(-83.2945 - 60.5170i) q^{38} +(-3.13294 + 4.31213i) q^{39} +(33.4109 + 10.8559i) q^{40} +(40.5371 - 13.1713i) q^{41} +(10.3929 - 7.55087i) q^{42} +70.3737i q^{43} +(92.8608 + 4.58797i) q^{44} -18.2018 q^{45} +(76.3156 + 105.039i) q^{46} +(-5.46351 - 16.8149i) q^{47} +(-6.19847 + 19.0769i) q^{48} +(-27.1735 - 19.7427i) q^{49} +(-10.3708 + 14.2742i) q^{50} +(7.93890 + 2.57951i) q^{51} +(46.2040 - 15.0126i) q^{52} +(50.4423 - 36.6485i) q^{53} -56.0874i q^{54} +(-8.74592 + 22.9893i) q^{55} -61.6768 q^{56} +(15.9032 + 21.8889i) q^{57} +(-28.4662 - 87.6100i) q^{58} +(-12.0295 + 37.0230i) q^{59} +(-14.1789 - 10.3016i) q^{60} +(26.4166 - 36.3594i) q^{61} +(-162.465 - 52.7881i) q^{62} +(30.3921 - 9.87498i) q^{63} +(-31.4956 + 22.8829i) q^{64} +12.8525i q^{65} +(-33.6430 - 12.7989i) q^{66} +36.2530 q^{67} +(-44.7211 - 61.5533i) q^{68} +(-10.5435 - 32.4495i) q^{69} +(9.57229 - 29.4605i) q^{70} +(1.98595 + 1.44287i) q^{71} +(-75.1699 + 103.462i) q^{72} +(125.450 + 40.7610i) q^{73} +(73.1905 - 23.7810i) q^{74} +(3.75109 - 2.72533i) q^{75} -246.607i q^{76} +(2.13097 - 43.1309i) q^{77} -18.8086 q^{78} +(-24.9427 - 34.3307i) q^{79} +(14.9465 + 46.0006i) q^{80} +(18.0841 - 55.6573i) q^{81} +(121.682 + 88.4072i) q^{82} +(-45.3846 + 62.4666i) q^{83} +(29.2638 + 9.50839i) q^{84} +(19.1432 - 6.22001i) q^{85} +(-200.905 + 145.966i) q^{86} +24.2077i q^{87} +(94.5569 + 144.655i) q^{88} +105.316 q^{89} +(-37.7533 - 51.9630i) q^{90} +(-6.97287 - 21.4603i) q^{91} +(-96.1001 + 295.766i) q^{92} +(36.3177 + 26.3864i) q^{93} +(36.6717 - 50.4742i) q^{94} +(62.0479 + 20.1606i) q^{95} +(-11.8946 + 3.86481i) q^{96} +(-45.8248 + 33.2937i) q^{97} -118.525i q^{98} +(-69.7546 - 56.1413i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{2} - 13 q^{3} + 13 q^{4} - 15 q^{5} + 20 q^{6} - 5 q^{7} - 35 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 5 q^{2} - 13 q^{3} + 13 q^{4} - 15 q^{5} + 20 q^{6} - 5 q^{7} - 35 q^{8} + 4 q^{9} + 12 q^{11} - 2 q^{12} + 70 q^{13} - 60 q^{14} + 35 q^{15} - 43 q^{16} - 15 q^{17} - 30 q^{18} - 80 q^{19} + 20 q^{20} - 10 q^{22} + 42 q^{23} + 210 q^{24} - 15 q^{25} - 120 q^{26} - 109 q^{27} + 140 q^{28} + 5 q^{29} - 20 q^{30} - 46 q^{31} + 42 q^{33} + 10 q^{34} + 20 q^{35} - 39 q^{36} - 42 q^{37} - 130 q^{38} - 285 q^{39} - 25 q^{40} + 230 q^{41} + 135 q^{42} + 488 q^{44} - 50 q^{45} + 205 q^{46} + 58 q^{47} - 323 q^{48} - 212 q^{49} - 25 q^{50} + 360 q^{51} + 410 q^{52} - 43 q^{53} - 80 q^{55} - 410 q^{56} + 270 q^{57} - 450 q^{58} - 74 q^{59} - 25 q^{60} - 290 q^{61} - 350 q^{62} + 295 q^{63} - 7 q^{64} + 185 q^{66} - 212 q^{67} + 55 q^{68} - 73 q^{69} + 160 q^{70} - 276 q^{71} - 555 q^{72} + 645 q^{73} - 100 q^{74} + 10 q^{75} - 140 q^{77} + 360 q^{78} + 235 q^{79} + 140 q^{80} - 30 q^{81} + 215 q^{82} + 60 q^{83} - 580 q^{84} + 65 q^{85} - 480 q^{86} - 165 q^{88} - 114 q^{89} + 145 q^{90} + 160 q^{91} + 33 q^{92} + 129 q^{93} + 375 q^{94} + 50 q^{95} + 265 q^{96} + 63 q^{97} + 669 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07416 + 2.85483i 1.03708 + 1.42742i 0.899498 + 0.436925i \(0.143933\pi\)
0.137581 + 0.990491i \(0.456067\pi\)
\(3\) −0.286558 0.881935i −0.0955193 0.293978i 0.891869 0.452293i \(-0.149394\pi\)
−0.987389 + 0.158315i \(0.949394\pi\)
\(4\) −2.61187 + 8.03851i −0.652968 + 2.00963i
\(5\) −1.80902 1.31433i −0.361803 0.262866i
\(6\) 1.92341 2.64735i 0.320568 0.441224i
\(7\) 3.73363 + 1.21313i 0.533376 + 0.173304i 0.563307 0.826248i \(-0.309529\pi\)
−0.0299310 + 0.999552i \(0.509529\pi\)
\(8\) −14.9418 + 4.85489i −1.86773 + 0.606861i
\(9\) 6.58546 4.78462i 0.731718 0.531624i
\(10\) 7.89056i 0.789056i
\(11\) −2.87880 10.6166i −0.261709 0.965147i
\(12\) 7.83789 0.653158
\(13\) −3.37849 4.65009i −0.259884 0.357699i 0.659058 0.752092i \(-0.270955\pi\)
−0.918942 + 0.394393i \(0.870955\pi\)
\(14\) 4.28086 + 13.1751i 0.305775 + 0.941080i
\(15\) −0.640763 + 1.97207i −0.0427175 + 0.131471i
\(16\) −17.4997 12.7143i −1.09373 0.794641i
\(17\) −5.29106 + 7.28252i −0.311239 + 0.428383i −0.935767 0.352619i \(-0.885291\pi\)
0.624528 + 0.781002i \(0.285291\pi\)
\(18\) 27.3186 + 8.87634i 1.51770 + 0.493130i
\(19\) −27.7487 + 9.01609i −1.46046 + 0.474531i −0.928210 0.372058i \(-0.878652\pi\)
−0.532247 + 0.846589i \(0.678652\pi\)
\(20\) 15.2902 11.1090i 0.764508 0.555448i
\(21\) 3.64045i 0.173355i
\(22\) 24.3376 30.2390i 1.10625 1.37450i
\(23\) 36.7936 1.59972 0.799860 0.600186i \(-0.204907\pi\)
0.799860 + 0.600186i \(0.204907\pi\)
\(24\) 8.56339 + 11.7865i 0.356808 + 0.491104i
\(25\) 1.54508 + 4.75528i 0.0618034 + 0.190211i
\(26\) 6.26771 19.2900i 0.241066 0.741924i
\(27\) −12.8588 9.34246i −0.476252 0.346017i
\(28\) −19.5035 + 26.8443i −0.696555 + 0.958726i
\(29\) −24.8274 8.06690i −0.856116 0.278169i −0.152111 0.988363i \(-0.548607\pi\)
−0.704006 + 0.710195i \(0.748607\pi\)
\(30\) −6.95896 + 2.26110i −0.231965 + 0.0753701i
\(31\) −39.1642 + 28.4544i −1.26336 + 0.917885i −0.998918 0.0465167i \(-0.985188\pi\)
−0.264442 + 0.964401i \(0.585188\pi\)
\(32\) 13.4870i 0.421469i
\(33\) −8.53822 + 5.58119i −0.258734 + 0.169127i
\(34\) −31.7649 −0.934261
\(35\) −5.15975 7.10179i −0.147422 0.202908i
\(36\) 21.2608 + 65.4341i 0.590579 + 1.81761i
\(37\) 6.73919 20.7411i 0.182140 0.560571i −0.817747 0.575578i \(-0.804777\pi\)
0.999887 + 0.0150073i \(0.00477717\pi\)
\(38\) −83.2945 60.5170i −2.19196 1.59255i
\(39\) −3.13294 + 4.31213i −0.0803319 + 0.110567i
\(40\) 33.4109 + 10.8559i 0.835272 + 0.271396i
\(41\) 40.5371 13.1713i 0.988709 0.321251i 0.230364 0.973105i \(-0.426008\pi\)
0.758345 + 0.651854i \(0.226008\pi\)
\(42\) 10.3929 7.55087i 0.247450 0.179783i
\(43\) 70.3737i 1.63660i 0.574794 + 0.818298i \(0.305082\pi\)
−0.574794 + 0.818298i \(0.694918\pi\)
\(44\) 92.8608 + 4.58797i 2.11047 + 0.104272i
\(45\) −18.2018 −0.404484
\(46\) 76.3156 + 105.039i 1.65904 + 2.28347i
\(47\) −5.46351 16.8149i −0.116245 0.357765i 0.875960 0.482384i \(-0.160229\pi\)
−0.992205 + 0.124619i \(0.960229\pi\)
\(48\) −6.19847 + 19.0769i −0.129135 + 0.397436i
\(49\) −27.1735 19.7427i −0.554561 0.402912i
\(50\) −10.3708 + 14.2742i −0.207416 + 0.285483i
\(51\) 7.93890 + 2.57951i 0.155665 + 0.0505785i
\(52\) 46.2040 15.0126i 0.888538 0.288704i
\(53\) 50.4423 36.6485i 0.951742 0.691481i 0.000523852 1.00000i \(-0.499833\pi\)
0.951218 + 0.308519i \(0.0998333\pi\)
\(54\) 56.0874i 1.03866i
\(55\) −8.74592 + 22.9893i −0.159017 + 0.417988i
\(56\) −61.6768 −1.10137
\(57\) 15.9032 + 21.8889i 0.279004 + 0.384016i
\(58\) −28.4662 87.6100i −0.490797 1.51052i
\(59\) −12.0295 + 37.0230i −0.203890 + 0.627509i 0.795867 + 0.605471i \(0.207015\pi\)
−0.999757 + 0.0220376i \(0.992985\pi\)
\(60\) −14.1789 10.3016i −0.236315 0.171693i
\(61\) 26.4166 36.3594i 0.433060 0.596055i −0.535593 0.844477i \(-0.679912\pi\)
0.968652 + 0.248421i \(0.0799117\pi\)
\(62\) −162.465 52.7881i −2.62041 0.851422i
\(63\) 30.3921 9.87498i 0.482414 0.156746i
\(64\) −31.4956 + 22.8829i −0.492118 + 0.357545i
\(65\) 12.8525i 0.197731i
\(66\) −33.6430 12.7989i −0.509742 0.193923i
\(67\) 36.2530 0.541090 0.270545 0.962707i \(-0.412796\pi\)
0.270545 + 0.962707i \(0.412796\pi\)
\(68\) −44.7211 61.5533i −0.657663 0.905195i
\(69\) −10.5435 32.4495i −0.152804 0.470283i
\(70\) 9.57229 29.4605i 0.136747 0.420864i
\(71\) 1.98595 + 1.44287i 0.0279711 + 0.0203222i 0.601683 0.798735i \(-0.294497\pi\)
−0.573712 + 0.819057i \(0.694497\pi\)
\(72\) −75.1699 + 103.462i −1.04403 + 1.43698i
\(73\) 125.450 + 40.7610i 1.71849 + 0.558370i 0.991709 0.128503i \(-0.0410172\pi\)
