Properties

Label 275.4.a.a
Level 275275
Weight 44
Character orbit 275.a
Self dual yes
Analytic conductor 16.22616.226
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 275=5211 275 = 5^{2} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 16.225525251616.2255252516
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 55)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq2+3q37q43q6+9q7+15q818q9+11q1121q122q139q14+41q1621q17+18q1885q19+27q2111q2222q23+198q99+O(q100) q - q^{2} + 3 q^{3} - 7 q^{4} - 3 q^{6} + 9 q^{7} + 15 q^{8} - 18 q^{9} + 11 q^{11} - 21 q^{12} - 2 q^{13} - 9 q^{14} + 41 q^{16} - 21 q^{17} + 18 q^{18} - 85 q^{19} + 27 q^{21} - 11 q^{22} - 22 q^{23}+ \cdots - 198 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−1.00000 3.00000 −7.00000 0 −3.00000 9.00000 15.0000 −18.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.4.a.a 1
3.b odd 2 1 2475.4.a.h 1
5.b even 2 1 55.4.a.a 1
5.c odd 4 2 275.4.b.a 2
15.d odd 2 1 495.4.a.a 1
20.d odd 2 1 880.4.a.j 1
55.d odd 2 1 605.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.4.a.a 1 5.b even 2 1
275.4.a.a 1 1.a even 1 1 trivial
275.4.b.a 2 5.c odd 4 2
495.