0.726777 + 0.686873i \(0.241017\pi\)
\(74\) 73.1905 23.7810i 0.989061 0.321365i
\(75\) 3.75109 2.72533i 0.0500146 0.0363377i
\(76\) 246.607i 3.24483i
\(77\) 2.13097 43.1309i 0.0276749 0.560142i
\(78\) −18.8086 −0.241136
\(79\) −24.9427 34.3307i −0.315730 0.434565i 0.621427 0.783472i \(-0.286553\pi\)
−0.937158 + 0.348907i \(0.886553\pi\)
\(80\) 14.9465 + 46.0006i 0.186831 + 0.575008i
\(81\) 18.0841 55.6573i 0.223261 0.687127i
\(82\) 121.682 + 88.4072i 1.48393 + 1.07814i
\(83\) −45.3846 + 62.4666i −0.546803 + 0.752609i −0.989574 0.144025i \(-0.953995\pi\)
0.442771 + 0.896635i \(0.353995\pi\)
\(84\) 29.2638 + 9.50839i 0.348379 + 0.113195i
\(85\) 19.1432 6.22001i 0.225215 0.0731766i
\(86\) −200.905 + 145.966i −2.33610 + 1.69728i
\(87\) 24.2077i 0.278250i
\(88\) 94.5569 + 144.655i 1.07451 + 1.64381i
\(89\) 105.316 1.18332 0.591661 0.806187i \(-0.298472\pi\)
0.591661 + 0.806187i \(0.298472\pi\)
\(90\) −37.7533 51.9630i −0.419481 0.577366i
\(91\) −6.97287 21.4603i −0.0766249 0.235827i
\(92\) −96.1001 + 295.766i −1.04457 + 3.21484i
\(93\) 36.3177 + 26.3864i 0.390513 + 0.283725i
\(94\) 36.6717 50.4742i 0.390124 0.536960i
\(95\) 62.0479 + 20.1606i 0.653136 + 0.212217i
\(96\) −11.8946 + 3.86481i −0.123903 + 0.0402584i
\(97\) −45.8248 + 33.2937i −0.472421 + 0.343234i −0.798384 0.602149i \(-0.794311\pi\)
0.325963 + 0.945382i \(0.394311\pi\)
\(98\) 118.525i 1.20944i
\(99\) −69.7546 56.1413i −0.704592 0.567084i
\(100\) −42.2610 −0.422610
\(101\) −54.3720 74.8367i −0.538337 0.740957i 0.450035 0.893011i \(-0.351411\pi\)
−0.988372 + 0.152054i \(0.951411\pi\)
\(102\) 9.10247 + 28.0145i 0.0892399 + 0.274652i
\(103\) −13.5278 + 41.6344i −0.131338 + 0.404218i −0.995003 0.0998498i \(-0.968164\pi\)
0.863664 + 0.504068i \(0.168164\pi\)
\(104\) 73.0564 + 53.0786i 0.702465 + 0.510371i
\(105\) −4.78475 + 6.58564i −0.0455690 + 0.0627204i
\(106\) 209.251 + 67.9896i 1.97406 + 0.641412i
\(107\) 60.5320 19.6680i 0.565719 0.183813i −0.0121737 0.999926i \(-0.503875\pi\)
0.577893 + 0.816113i \(0.303875\pi\)
\(108\) 108.685 78.9643i 1.00634 0.731151i
\(109\) 180.853i 1.65920i 0.558358 + 0.829600i \(0.311432\pi\)
−0.558358 + 0.829600i \(0.688568\pi\)
\(110\) −83.7711 + 22.7153i −0.761555 + 0.206503i
\(111\) −20.2235 −0.182193
\(112\) −49.9133 68.6998i −0.445654 0.613391i
\(113\) −22.4996 69.2468i −0.199112 0.612803i −0.999904 0.0138608i \(-0.995588\pi\)
0.800792 0.598942i \(-0.204412\pi\)
\(114\) −29.5033 + 90.8020i −0.258801 + 0.796508i
\(115\) −66.5602 48.3588i −0.578784 0.420511i
\(116\) 129.692 178.505i 1.11803 1.53884i
\(117\) −44.4978 14.4582i −0.380323 0.123574i
\(118\) −130.646 + 42.4493i −1.10717 + 0.359740i
\(119\) −28.5895 + 20.7715i −0.240248 + 0.174551i
\(120\) 32.5771i 0.271475i
\(121\) −104.425 + 61.1262i −0.863017 + 0.505175i
\(122\) 158.592 1.29994
\(123\) −23.2324 31.9767i −0.188881 0.259973i
\(124\) −126.440 389.141i −1.01967 3.13823i
\(125\) 3.45492 10.6331i 0.0276393 0.0850651i
\(126\) 91.2293 + 66.2820i 0.724042 + 0.526047i
\(127\) −68.7276 + 94.5954i −0.541162 + 0.744846i −0.988780 0.149379i \(-0.952273\pi\)
0.447618 + 0.894225i \(0.352273\pi\)
\(128\) −181.961 59.1227i −1.42157 0.461896i
\(129\) 62.0650 20.1661i 0.481124 0.156327i
\(130\) −36.6918 + 26.6582i −0.282245 + 0.205063i
\(131\) 41.6464i 0.317912i −0.987286 0.158956i \(-0.949187\pi\)
0.987286 0.158956i \(-0.0508127\pi\)
\(132\) −22.5637 83.2119i −0.170937 0.630393i
\(133\) −114.541 −0.861211
\(134\) 75.1945 + 103.496i 0.561153 + 0.772360i
\(135\) 10.9827 + 33.8014i 0.0813535 + 0.250380i
\(136\) 43.7022 134.502i 0.321340 0.988982i
\(137\) −85.7502 62.3011i −0.625914 0.454753i 0.229069 0.973410i \(-0.426432\pi\)
−0.854982 + 0.518657i \(0.826432\pi\)
\(138\) 70.7691 97.4053i 0.512819 0.705835i
\(139\) 31.5601 + 10.2545i 0.227051 + 0.0737733i 0.420333 0.907370i \(-0.361913\pi\)
−0.193282 + 0.981143i \(0.561913\pi\)
\(140\) 70.5645 22.9278i 0.504032 0.163770i
\(141\) −13.2641 + 9.63691i −0.0940714 + 0.0683469i
\(142\) 8.66229i 0.0610020i
\(143\) −39.6422 + 49.2548i −0.277218 + 0.344439i
\(144\) −176.076 −1.22275
\(145\) 34.3106 + 47.2245i 0.236625 + 0.325686i
\(146\) 143.836 + 442.682i 0.985179 + 3.03207i
\(147\) −9.62499 + 29.6227i −0.0654761 + 0.201515i
\(148\) 149.126 + 108.346i 1.00761 + 0.732069i
\(149\) 70.8877 97.5686i 0.475757 0.654823i −0.501926 0.864911i \(-0.667375\pi\)
0.977683 + 0.210088i \(0.0673750\pi\)
\(150\) 15.5607 + 5.05598i 0.103738 + 0.0337065i
\(151\) −65.2872 + 21.2131i −0.432366 + 0.140484i −0.517111 0.855919i \(-0.672992\pi\)
0.0847449 + 0.996403i \(0.472992\pi\)
\(152\) 370.843 269.433i 2.43976 1.77259i
\(153\) 73.2744i 0.478918i
\(154\) 127.551 83.3767i 0.828256 0.541407i
\(155\) 108.247 0.698368
\(156\) −26.4802 36.4469i −0.169745 0.233634i
\(157\) −57.8493 178.042i −0.368467 1.13402i −0.947782 0.318920i \(-0.896680\pi\)
0.579315 0.815104i \(-0.303320\pi\)
\(158\) 46.2732 142.414i 0.292868 0.901356i
\(159\) −46.7762 33.9849i −0.294190 0.213742i
\(160\) −17.7263 + 24.3982i −0.110790 + 0.152489i
\(161\) 137.374 + 44.6354i 0.853253 + 0.277239i
\(162\) 196.402 63.8147i 1.21236 0.393918i
\(163\) −29.2151 + 21.2260i −0.179234 + 0.130221i −0.673785 0.738928i \(-0.735333\pi\)
0.494551 + 0.869149i \(0.335333\pi\)
\(164\) 360.259i 2.19670i
\(165\) 22.7813 + 1.12555i 0.138068 + 0.00682154i
\(166\) −272.466 −1.64136
\(167\) −90.2211 124.179i −0.540246 0.743585i 0.448403 0.893832i \(-0.351993\pi\)
−0.988648 + 0.150247i \(0.951993\pi\)
\(168\) 17.6740 + 54.3949i 0.105202 + 0.323779i
\(169\) 42.0147 129.308i 0.248608 0.765136i
\(170\) 57.4632 + 41.7494i 0.338019 + 0.245585i
\(171\) −139.599 + 192.142i −0.816370 + 1.12364i
\(172\) −565.700 183.807i −3.28895 1.06864i
\(173\) −1.64642 + 0.534955i −0.00951689 + 0.00309223i −0.313772 0.949498i \(-0.601593\pi\)
0.304255 + 0.952591i \(0.401593\pi\)
\(174\) −69.1090 + 50.2107i −0.397178 + 0.288567i
\(175\) 19.6289i 0.112165i
\(176\) −84.6043 + 222.389i −0.480706 + 1.26357i
\(177\) 36.0990 0.203949
\(178\) 218.441 + 300.659i 1.22720 + 1.68909i
\(179\) 26.7282 + 82.2609i 0.149320 + 0.459558i 0.997541 0.0700832i \(-0.0223265\pi\)
−0.848222 + 0.529641i \(0.822326\pi\)
\(180\) 47.5407 146.315i 0.264115 0.812862i
\(181\) −144.912 105.285i −0.800619 0.581684i 0.110477 0.993879i \(-0.464762\pi\)
−0.911096 + 0.412195i \(0.864762\pi\)
\(182\) 46.8027 64.4184i 0.257158 0.353947i
\(183\) −39.6365 12.8787i −0.216593 0.0703753i
\(184\) −549.762 + 178.629i −2.98784 + 0.970808i
\(185\) −39.4519 + 28.6635i −0.213254 + 0.154938i
\(186\) 158.411i 0.851670i
\(187\) 92.5476 + 35.2082i 0.494907 + 0.188279i
\(188\) 149.437 0.794878
\(189\) −36.6764 50.4807i −0.194055 0.267094i
\(190\) 71.1420 + 218.953i 0.374432 + 1.15238i
\(191\) 104.623 321.997i 0.547765 1.68585i −0.166559 0.986032i \(-0.553266\pi\)
0.714324 0.699815i \(-0.246734\pi\)
\(192\) 29.2065 + 21.2198i 0.152117 + 0.110520i
\(193\) −5.22978 + 7.19818i −0.0270973 + 0.0372963i −0.822351 0.568981i \(-0.807338\pi\)
0.795253 + 0.606277i \(0.207338\pi\)
\(194\) −190.096 61.7658i −0.979874 0.318381i
\(195\) 11.3351 3.68300i 0.0581287 0.0188872i
\(196\) 229.676 166.869i 1.17181 0.851373i
\(197\) 199.660i 1.01350i 0.862093 + 0.506751i \(0.169154\pi\)
−0.862093 + 0.506751i \(0.830846\pi\)
\(198\) 15.5920 315.584i 0.0787477 1.59386i
\(199\) 182.624 0.917706 0.458853 0.888512i \(-0.348260\pi\)
0.458853 + 0.888512i \(0.348260\pi\)
\(200\) −46.1727 63.5513i −0.230864 0.317757i
\(201\) −10.3886 31.9728i −0.0516845 0.159069i
\(202\) 100.870 310.446i 0.499356 1.53686i
\(203\) −82.9101 60.2377i −0.408424 0.296737i
\(204\) −41.4708 + 57.0796i −0.203288 + 0.279802i
\(205\) −90.6436 29.4519i −0.442164 0.143668i
\(206\) −146.918 + 47.7366i −0.713195 + 0.231731i
\(207\) 242.303 176.043i 1.17054 0.850450i
\(208\) 124.330i 0.597740i
\(209\) 175.603 + 268.642i 0.840207 + 1.28537i
\(210\) −28.7252 −0.136787
\(211\) 80.0829 + 110.225i 0.379540 + 0.522392i 0.955463 0.295112i \(-0.0953571\pi\)
−0.575923 + 0.817504i \(0.695357\pi\)
\(212\) 162.851 + 501.202i 0.768163 + 2.36416i
\(213\) 0.703432 2.16494i 0.00330250 0.0101640i
\(214\) 181.702 + 132.014i 0.849073 + 0.616888i
\(215\) 92.4941 127.307i 0.430205 0.592126i
\(216\) 237.490 + 77.1653i 1.09949 + 0.357247i
\(217\) −180.744 + 58.7271i −0.832920 + 0.270632i
\(218\) −516.305 + 375.117i −2.36837 + 1.72072i
\(219\) 122.319i 0.558533i
\(220\) −161.957 130.349i −0.736167 0.592497i
\(221\) 51.7402 0.234118
\(222\) −41.9466 57.7346i −0.188949 0.260066i
\(223\) −12.5350 38.5788i −0.0562108 0.172999i 0.919009 0.394236i \(-0.128991\pi\)
−0.975220 + 0.221237i \(0.928991\pi\)
\(224\) 16.3615 50.3555i 0.0730424 0.224801i
\(225\) 32.9273 + 23.9231i 0.146344 + 0.106325i
\(226\) 151.020 207.861i 0.668230 0.919740i
\(227\) 181.180 + 58.8689i 0.798148 + 0.259334i 0.679570 0.733611i \(-0.262166\pi\)
0.118578 + 0.992945i \(0.462166\pi\)
\(228\) −217.491 + 70.6672i −0.953909 + 0.309944i
\(229\) 185.982 135.124i 0.812148 0.590060i −0.102304 0.994753i \(-0.532622\pi\)
0.914453 + 0.404693i \(0.132622\pi\)
\(230\) 290.322i 1.26227i
\(231\) −38.6493 + 10.4801i −0.167313 + 0.0453685i
\(232\) 410.130 1.76780
\(233\) 111.299 + 153.190i 0.477678 + 0.657467i 0.978057 0.208340i \(-0.0668059\pi\)
−0.500379 + 0.865807i \(0.666806\pi\)
\(234\) −51.0197 157.022i −0.218033 0.671036i
\(235\) −12.2168 + 37.5994i −0.0519863 + 0.159997i
\(236\) −266.191 193.399i −1.12793 0.819486i
\(237\) −23.1299 + 31.8355i −0.0975944 + 0.134327i
\(238\) −118.598 38.5349i −0.498312 0.161912i
\(239\) −106.671 + 34.6595i −0.446322 + 0.145019i −0.523551 0.851994i \(-0.675393\pi\)
0.0772283 + 0.997013i \(0.475393\pi\)
\(240\) 36.2865 26.3637i 0.151194 0.109849i
\(241\) 118.124i 0.490141i 0.969505 + 0.245070i \(0.0788110\pi\)
−0.969505 + 0.245070i \(0.921189\pi\)
\(242\) −391.099 171.331i −1.61611 0.707978i
\(243\) −197.317 −0.812006
\(244\) 223.278 + 307.316i 0.915076 + 1.25949i
\(245\) 23.2089 + 71.4298i 0.0947304 + 0.291550i
\(246\) 43.1004 132.649i 0.175205 0.539225i
\(247\) 135.674 + 98.5731i 0.549288 + 0.399081i
\(248\) 447.040 615.298i 1.80258 2.48104i
\(249\) 68.0967 + 22.1260i 0.273481 + 0.0888593i
\(250\) 37.5218 12.1916i 0.150087 0.0487664i
\(251\) 148.903 108.184i 0.593240 0.431014i −0.250233 0.968186i \(-0.580507\pi\)
0.843473 + 0.537172i \(0.180507\pi\)
\(252\) 270.099i 1.07182i
\(253\) −105.921 390.623i −0.418661 1.54397i
\(254\) −412.606 −1.62443
\(255\) −10.9713 15.1007i −0.0430247 0.0592184i
\(256\) −160.509 493.997i −0.626990 1.92968i
\(257\) −124.017 + 381.685i −0.482557 + 1.48516i 0.352932 + 0.935649i \(0.385185\pi\)
−0.835489 + 0.549507i \(0.814815\pi\)
\(258\) 186.303 + 135.357i 0.722106 + 0.524641i
\(259\) 50.3234 69.2642i 0.194299 0.267429i
\(260\) −103.315 33.5692i −0.397366 0.129112i
\(261\) −202.097 + 65.6652i −0.774317 + 0.251591i
\(262\) 118.894 86.3812i 0.453792 0.329699i
\(263\) 72.9866i 0.277516i 0.990326 + 0.138758i \(0.0443110\pi\)
−0.990326 + 0.138758i \(0.955689\pi\)
\(264\) 100.480 124.845i 0.380607 0.472898i
\(265\) −139.419 −0.526110
\(266\) −237.576 326.996i −0.893144 1.22931i
\(267\) −30.1791 92.8816i −0.113030 0.347871i
\(268\) −94.6882 + 291.420i −0.353314 + 1.08739i
\(269\) −161.917 117.640i −0.601923 0.437322i 0.244638 0.969614i \(-0.421331\pi\)
−0.846561 + 0.532292i \(0.821331\pi\)
\(270\) −73.7173 + 101.463i −0.273027 + 0.375789i
\(271\) 144.974 + 47.1049i 0.534959 + 0.173819i 0.564023 0.825759i \(-0.309253\pi\)
−0.0290645 + 0.999578i \(0.509253\pi\)
\(272\) 185.184 60.1698i 0.680822 0.221213i
\(273\) −16.9284 + 12.2992i −0.0620089 + 0.0450521i
\(274\) 374.025i 1.36505i
\(275\) 46.0370 30.0931i 0.167407 0.109429i
\(276\) 288.384 1.04487
\(277\) −121.855 167.719i −0.439911 0.605485i 0.530281 0.847822i \(-0.322086\pi\)
−0.970192 + 0.242336i \(0.922086\pi\)
\(278\) 36.1857 + 111.368i 0.130164 + 0.400605i
\(279\) −121.770 + 374.771i −0.436453 + 1.34327i
\(280\) 111.574 + 81.0636i 0.398480 + 0.289513i
\(281\) −72.0371 + 99.1506i −0.256360 + 0.352849i −0.917726 0.397214i \(-0.869977\pi\)
0.661366 + 0.750063i \(0.269977\pi\)
\(282\) −55.0235 17.8782i −0.195119 0.0633980i
\(283\) 158.184 51.3970i 0.558953 0.181615i −0.0158971 0.999874i \(-0.505060\pi\)
0.574850 + 0.818259i \(0.305060\pi\)
\(284\) −16.7856 + 12.1954i −0.0591042 + 0.0429417i
\(285\) 60.4994i 0.212279i
\(286\) −222.838 11.0098i −0.779155 0.0384957i
\(287\) 167.329 0.583028
\(288\) −64.5301 88.8181i −0.224063 0.308396i
\(289\) 64.2661 + 197.791i 0.222374 + 0.684397i
\(290\) −63.6524 + 195.902i −0.219491 + 0.675524i
\(291\) 42.4943 + 30.8739i 0.146028 + 0.106096i
\(292\) −655.316 + 901.965i −2.24423 + 3.08892i
\(293\) 48.4902 + 15.7554i 0.165496 + 0.0537728i 0.390593 0.920564i \(-0.372270\pi\)
−0.225097 + 0.974336i \(0.572270\pi\)
\(294\) −104.531 + 33.9643i −0.355549 + 0.115525i
\(295\) 70.4220 51.1646i 0.238719 0.173439i
\(296\) 342.628i 1.15753i
\(297\) −62.1675 + 163.412i −0.209318 + 0.550209i
\(298\) 425.574 1.42810
\(299\) −124.307 171.093i −0.415741 0.572219i
\(300\) 12.1102 + 37.2714i 0.0403674 + 0.124238i
\(301\) −85.3725 + 262.749i −0.283629 + 0.872922i
\(302\) −195.976 142.385i −0.648927 0.471473i
\(303\) −50.4203 + 69.3976i −0.166404 + 0.229035i
\(304\) 600.226 + 195.025i 1.97443 + 0.641530i
\(305\) −95.5763 + 31.0546i −0.313365 + 0.101818i
\(306\) −209.186 + 151.983i −0.683615 + 0.496675i
\(307\) 388.897i 1.26676i −0.773839 0.633382i \(-0.781666\pi\)
0.773839 0.633382i \(-0.218334\pi\)
\(308\) 341.143 + 129.782i 1.10761 + 0.421371i
\(309\) 40.5954 0.131377
\(310\) 224.521 + 309.027i 0.724263 + 0.996862i
\(311\) −12.6147 38.8239i −0.0405616 0.124836i 0.928725 0.370769i \(-0.120906\pi\)
−0.969287 + 0.245933i \(0.920906\pi\)
\(312\) 25.8769 79.6410i 0.0829389 0.255260i
\(313\) 414.787 + 301.360i 1.32520 + 0.962812i 0.999852 + 0.0172161i \(0.00548034\pi\)
0.325345 + 0.945595i \(0.394520\pi\)
\(314\) 388.291 534.437i 1.23660 1.70203i
\(315\) −67.9587 22.0811i −0.215742 0.0700988i
\(316\) 341.114 110.835i 1.07948 0.350743i
\(317\) −142.274 + 103.368i −0.448814 + 0.326083i −0.789127 0.614230i \(-0.789467\pi\)
0.340313 + 0.940312i \(0.389467\pi\)
\(318\) 204.028i 0.641598i
\(319\) −14.1702 + 286.806i −0.0444207 + 0.899077i
\(320\) 87.0516 0.272036
\(321\) −34.6918 47.7492i −0.108074 0.148751i
\(322\) 157.508 + 484.760i 0.489155 + 1.50547i
\(323\) 81.1601 249.785i 0.251270 0.773328i
\(324\) 400.168 + 290.739i 1.23509 + 0.897343i
\(325\) 16.8924 23.2505i 0.0519767 0.0715399i
\(326\) −121.193 39.3781i −0.371759 0.120792i
\(327\) 159.500 51.8248i 0.487769 0.158486i
\(328\) −541.752 + 393.606i −1.65168 + 1.20002i
\(329\) 69.4088i 0.210969i
\(330\) 44.0387 + 67.3713i 0.133451 + 0.204156i
\(331\) −97.5050 −0.294577 −0.147289 0.989094i \(-0.547055\pi\)
−0.147289 + 0.989094i \(0.547055\pi\)
\(332\) −383.600 527.979i −1.15542 1.59030i
\(333\) −54.8576 168.834i −0.164737 0.507010i
\(334\) 167.377 515.132i 0.501127 1.54231i
\(335\) −65.5823 47.6484i −0.195768 0.142234i
\(336\) −46.2856 + 63.7067i −0.137755 + 0.189603i
\(337\) 147.559 + 47.9448i 0.437860 + 0.142269i 0.519648 0.854380i \(-0.326063\pi\)
−0.0817878 + 0.996650i \(0.526063\pi\)
\(338\) 456.298 148.260i 1.34999 0.438639i
\(339\) −54.6237 + 39.6864i −0.161132 + 0.117069i
\(340\) 170.129i 0.500379i
\(341\) 414.835 + 333.876i 1.21653 + 0.979109i
\(342\) −838.084 −2.45054
\(343\) −190.574 262.302i −0.555608 0.764729i
\(344\) −341.656 1051.51i −0.993187 3.05671i
\(345\) −23.5760 + 72.5593i −0.0683361 + 0.210317i
\(346\) −4.94214 3.59068i −0.0142837 0.0103777i
\(347\) 29.5186 40.6288i 0.0850680 0.117086i −0.764362 0.644787i \(-0.776946\pi\)
0.849430 + 0.527701i \(0.176946\pi\)
\(348\) −194.594 63.2275i −0.559179 0.181688i
\(349\) −146.948 + 47.7462i −0.421053 + 0.136809i −0.511878 0.859058i \(-0.671050\pi\)
0.0908242 + 0.995867i \(0.471050\pi\)
\(350\) −56.0371 + 40.7134i −0.160106 + 0.116324i
\(351\) 91.3580i 0.260279i
\(352\) −143.186 + 38.8263i −0.406779 + 0.110302i
\(353\) −559.143 −1.58397 −0.791987 0.610538i \(-0.790953\pi\)
−0.791987 + 0.610538i \(0.790953\pi\)
\(354\) 74.8751 + 103.057i 0.211511 + 0.291121i
\(355\) −1.69620 5.22037i −0.00477803 0.0147053i
\(356\) −275.071 + 846.582i −0.772672 + 2.37804i
\(357\) 26.5117 + 19.2619i 0.0742624 + 0.0539548i
\(358\) −179.403 + 246.927i −0.501125 + 0.689739i
\(359\) −646.648 210.109i −1.80125 0.585261i −0.801331 0.598221i \(-0.795874\pi\)
−0.999916 + 0.0129603i \(0.995874\pi\)
\(360\) 271.967 88.3675i 0.755465 0.245465i
\(361\) 396.644 288.179i 1.09874 0.798279i
\(362\) 632.077i 1.74607i
\(363\) 83.8331 + 74.5799i 0.230945 + 0.205454i
\(364\) 190.721 0.523959
\(365\) −173.367 238.619i −0.474978 0.653751i
\(366\) −45.4458 139.868i −0.124169 0.382153i
\(367\) 139.082 428.051i 0.378970 1.16635i −0.561791 0.827279i \(-0.689887\pi\)
0.940761 0.339071i \(-0.110113\pi\)
\(368\) −643.875 467.803i −1.74966 1.27120i
\(369\) 203.936 280.693i 0.552671 0.760686i
\(370\) −163.659 53.1760i −0.442322 0.143719i
\(371\) 232.793 75.6389i 0.627473 0.203878i
\(372\) −306.965 + 223.023i −0.825173 + 0.599524i
\(373\) 396.273i 1.06239i −0.847248 0.531197i \(-0.821742\pi\)
0.847248 0.531197i \(-0.178258\pi\)
\(374\) 91.4446 + 337.235i 0.244504 + 0.901699i
\(375\) −10.3678 −0.0276474
\(376\) 163.269 + 224.721i 0.434227 + 0.597662i
\(377\) 46.3672 + 142.703i 0.122990 + 0.378524i
\(378\) 68.0414 209.410i 0.180004 0.553995i
\(379\) −429.812 312.277i −1.13407 0.823950i −0.147787 0.989019i \(-0.547215\pi\)
−0.986282 + 0.165069i \(0.947215\pi\)
\(380\) −324.122 + 446.116i −0.852954 + 1.17399i
\(381\) 103.121 + 33.5062i 0.270660 + 0.0879427i
\(382\) 1136.25 369.190i 2.97448 0.966467i
\(383\) 500.006 363.276i 1.30550 0.948500i 0.305506 0.952190i \(-0.401175\pi\)
0.999993 + 0.00368998i \(0.00117456\pi\)
\(384\) 177.420i 0.462031i
\(385\) −60.5431 + 75.2238i −0.157255 + 0.195386i
\(386\) −31.3970 −0.0813393
\(387\) 336.711 + 463.443i 0.870054 + 1.19753i
\(388\) −147.943 455.322i −0.381297 1.17351i
\(389\) 3.92137 12.0687i 0.0100806 0.0310250i −0.945890 0.324488i \(-0.894808\pi\)
0.955970 + 0.293463i \(0.0948079\pi\)
\(390\) 34.0251 + 24.7207i 0.0872438 + 0.0633864i
\(391\) −194.677 + 267.950i −0.497895 + 0.685294i
\(392\) 501.870 + 163.067i 1.28028 + 0.415988i
\(393\) −36.7294 + 11.9341i −0.0934591 + 0.0303667i
\(394\) −569.995 + 414.126i −1.44669 + 1.05108i
\(395\) 94.8876i 0.240222i
\(396\) 633.483 414.090i 1.59970 1.04568i
\(397\) −240.779 −0.606497 −0.303249 0.952911i \(-0.598071\pi\)
−0.303249 + 0.952911i \(0.598071\pi\)
\(398\) 378.790 + 521.359i 0.951733 + 1.30995i
\(399\) 32.8227 + 101.018i 0.0822623 + 0.253177i
\(400\) 33.4214 102.860i 0.0835535 0.257151i
\(401\) 581.860 + 422.746i 1.45102 + 1.05423i 0.985591 + 0.169145i \(0.0541008\pi\)
0.465431 + 0.885084i \(0.345899\pi\)
\(402\) 69.7294 95.9743i 0.173456 0.238742i
\(403\) 264.631 + 85.9839i 0.656653 + 0.213360i
\(404\) 743.588 241.606i 1.84056 0.598036i
\(405\) −105.866 + 76.9165i −0.261399 + 0.189917i
\(406\) 361.637i 0.890731i
\(407\) −239.601 11.8380i −0.588701 0.0290859i
\(408\) −131.145 −0.321433
\(409\) −62.9642 86.6628i −0.153947 0.211890i 0.725077 0.688668i \(-0.241804\pi\)
−0.879023 + 0.476779i \(0.841804\pi\)
\(410\) −103.929 319.860i −0.253485 0.780147i
\(411\) −30.3731 + 93.4789i −0.0739006 + 0.227443i
\(412\) −299.346 217.488i −0.726568 0.527882i
\(413\) −89.8276 + 123.637i −0.217500 + 0.299363i
\(414\) 1005.15 + 326.592i 2.42789 + 0.788870i
\(415\) 164.203 53.3528i 0.395670 0.128561i
\(416\) −62.7158 + 45.5657i −0.150759 + 0.109533i
\(417\) 30.7724i 0.0737948i
\(418\) −402.698 + 1058.52i −0.963392 + 2.53235i
\(419\) 29.4752 0.0703464 0.0351732 0.999381i \(-0.488802\pi\)
0.0351732 + 0.999381i \(0.488802\pi\)
\(420\) −40.4416 55.6631i −0.0962895 0.132531i
\(421\) −127.694 393.002i −0.303311 0.933496i −0.980302 0.197504i \(-0.936716\pi\)
0.676991 0.735991i \(-0.263284\pi\)
\(422\) −148.568 + 457.247i −0.352058 + 1.08352i
\(423\) −116.433 84.5934i −0.275255 0.199984i
\(424\) −575.775 + 792.487i −1.35796 + 1.86907i
\(425\) −42.8056 13.9084i −0.100719 0.0327256i
\(426\) 7.63957 2.48225i 0.0179333 0.00582687i
\(427\) 142.739 103.706i 0.334283 0.242871i
\(428\) 537.957i 1.25691i
\(429\) 54.7993 + 20.8475i 0.127737 + 0.0485956i
\(430\) 555.288 1.29137
\(431\) 115.324 + 158.730i 0.267574 + 0.368284i 0.921569 0.388215i \(-0.126908\pi\)
−0.653995 + 0.756499i \(0.726908\pi\)
\(432\) 106.242 + 326.980i 0.245931 + 0.756898i
\(433\) −25.9577 + 79.8895i −0.0599484 + 0.184502i −0.976546 0.215309i \(-0.930924\pi\)
0.916598 + 0.399811i \(0.130924\pi\)
\(434\) −542.547 394.183i −1.25011 0.908256i
\(435\) 31.8169 43.7922i 0.0731423 0.100672i
\(436\) −1453.79 472.364i −3.33438 1.08340i
\(437\) −1020.97 + 331.734i −2.33632 + 0.759117i
\(438\) 349.199 253.708i 0.797258 0.579242i
\(439\) 139.738i 0.318309i −0.987254 0.159154i \(-0.949123\pi\)
0.987254 0.159154i \(-0.0508768\pi\)
\(440\) 19.0692 385.962i 0.0433392 0.877187i
\(441\) −273.411 −0.619980
\(442\) 107.317 + 147.709i 0.242799 + 0.334184i
\(443\) 91.4047 + 281.315i 0.206331 + 0.635022i 0.999656 + 0.0262237i \(0.00834822\pi\)
−0.793325 + 0.608799i \(0.791652\pi\)
\(444\) 52.8211 162.567i 0.118966 0.366141i
\(445\) −190.518 138.419i −0.428130 0.311055i
\(446\) 84.1364 115.804i 0.188647 0.259650i
\(447\) −106.363 34.5593i −0.237948 0.0773139i
\(448\) −145.353 + 47.2280i −0.324448 + 0.105420i
\(449\) −532.550 + 386.920i −1.18608 + 0.861737i −0.992844 0.119415i \(-0.961898\pi\)
−0.193235 + 0.981153i \(0.561898\pi\)
\(450\) 143.622i 0.319160i
\(451\) −256.532 392.449i −0.568808 0.870175i
\(452\) 615.407 1.36152
\(453\) 37.4171 + 51.5003i 0.0825986 + 0.113687i
\(454\) 207.734 + 639.341i 0.457565 + 1.40824i
\(455\) −15.5918 + 47.9867i −0.0342677 + 0.105465i
\(456\) −343.891 249.851i −0.754146 0.547919i
\(457\) 87.2258 120.056i 0.190866 0.262705i −0.702849 0.711339i \(-0.748089\pi\)
0.893716 + 0.448634i \(0.148089\pi\)
\(458\) 771.512 + 250.679i 1.68452 + 0.547335i
\(459\) 136.073 44.2129i 0.296456 0.0963244i
\(460\) 562.580 408.738i 1.22300 0.888561i
\(461\) 500.817i 1.08637i −0.839613 0.543185i \(-0.817218\pi\)
0.839613 0.543185i \(-0.182782\pi\)
\(462\) −110.084 88.5998i −0.238276 0.191774i
\(463\) −398.770 −0.861275 −0.430638 0.902525i \(-0.641711\pi\)
−0.430638 + 0.902525i \(0.641711\pi\)
\(464\) 331.906 + 456.830i 0.715315 + 0.984547i
\(465\) −31.0191 95.4668i −0.0667076 0.205305i
\(466\) −206.480 + 635.479i −0.443090 + 1.36369i
\(467\) 508.794 + 369.661i 1.08949 + 0.791564i 0.979314 0.202347i \(-0.0648569\pi\)
0.110181 + 0.993912i \(0.464857\pi\)
\(468\) 232.445 319.933i 0.496677 0.683618i
\(469\) 135.356 + 43.9797i 0.288604 + 0.0937733i
\(470\) −132.679 + 43.1101i −0.282297 + 0.0917237i
\(471\) −140.444 + 102.039i −0.298183 + 0.216642i
\(472\) 611.593i 1.29575i
\(473\) 747.130 202.592i 1.57956 0.428312i
\(474\) −138.860 −0.292954
\(475\) −85.7481 118.022i −0.180522 0.248468i
\(476\) −92.2999 284.070i −0.193907 0.596785i
\(477\) 156.837 482.694i 0.328799 1.01194i
\(478\) −320.200 232.639i −0.669874 0.486692i
\(479\) −56.6925 + 78.0306i −0.118356 + 0.162903i −0.864084 0.503347i \(-0.832102\pi\)
0.745728 + 0.666250i \(0.232102\pi\)
\(480\) 26.5972 + 8.64197i 0.0554109 + 0.0180041i
\(481\) −119.216 + 38.7357i −0.247851 + 0.0805317i
\(482\) −337.224 + 245.007i −0.699634 + 0.508314i
\(483\) 133.945i 0.277319i
\(484\) −218.619 999.076i −0.451692 2.06421i
\(485\) 126.657 0.261148
\(486\) −409.267 563.308i −0.842114 1.15907i
\(487\) 247.215 + 760.849i 0.507628 + 1.56232i 0.796307 + 0.604892i \(0.206784\pi\)
−0.288680 + 0.957426i \(0.593216\pi\)
\(488\) −218.192 + 671.525i −0.447114 + 1.37607i
\(489\) 27.0918 + 19.6833i 0.0554024 + 0.0402522i
\(490\) −155.781 + 214.414i −0.317920 + 0.437580i
\(491\) −800.353 260.050i −1.63005 0.529634i −0.655764 0.754966i \(-0.727653\pi\)
−0.974282 + 0.225332i \(0.927653\pi\)
\(492\) 317.725 103.235i 0.645783 0.209828i
\(493\) 190.110 138.123i 0.385620 0.280169i
\(494\) 591.783i 1.19794i
\(495\) 52.3992 + 193.241i 0.105857 + 0.390386i
\(496\) 1047.14 2.11116
\(497\) 5.66440 + 7.79638i 0.0113972 + 0.0156869i
\(498\) 78.0774 + 240.298i 0.156782 + 0.482525i
\(499\) −220.886 + 679.818i −0.442658 + 1.36236i 0.442374 + 0.896830i \(0.354136\pi\)
−0.885032 + 0.465530i \(0.845864\pi\)
\(500\) 76.4508 + 55.5448i 0.152902 + 0.111090i
\(501\) −83.6639 + 115.153i −0.166994 + 0.229847i
\(502\) 617.697 + 200.702i 1.23047 + 0.399805i
\(503\) −660.549 + 214.625i −1.31322 + 0.426690i −0.880161 0.474676i \(-0.842565\pi\)
−0.433057 + 0.901366i \(0.642565\pi\)
\(504\) −406.170 + 295.100i −0.805894 + 0.585516i
\(505\) 206.843i 0.409591i
\(506\) 895.466 1112.60i 1.76970 2.19882i
\(507\) −126.081 −0.248680
\(508\) −580.899 799.539i −1.14350 1.57390i
\(509\) −7.78172 23.9497i −0.0152883 0.0470524i 0.943121 0.332449i \(-0.107875\pi\)
−0.958410 + 0.285396i \(0.907875\pi\)
\(510\) 20.3537 62.6424i 0.0399093 0.122828i
\(511\) 418.934 + 304.373i 0.819832 + 0.595643i
\(512\) 627.525 863.714i 1.22563 1.68694i
\(513\) 441.047 + 143.305i 0.859741 + 0.279347i
\(514\) −1346.88 + 437.627i −2.62038 + 0.851415i
\(515\) 79.1934 57.5374i 0.153774 0.111723i
\(516\) 551.581i 1.06896i
\(517\) −162.789 + 106.411i −0.314873 + 0.205824i
\(518\) 302.116 0.583236
\(519\) 0.943590 + 1.29874i 0.00181809 + 0.00250239i
\(520\) −62.3976 192.040i −0.119995 0.369308i
\(521\) 144.330 444.202i 0.277025 0.852596i −0.711651 0.702533i \(-0.752052\pi\)
0.988676 0.150063i \(-0.0479476\pi\)
\(522\) −606.643 440.752i −1.16215 0.844353i
\(523\) −469.788 + 646.608i −0.898257 + 1.23634i 0.0727642 + 0.997349i \(0.476818\pi\)
−0.971021 + 0.238995i \(0.923182\pi\)
\(524\) 334.775 + 108.775i 0.638884 + 0.207586i
\(525\) 17.3114 5.62481i 0.0329741 0.0107139i
\(526\) −208.365 + 151.386i −0.396130 + 0.287806i
\(527\) 435.768i 0.826884i
\(528\) 220.377 + 10.8881i 0.417380 + 0.0206215i
\(529\) 824.767 1.55911
\(530\) −289.177 398.018i −0.545617 0.750978i
\(531\) 97.9211 + 301.370i 0.184409 + 0.567552i
\(532\) 299.167 920.740i 0.562343 1.73071i
\(533\) −198.202 144.002i −0.371860 0.270172i
\(534\) 202.565 278.807i 0.379336 0.522111i
\(535\) −135.354 43.9790i −0.252997 0.0822038i
\(536\) −541.686 + 176.004i −1.01061 + 0.328366i
\(537\) 64.8896 47.1450i 0.120837 0.0877934i
\(538\) 706.250i 1.31273i
\(539\) −131.374 + 345.326i −0.243736 + 0.640679i
\(540\) −300.398 −0.556293
\(541\) 631.800 + 869.598i 1.16784 + 1.60739i 0.676564 + 0.736383i \(0.263468\pi\)
0.491272 + 0.871006i \(0.336532\pi\)
\(542\) 166.222 + 511.579i 0.306683 + 0.943872i
\(543\) −51.3286 + 157.973i −0.0945278 + 0.290927i
\(544\) 98.2193 + 71.3605i 0.180550 + 0.131177i
\(545\) 237.700 327.166i 0.436147 0.600304i
\(546\) −70.2245 22.8173i −0.128616 0.0417899i
\(547\) 322.941 104.930i 0.590386 0.191828i 0.00143823 0.999999i \(-0.499542\pi\)
0.588948 + 0.808171i \(0.299542\pi\)
\(548\) 724.777 526.581i 1.32259 0.960915i
\(549\) 365.837i 0.666369i
\(550\) 181.399 + 69.0102i 0.329816 + 0.125473i
\(551\) 761.659 1.38232
\(552\) 315.078 + 433.667i 0.570793 + 0.785629i
\(553\) −51.4792 158.437i −0.0930909 0.286504i
\(554\) 226.064 695.753i 0.408057 1.25587i
\(555\) 36.5846 + 26.5803i 0.0659182 + 0.0478924i
\(556\) −164.862 + 226.913i −0.296514 + 0.408116i
\(557\) 393.990 + 128.015i 0.707344 + 0.229830i 0.640527 0.767935i \(-0.278716\pi\)
0.0668164 + 0.997765i \(0.478716\pi\)
\(558\) −1322.48 + 429.700i −2.37003 + 0.770071i
\(559\) 327.244 237.757i 0.585409 0.425325i
\(560\) 189.881i 0.339074i
\(561\) 4.53112 91.7101i 0.00807686 0.163476i
\(562\) −432.475 −0.769528
\(563\) −471.902 649.518i −0.838193 1.15367i −0.986342 0.164708i \(-0.947332\pi\)
0.148150 0.988965i \(-0.452668\pi\)
\(564\) −42.8224 131.794i −0.0759262 0.233677i
\(565\) −50.3107 + 154.840i −0.0890455 + 0.274054i
\(566\) 474.827 + 344.982i 0.838918 + 0.609509i
\(567\) 135.039 185.865i 0.238164 0.327805i
\(568\) −36.6786 11.9176i −0.0645750 0.0209817i
\(569\) 436.517 141.833i 0.767165 0.249267i 0.100814 0.994905i \(-0.467855\pi\)
0.666351 + 0.745638i \(0.267855\pi\)
\(570\) 172.716 125.485i 0.303010 0.220150i
\(571\) 203.201i 0.355869i −0.984042 0.177935i \(-0.943058\pi\)
0.984042 0.177935i \(-0.0569416\pi\)
\(572\) −292.395 447.312i −0.511180 0.782014i
\(573\) −313.961 −0.547924
\(574\) 347.067 + 477.696i 0.604646 + 0.832223i
\(575\) 56.8492 + 174.964i 0.0988682 + 0.304285i
\(576\) −97.9271 + 301.388i −0.170012 + 0.523244i
\(577\) −655.994 476.608i −1.13690 0.826010i −0.150220 0.988653i \(-0.547998\pi\)
−0.986685 + 0.162643i \(0.947998\pi\)
\(578\) −431.362 + 593.718i −0.746300 + 1.02719i
\(579\) 7.84696 + 2.54963i 0.0135526 + 0.00440351i
\(580\) −469.229 + 152.462i −0.809016 + 0.262865i
\(581\) −245.230 + 178.170i −0.422082 + 0.306661i
\(582\) 185.351i 0.318473i
\(583\) −534.296 430.023i −0.916460 0.737604i
\(584\) −2072.33 −3.54851
\(585\) 61.4944 + 84.6398i 0.105119 + 0.144684i
\(586\) 55.5972 + 171.111i 0.0948758 + 0.291998i
\(587\) 18.3545 56.4895i 0.0312684 0.0962342i −0.934204 0.356738i \(-0.883889\pi\)
0.965473 + 0.260504i \(0.0838888\pi\)
\(588\) −212.983 154.741i −0.362216 0.263165i
\(589\) 830.206 1142.68i 1.40952 1.94003i
\(590\) 292.132 + 94.9196i 0.495140 + 0.160881i
\(591\) 176.087 57.2141i 0.297947 0.0968090i
\(592\) −381.641 + 277.279i −0.644665 + 0.468376i
\(593\) 1164.75i 1.96416i 0.188457 + 0.982081i \(0.439651\pi\)
−0.188457 + 0.982081i \(0.560349\pi\)
\(594\) −595.459 + 161.464i −1.00246 + 0.271826i
\(595\) 79.0195 0.132806
\(596\) 599.157 + 824.669i 1.00530 + 1.38367i
\(597\) −52.3322 161.062i −0.0876586 0.269786i
\(598\) 230.612 709.749i 0.385638 1.18687i
\(599\) −196.571 142.817i −0.328165 0.238426i 0.411487 0.911416i \(-0.365010\pi\)
−0.739651 + 0.672990i \(0.765010\pi\)
\(600\) −42.8169 + 58.9324i −0.0713615 + 0.0982207i
\(601\) −572.415 185.989i −0.952438 0.309466i −0.208732 0.977973i \(-0.566934\pi\)
−0.743706 + 0.668507i \(0.766934\pi\)
\(602\) −927.181 + 301.260i −1.54017 + 0.500431i
\(603\) 238.743 173.457i 0.395925 0.287656i
\(604\) 580.218i 0.960626i
\(605\) 269.247 + 26.6704i 0.445036 + 0.0440833i
\(606\) −302.698 −0.499502
\(607\) 135.753 + 186.849i 0.223646 + 0.307823i 0.906065 0.423139i \(-0.139072\pi\)
−0.682418 + 0.730962i \(0.739072\pi\)
\(608\) 121.600 + 374.246i 0.200000 + 0.615537i
\(609\) −29.3672 + 90.3829i −0.0482220 + 0.148412i
\(610\) −286.896 208.442i −0.470321 0.341708i
\(611\) −59.7326 + 82.2149i −0.0977621 + 0.134558i
\(612\) −589.017 191.383i −0.962447 0.312718i
\(613\) 670.628 217.900i 1.09401 0.355465i 0.294215 0.955739i \(-0.404942\pi\)
0.799794 + 0.600274i \(0.204942\pi\)
\(614\) 1110.23 806.633i 1.80820 1.31373i
\(615\) 88.3814i 0.143710i
\(616\) 177.555 + 654.799i 0.288239 + 1.06299i
\(617\) −181.458 −0.294097 −0.147049 0.989129i \(-0.546977\pi\)
−0.147049 + 0.989129i \(0.546977\pi\)
\(618\) 84.2011 + 115.893i 0.136248 + 0.187529i
\(619\) 323.645 + 996.077i 0.522852 + 1.60917i 0.768526 + 0.639819i \(0.220991\pi\)
−0.245674 + 0.969352i \(0.579009\pi\)
\(620\) −282.727 + 870.145i −0.456012 + 1.40346i
\(621\) −473.121 343.743i −0.761870 0.553531i
\(622\) 84.6710 116.540i 0.136127 0.187363i
\(623\) 393.210 + 127.762i 0.631156 + 0.205075i
\(624\) 109.651 35.6277i 0.175723 0.0570958i
\(625\) −20.2254 + 14.6946i −0.0323607 + 0.0235114i
\(626\) 1809.21i 2.89012i
\(627\) 186.604 231.852i 0.297614 0.369780i
\(628\) 1582.29 2.51956
\(629\) 115.390 + 158.821i 0.183450 + 0.252497i
\(630\) −77.9191 239.810i −0.123681 0.380651i
\(631\) −104.631 + 322.020i −0.165817 + 0.510333i −0.999096 0.0425205i \(-0.986461\pi\)
0.833278 + 0.552854i \(0.186461\pi\)
\(632\) 539.360 + 391.868i 0.853418 + 0.620044i
\(633\) 74.2626 102.214i 0.117318 0.161475i
\(634\) −590.197 191.767i −0.930911 0.302471i
\(635\) 248.659 80.7941i 0.391589 0.127235i
\(636\) 395.362 287.247i 0.621638 0.451646i
\(637\) 193.060i 0.303076i
\(638\) −848.173 + 554.426i −1.32942 + 0.869007i
\(639\) 19.9820 0.0312707
\(640\) 251.464 + 346.111i 0.392913 + 0.540798i
\(641\) −218.541 672.600i −0.340937 1.04930i −0.963723 0.266905i \(-0.913999\pi\)
0.622786 0.782393i \(-0.286001\pi\)
\(642\) 64.3596 198.079i 0.100249 0.308534i
\(643\) 793.754 + 576.696i 1.23445 + 0.896884i 0.997216 0.0745679i \(-0.0237578\pi\)
0.237238 + 0.971451i \(0.423758\pi\)
\(644\) −717.605 + 987.698i −1.11429 + 1.53369i
\(645\) −138.781 45.0928i −0.215165 0.0699114i
\(646\) 881.433 286.395i 1.36445 0.443336i
\(647\) −280.736 + 203.966i −0.433904 + 0.315250i −0.783208 0.621760i \(-0.786418\pi\)
0.349304 + 0.937009i \(0.386418\pi\)
\(648\) 919.417i 1.41885i
\(649\) 427.690 + 21.1309i 0.658998 + 0.0325591i
\(650\) 101.414 0.156021
\(651\) 103.587 + 142.575i 0.159120 + 0.219010i
\(652\) −94.3195 290.286i −0.144662 0.445223i
\(653\) 344.696 1060.87i 0.527866 1.62460i −0.230712 0.973022i \(-0.574106\pi\)
0.758578 0.651582i \(-0.225894\pi\)
\(654\) 478.780 + 347.854i 0.732079 + 0.531887i
\(655\) −54.7371 + 75.3391i −0.0835680 + 0.115022i
\(656\) −876.848 284.905i −1.33666 0.434307i
\(657\) 1021.17 331.798i 1.55429 0.505019i
\(658\) 198.150 143.965i 0.301141 0.218791i
\(659\) 68.8178i 0.104428i −0.998636 0.0522138i \(-0.983372\pi\)
0.998636 0.0522138i \(-0.0166277\pi\)
\(660\) −68.5496 + 180.188i −0.103863 + 0.273012i
\(661\) −56.9620 −0.0861754 −0.0430877 0.999071i \(-0.513719\pi\)
−0.0430877 + 0.999071i \(0.513719\pi\)
\(662\) −202.241 278.360i −0.305500 0.420484i
\(663\) −14.8266 45.6314i −0.0223628 0.0688257i
\(664\) 374.860 1153.70i 0.564548 1.73750i
\(665\) 207.207 + 150.545i 0.311589 + 0.226383i
\(666\) 368.210 506.798i 0.552868 0.760958i
\(667\) −913.487 296.810i −1.36955 0.444993i
\(668\) 1233.86 400.905i 1.84709 0.600157i
\(669\) −30.4320 + 22.1101i −0.0454888 + 0.0330495i
\(670\) 286.057i 0.426950i
\(671\) −462.062 175.784i −0.688617 0.261973i
\(672\) −49.0988 −0.0730637
\(673\) 220.445 + 303.417i 0.327556 + 0.450842i 0.940755 0.339086i \(-0.110118\pi\)
−0.613199 + 0.789928i \(0.710118\pi\)
\(674\) 169.186 + 520.701i 0.251018 + 0.772554i
\(675\) 24.5581 75.5821i 0.0363824 0.111974i
\(676\) 929.707 + 675.472i 1.37531 + 0.999218i
\(677\) −341.663 + 470.259i −0.504672 + 0.694621i −0.983009 0.183555i \(-0.941240\pi\)
0.478338 + 0.878176i \(0.341240\pi\)
\(678\) −226.596 73.6255i −0.334212 0.108592i
\(679\) −211.483 + 68.7149i −0.311462 + 0.101200i
\(680\) −255.837 + 185.877i −0.376231 + 0.273348i
\(681\) 176.658i 0.259410i
\(682\) −92.7269 + 1876.80i −0.135963 + 2.75190i
\(683\) −688.418 −1.00793 −0.503966 0.863723i \(-0.668126\pi\)
−0.503966 + 0.863723i \(0.668126\pi\)
\(684\) −1179.92 1624.02i −1.72503 2.37430i
\(685\) 73.2394 + 225.408i 0.106919 + 0.329062i
\(686\) 353.549 1088.11i 0.515377 1.58617i
\(687\) −172.465 125.303i −0.251041 0.182392i
\(688\) 894.749 1231.52i 1.30051 1.78999i
\(689\) −340.838 110.745i −0.494685 0.160733i
\(690\) −256.045 + 83.1940i −0.371080 + 0.120571i
\(691\) −479.696 + 348.519i −0.694205 + 0.504369i −0.878040 0.478588i \(-0.841149\pi\)
0.183835 + 0.982957i \(0.441149\pi\)
\(692\) 14.6320i 0.0211445i
\(693\) −192.331 294.233i −0.277535 0.424578i
\(694\) 177.215 0.255353
\(695\) −43.6150 60.0308i −0.0627553 0.0863753i
\(696\) −117.526 361.707i −0.168859 0.519695i
\(697\) −118.564 + 364.902i −0.170106 + 0.523532i
\(698\) −441.100 320.478i −0.631948 0.459137i
\(699\) 103.210 142.056i 0.147654 0.203228i
\(700\) −157.787 51.2681i −0.225410 0.0732401i
\(701\) −563.333 + 183.038i −0.803613 + 0.261110i −0.681890 0.731455i \(-0.738842\pi\)
−0.121723 + 0.992564i \(0.538842\pi\)
\(702\) −260.812 + 189.491i −0.371527 + 0.269930i
\(703\) 636.300i 0.905120i
\(704\) 333.608 + 268.501i 0.473875 + 0.381394i
\(705\) 36.6610 0.0520014
\(706\) −1159.75 1596.26i −1.64270 2.26099i
\(707\) −112.219 345.373i −0.158725 0.488505i
\(708\) −94.2860 + 290.183i −0.133172 + 0.409862i
\(709\) 238.019 + 172.931i 0.335711 + 0.243909i 0.742850 0.669458i \(-0.233473\pi\)
−0.407139 + 0.913366i \(0.633473\pi\)
\(710\) 11.3851 15.6702i 0.0160353 0.0220707i
\(711\) −328.518 106.742i −0.462051 0.150129i
\(712\) −1573.61 + 511.296i −2.21012 + 0.718112i
\(713\) −1440.99 + 1046.94i −2.02102 + 1.46836i
\(714\) 115.638i 0.161959i
\(715\) 136.450 36.9999i 0.190840 0.0517480i
\(716\) −731.066 −1.02104
\(717\) 61.1349 + 84.1449i 0.0852648 + 0.117357i
\(718\) −741.424 2281.87i −1.03262 3.17809i
\(719\) 184.687 568.407i 0.256866 0.790552i −0.736590 0.676339i \(-0.763565\pi\)
0.993456 0.114213i \(-0.0364346\pi\)
\(720\) 318.525 + 231.422i 0.442396 + 0.321419i
\(721\) −101.016 + 139.037i −0.140105 + 0.192839i
\(722\) 1645.40 + 534.624i 2.27895 + 0.740477i
\(723\) 104.178 33.8493i 0.144091 0.0468179i
\(724\) 1224.82 889.887i 1.69175 1.22913i
\(725\) 130.525i 0.180035i
\(726\) −39.0299 + 394.020i −0.0537602 + 0.542727i
\(727\) 165.031 0.227003 0.113502 0.993538i \(-0.463793\pi\)
0.113502 + 0.993538i \(0.463793\pi\)
\(728\) 208.375 + 286.803i 0.286229 + 0.393960i
\(729\) −106.214 326.894i −0.145699 0.448415i
\(730\) 321.627 989.867i 0.440585 1.35598i
\(731\) −512.498 372.351i −0.701091 0.509372i
\(732\) 207.051 284.981i 0.282856 0.389318i
\(733\) −35.3224 11.4769i −0.0481888 0.0156575i 0.284823 0.958580i \(-0.408065\pi\)
−0.333012 + 0.942923i \(0.608065\pi\)
\(734\) 1510.49 490.788i 2.05789 0.668649i
\(735\) 56.3457 40.9375i 0.0766608 0.0556973i
\(736\) 496.235i 0.674232i
\(737\) −104.365 384.884i −0.141608 0.522231i
\(738\) 1224.33 1.65898
\(739\) −152.133 209.393i −0.205864 0.283347i 0.693584 0.720376i \(-0.256031\pi\)
−0.899447 + 0.437029i \(0.856031\pi\)
\(740\) −127.369 392.000i −0.172120 0.529730i
\(741\) 48.0565 147.903i 0.0648536 0.199599i
\(742\) 698.785 + 507.697i 0.941758 + 0.684228i
\(743\) −329.255 + 453.181i −0.443143 + 0.609933i −0.970907 0.239457i \(-0.923030\pi\)
0.527764 + 0.849391i \(0.323030\pi\)
\(744\) −670.756 217.942i −0.901553 0.292932i
\(745\) −256.474 + 83.3335i −0.344261 + 0.111857i
\(746\) 1131.29 821.932i 1.51648 1.10179i
\(747\) 628.519i 0.841391i
\(748\) −524.744 + 651.986i −0.701530 + 0.871639i
\(749\) 249.864 0.333597
\(750\) −21.5044 29.5982i −0.0286725 0.0394643i
\(751\) −231.599 712.788i −0.308387 0.949119i −0.978391 0.206761i \(-0.933708\pi\)
0.670004 0.742358i \(-0.266292\pi\)
\(752\) −118.180 + 363.720i −0.157154 + 0.483671i
\(753\) −138.081 100.322i −0.183374 0.133229i
\(754\) −311.222 + 428.360i −0.412761 + 0.568116i
\(755\) 145.987 + 47.4340i 0.193360 + 0.0628264i
\(756\) 501.584 162.975i 0.663471 0.215575i
\(757\) −692.859 + 503.392i −0.915270 + 0.664982i −0.942342 0.334651i \(-0.891382\pi\)
0.0270725 + 0.999633i \(0.491382\pi\)
\(758\) 1874.75i 2.47329i
\(759\) −314.151 + 205.352i −0.413902 + 0.270556i
\(760\) −1024.99 −1.34867
\(761\) −94.4945 130.061i −0.124172 0.170907i 0.742405 0.669951i \(-0.233685\pi\)
−0.866577 + 0.499043i \(0.833685\pi\)
\(762\) 118.235 + 363.891i 0.155165 + 0.477548i
\(763\) −219.398 + 675.238i −0.287547 + 0.884978i
\(764\) 2315.11 + 1682.03i 3.03025 + 2.20161i
\(765\) 96.3066 132.555i 0.125891 0.173274i
\(766\) 2074.18 + 673.942i 2.70781 + 0.879820i
\(767\) 212.802 69.1436i 0.277447 0.0901481i
\(768\) −389.678 + 283.118i −0.507393 + 0.368643i
\(769\) 81.4227i 0.105881i −0.998598 0.0529407i \(-0.983141\pi\)
0.998598 0.0529407i \(-0.0168594\pi\)
\(770\) −340.327 16.8145i −0.441983 0.0218371i
\(771\) 372.159 0.482697
\(772\) −44.2031 60.8404i −0.0572579 0.0788088i
\(773\) 140.758 + 433.209i 0.182094 + 0.560426i 0.999886 0.0150867i \(-0.00480244\pi\)
−0.817793 + 0.575513i \(0.804802\pi\)
\(774\) −624.660 + 1922.51i −0.807055 + 2.48386i
\(775\) −195.821 142.272i −0.252672 0.183577i
\(776\) 523.068 719.942i 0.674057 0.927760i
\(777\) −75.5070 24.5337i −0.0971776 0.0315749i
\(778\) 42.5877 13.8376i 0.0547400 0.0177861i
\(779\) −1006.10 + 730.972i −1.29152 + 0.938346i
\(780\) 100.737i 0.129150i
\(781\) 9.60130 25.2378i 0.0122936 0.0323147i
\(782\) −1168.74 −1.49456
\(783\) 243.885 + 335.679i 0.311476 + 0.428709i
\(784\) 224.514 + 690.982i 0.286369 + 0.881354i
\(785\) −129.355 + 398.113i −0.164783 + 0.507151i
\(786\) −110.252 80.1031i −0.140270 0.101912i
\(787\) 70.2003 96.6224i 0.0891999 0.122773i −0.762085 0.647477i \(-0.775824\pi\)
0.851285 + 0.524704i \(0.175824\pi\)
\(788\) −1604.97 521.486i −2.03676 0.661784i
\(789\) 64.3694 20.9149i 0.0815836 0.0265081i
\(790\) −270.888 + 196.812i −0.342896 + 0.249129i
\(791\) 285.837i 0.361362i
\(792\) 1314.82 + 500.202i 1.66013 + 0.631568i
\(793\) −258.323 −0.325754
\(794\) −499.414 687.385i −0.628985 0.865724i
\(795\) 39.9517 + 122.959i 0.0502537 + 0.154665i
\(796\) −476.989 + 1468.02i −0.599233 + 1.84425i
\(797\) 1109.47 + 806.080i 1.39206 + 1.01139i 0.995636 + 0.0933265i \(0.0297500\pi\)
0.396427 + 0.918066i \(0.370250\pi\)
\(798\) −220.309 + 303.230i −0.276077 + 0.379987i
\(799\) 151.363 + 49.1808i 0.189440 + 0.0615529i
\(800\) 64.1345 20.8386i 0.0801681 0.0260482i
\(801\) 693.553 503.895i 0.865858 0.629083i
\(802\) 2537.95i 3.16453i
\(803\) 71.6002 1449.19i 0.0891659 1.80472i
\(804\) 284.147 0.353417
\(805\) −189.846 261.300i −0.235833 0.324597i
\(806\) 303.417 + 933.822i 0.376448 + 1.15859i
\(807\) −57.3519 + 176.511i −0.0710680 + 0.218725i
\(808\) 1175.74 + 854.225i 1.45512 + 1.05721i
\(809\) −7.99326 + 11.0018i −0.00988042 + 0.0135992i −0.813929 0.580965i \(-0.802675\pi\)
0.804048 + 0.594564i \(0.202675\pi\)
\(810\) −439.167 142.694i −0.542182 0.176166i
\(811\) −203.261 + 66.0435i −0.250630 + 0.0814346i −0.431638 0.902047i \(-0.642064\pi\)
0.181008 + 0.983482i \(0.442064\pi\)
\(812\) 700.772 509.141i 0.863020 0.627020i
\(813\) 141.356i 0.173869i
\(814\) −463.175 708.575i −0.569011 0.870485i
\(815\) 80.7486 0.0990780
\(816\) −106.132 146.078i −0.130063 0.179017i
\(817\) −634.495 1952.78i −0.776616 2.39018i
\(818\) 116.810 359.505i 0.142800 0.439492i
\(819\) −148.599 107.963i −0.181439 0.131823i
\(820\) 473.499 651.715i 0.577438 0.794775i
\(821\) 1240.59 + 403.092i 1.51107 + 0.490977i 0.943224 0.332157i \(-0.107776\pi\)
0.567848 + 0.823134i \(0.307776\pi\)
\(822\) −329.865 + 107.180i −0.401296 + 0.130389i
\(823\) −231.338 + 168.077i −0.281091 + 0.204225i −0.719393 0.694603i \(-0.755580\pi\)
0.438302 + 0.898828i \(0.355580\pi\)
\(824\) 687.770i 0.834672i
\(825\) −39.7324 31.9782i −0.0481605 0.0387615i
\(826\) −539.279 −0.652881
\(827\) −328.834 452.602i −0.397623 0.547282i 0.562522 0.826782i \(-0.309831\pi\)
−0.960146 + 0.279501i \(0.909831\pi\)
\(828\) 782.262 + 2407.55i 0.944761 + 2.90767i
\(829\) −279.385 + 859.857i −0.337014 + 1.03722i 0.628707 + 0.777642i \(0.283584\pi\)
−0.965721 + 0.259580i \(0.916416\pi\)
\(830\) 492.896 + 358.110i 0.593851 + 0.431458i
\(831\) −112.999 + 155.530i −0.135980 + 0.187160i
\(832\) 212.815 + 69.1477i 0.255787 + 0.0831103i
\(833\) 287.553 93.4317i 0.345202 0.112163i
\(834\) 87.8501 63.8268i 0.105336 0.0765310i
\(835\) 343.221i 0.411044i
\(836\) −2618.13 + 709.932i −3.13174 + 0.849201i
\(837\) 769.439 0.919281
\(838\) 61.1361 + 84.1466i 0.0729548 + 0.100414i
\(839\) −49.7340 153.066i −0.0592778 0.182438i 0.917033 0.398811i \(-0.130577\pi\)
−0.976311 + 0.216373i \(0.930577\pi\)
\(840\) 39.5202 121.631i 0.0470479 0.144799i
\(841\) −129.060 93.7676i −0.153460 0.111495i
\(842\) 857.096 1179.69i 1.01793 1.40106i
\(843\) 108.087 + 35.1196i 0.128217 + 0.0416603i
\(844\) −1095.21 + 355.855i −1.29764 + 0.421629i
\(845\) −245.958 + 178.699i −0.291075 + 0.211478i
\(846\) 507.856i 0.600303i
\(847\) −464.039 + 101.542i −0.547862 + 0.119884i
\(848\) −1348.68 −1.59043
\(849\) −90.6575 124.779i −0.106782 0.146972i
\(850\) −49.0794 151.051i −0.0577405 0.177707i
\(851\) 247.959 763.139i 0.291374 0.896756i
\(852\) 15.5656 + 11.3091i 0.0182695 + 0.0132736i
\(853\) 859.656 1183.22i 1.00780 1.38712i 0.0873903 0.996174i \(-0.472147\pi\)
0.920413 0.390948i \(-0.127853\pi\)
\(854\) 592.125 + 192.393i 0.693355 + 0.225285i
\(855\) 505.075 164.109i 0.590731 0.191940i
\(856\) −808.971 + 587.752i −0.945059 + 0.686626i
\(857\) 874.204i 1.02007i −0.860152 0.510037i \(-0.829632\pi\)
0.860152 0.510037i \(-0.170368\pi\)
\(858\) 54.1462 + 199.684i 0.0631075 + 0.232732i
\(859\) 984.004 1.14552 0.572761 0.819722i \(-0.305872\pi\)
0.572761 + 0.819722i \(0.305872\pi\)
\(860\) 781.778 + 1076.02i 0.909044 + 1.25119i
\(861\) −47.9494 147.573i −0.0556904 0.171397i
\(862\) −213.948 + 658.463i −0.248199 + 0.763878i
\(863\) 1110.66 + 806.939i 1.28697 + 0.935039i 0.999740 0.0228217i \(-0.00726500\pi\)
0.287232 + 0.957861i \(0.407265\pi\)
\(864\) −126.002 + 173.427i −0.145835 + 0.200725i
\(865\) 3.68151 + 1.19620i 0.00425608 + 0.00138289i
\(866\) −281.911 + 91.5985i −0.325533 + 0.105772i
\(867\) 156.023 113.357i 0.179957 0.130746i
\(868\) 1606.30i 1.85057i
\(869\) −292.670 + 363.638i −0.336790 + 0.418456i
\(870\) 191.013 0.219555
\(871\) −122.480 168.580i −0.140620 0.193547i
\(872\) −878.020 2702.27i −1.00690 3.09893i
\(873\) −142.480 + 438.508i −0.163207 + 0.502300i
\(874\) −3064.70 2226.64i −3.50653 2.54764i
\(875\) 25.7988 35.5090i 0.0294843 0.0405817i
\(876\) 983.260 + 319.481i 1.12244 + 0.364704i
\(877\) −771.335 + 250.622i −0.879516 + 0.285772i −0.713756 0.700394i \(-0.753008\pi\)
−0.165760 + 0.986166i \(0.553008\pi\)
\(878\) 398.927 289.838i 0.454359 0.330111i
\(879\) 47.2800i 0.0537884i
\(880\) 445.343 291.108i 0.506071 0.330804i
\(881\) −348.997 −0.396137 −0.198069 0.980188i \(-0.563467\pi\)
−0.198069 + 0.980188i \(0.563467\pi\)
\(882\) −567.098 780.543i −0.642968 0.884970i
\(883\) 302.060 + 929.644i 0.342084 + 1.05282i 0.963127 + 0.269049i \(0.0867092\pi\)
−0.621043 + 0.783776i \(0.713291\pi\)
\(884\) −135.139 + 415.914i −0.152872 + 0.470491i
\(885\) −65.3038 47.4460i −0.0737896 0.0536113i
\(886\) −613.519 + 844.436i −0.692459 + 0.953088i
\(887\) 14.4247 + 4.68686i 0.0162623 + 0.00528395i 0.317137 0.948380i \(-0.397279\pi\)
−0.300875 + 0.953664i \(0.597279\pi\)
\(888\) 302.175 98.1827i 0.340287 0.110566i
\(889\) −371.360 + 269.809i −0.417728 + 0.303497i
\(890\) 831.000i 0.933708i
\(891\) −642.952 31.7663i −0.721608 0.0356525i
\(892\) 342.856 0.384368
\(893\) 303.210 + 417.333i 0.339541 + 0.467338i
\(894\) −121.952 375.329i −0.136411 0.419831i
\(895\) 59.7661 183.941i 0.0667777 0.205521i
\(896\) −607.652 441.485i −0.678184 0.492729i
\(897\) −115.272 + 158.659i −0.128509 + 0.176877i
\(898\) −2209.18 717.807i −2.46011 0.799340i
\(899\) 1201.88 390.515i 1.33691 0.434388i
\(900\) −278.308 + 202.202i −0.309231 + 0.224669i
\(901\) 561.257i 0.622926i
\(902\) 588.287 1546.36i 0.652203 1.71437i
\(903\) 256.192 0.283712
\(904\) 672.370 + 925.438i 0.743773 + 1.02372i
\(905\) 123.770 + 380.924i 0.136762 + 0.420910i
\(906\) −69.4156 + 213.639i −0.0766177 + 0.235805i
\(907\) −450.207 327.095i −0.496369 0.360634i 0.311259 0.950325i \(-0.399249\pi\)
−0.807629 + 0.589692i \(0.799249\pi\)
\(908\) −946.436 + 1302.66i −1.04233 + 1.43464i
\(909\) −716.130 232.685i −0.787821 0.255979i
\(910\) −169.334 + 55.0199i −0.186081 + 0.0604614i
\(911\) 264.619 192.257i 0.290471 0.211039i −0.433001 0.901394i \(-0.642545\pi\)
0.723472 + 0.690354i \(0.242545\pi\)
\(912\) 585.246i 0.641717i
\(913\) 793.837 + 302.002i 0.869482 + 0.330780i
\(914\) 523.660 0.572932
\(915\) 54.7763 + 75.3931i 0.0598648 + 0.0823968i
\(916\) 600.434 + 1847.94i 0.655495 + 2.01741i
\(917\) 50.5226 155.492i 0.0550955 0.169567i
\(918\) 408.458 + 296.762i 0.444943 + 0.323270i
\(919\) 312.999 430.806i 0.340586 0.468776i −0.604026 0.796964i \(-0.706438\pi\)
0.944612 + 0.328188i \(0.106438\pi\)
\(920\) 1229.31 + 399.426i 1.33620 + 0.434158i
\(921\) −342.981 + 111.441i −0.372401 + 0.121000i
\(922\) 1429.75 1038.77i 1.55070 1.12665i
\(923\) 14.1096i 0.0152866i
\(924\) 16.7023 338.056i 0.0180761 0.365861i
\(925\) 109.042 0.117884
\(926\) −827.113 1138.42i −0.893210 1.22940i
\(927\) 110.118 + 338.907i 0.118789 + 0.365596i
\(928\) −108.798 + 334.847i −0.117240 + 0.360826i
\(929\) −617.340 448.524i −0.664521 0.482803i 0.203666 0.979041i \(-0.434714\pi\)
−0.868187 + 0.496238i \(0.834714\pi\)
\(930\) 208.203 286.567i 0.223875 0.308137i
\(931\) 932.031 + 302.835i 1.00111 + 0.325279i
\(932\) −1522.12 + 494.566i −1.63317 + 0.530650i
\(933\) −30.6253 + 22.2506i −0.0328246 + 0.0238484i
\(934\) 2219.26i 2.37608i
\(935\) −121.145 185.330i −0.129567 0.198214i
\(936\) 735.071 0.785332
\(937\) 930.495 + 1280.72i 0.993058 + 1.36683i 0.929489 + 0.368850i \(0.120248\pi\)
0.0635691 + 0.997977i \(0.479752\pi\)
\(938\) 155.194 + 477.638i 0.165452 + 0.509209i
\(939\) 146.919 452.172i 0.156464 0.481546i
\(940\) −270.334 196.409i −0.287590 0.208946i
\(941\) −325.495 + 448.005i −0.345903 + 0.476094i −0.946154 0.323717i \(-0.895067\pi\)
0.600251 + 0.799812i \(0.295067\pi\)
\(942\) −582.606 189.300i −0.618477 0.200956i
\(943\) 1491.50 484.619i 1.58166 0.513912i
\(944\) 681.233 494.945i 0.721645 0.524306i
\(945\) 139.525i 0.147646i
\(946\) 2128.03 + 1712.72i 2.24950 + 1.81049i
\(947\) 945.630 0.998553 0.499276 0.866443i \(-0.333599\pi\)
0.499276 + 0.866443i \(0.333599\pi\)
\(948\) −195.498 269.080i −0.206222 0.283840i
\(949\) −234.287 721.062i −0.246878 0.759813i
\(950\) 159.078 489.593i 0.167451 0.515361i
\(951\) 131.934 + 95.8555i 0.138732 + 0.100794i
\(952\) 326.336 449.163i 0.342790 0.471810i
\(953\) −602.472 195.755i −0.632185 0.205409i −0.0246421 0.999696i \(-0.507845\pi\)
−0.607543 + 0.794287i \(0.707845\pi\)
\(954\) 1703.32 553.441i 1.78545 0.580127i
\(955\) −612.474 + 444.989i −0.641334 + 0.465957i
\(956\) 948.003i 0.991635i
\(957\) 257.004 69.6892i 0.268552 0.0728205i
\(958\) −340.353 −0.355275
\(959\) −244.580 336.636i −0.255037 0.351028i
\(960\) −24.9453 76.7738i −0.0259847 0.0799727i
\(961\) 427.212 1314.82i 0.444549 1.36818i
\(962\) −357.857 259.999i −0.371993 0.270269i
\(963\) 304.527 419.145i 0.316227 0.435249i
\(964\) −949.540 308.524i −0.985000 0.320046i
\(965\) 18.9215 6.14798i 0.0196078 0.00637096i
\(966\) 382.391 277.823i 0.395850 0.287602i
\(967\) 855.136i 0.884318i −0.896937 0.442159i \(-0.854213\pi\)
0.896937 0.442159i \(-0.145787\pi\)
\(968\) 1263.54 1420.31i 1.30531 1.46726i
\(969\) −243.551 −0.251343
\(970\) 262.706 + 361.583i 0.270831 + 0.372766i
\(971\) 306.329 + 942.784i 0.315478 + 0.970942i 0.975557 + 0.219746i \(0.0705227\pi\)
−0.660079 + 0.751196i \(0.729477\pi\)
\(972\) 515.368 1586.14i 0.530214 1.63183i
\(973\) 105.394 + 76.5730i 0.108318 + 0.0786979i
\(974\) −1659.33 + 2283.88i −1.70363 + 2.34484i
\(975\) −25.3460 8.23543i −0.0259959 0.00844659i
\(976\) −924.565 + 300.409i −0.947300 + 0.307796i
\(977\) −46.4848 + 33.7732i −0.0475791 + 0.0345682i −0.611321 0.791383i \(-0.709361\pi\)
0.563742 + 0.825951i \(0.309361\pi\)
\(978\) 118.169i 0.120827i
\(979\) −303.183 1118.10i −0.309686 1.14208i
\(980\) −634.808 −0.647763
\(981\) 865.312 + 1191.00i 0.882071 + 1.21407i
\(982\) −917.657 2824.26i −0.934477 2.87603i
\(983\) 218.826 673.476i 0.222610 0.685123i −0.775915 0.630837i \(-0.782712\pi\)
0.998525 0.0542862i \(-0.0172883\pi\)
\(984\) 502.378 + 364.999i 0.510546 + 0.370934i
\(985\) 262.418 361.188i 0.266415 0.366688i
\(986\) 788.638 + 256.244i 0.799835 + 0.259882i
\(987\) −61.2140 + 19.8896i −0.0620203 + 0.0201516i
\(988\) −1146.74 + 833.159i −1.16067 + 0.843278i
\(989\) 2589.30i 2.61810i
\(990\) −442.987 + 550.403i −0.447461 + 0.555963i
\(991\) 1006.83 1.01598 0.507989 0.861363i \(-0.330389\pi\)
0.507989 + 0.861363i \(0.330389\pi\)
\(992\) 383.765 + 528.207i 0.386860 + 0.532467i
\(993\) 27.9408 + 85.9930i 0.0281378 + 0.0865992i
\(994\) −10.5085 + 32.3418i −0.0105719 + 0.0325370i
\(995\) −330.369 240.027i −0.332029 0.241233i
\(996\) −355.720 + 489.606i −0.357148 + 0.491573i
\(997\) 537.627 + 174.686i 0.539245 + 0.175211i 0.565961 0.824432i \(-0.308505\pi\)
−0.0267164 + 0.999643i \(0.508505\pi\)
\(998\) −2398.92 + 779.456i −2.40373 + 0.781018i
\(999\) −280.431 + 203.745i −0.280712 + 0.203949i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.i.d.41.3 12
5.2 odd 4 275.3.q.f.74.1 24
5.3 odd 4 275.3.q.f.74.6 24
5.4 even 2 275.3.x.f.151.1 12
11.2 odd 10 605.3.c.d.241.11 12
11.7 odd 10 inner 55.3.i.d.51.3 yes 12
11.9 even 5 605.3.c.d.241.2 12
55.7 even 20 275.3.q.f.249.6 24
55.18 even 20 275.3.q.f.249.1 24
55.29 odd 10 275.3.x.f.51.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.d.41.3 12 1.1 even 1 trivial
55.3.i.d.51.3 yes 12 11.7 odd 10 inner
275.3.q.f.74.1 24 5.2 odd 4
275.3.q.f.74.6 24 5.3 odd 4
275.3.q.f.249.1 24 55.18 even 20
275.3.q.f.249.6 24 55.7 even 20
275.3.x.f.51.1 12 55.29 odd 10
275.3.x.f.151.1 12 5.4 even 2
605.3.c.d.241.2 12 11.9 even 5
605.3.c.d.241.11 12 11.2 odd 10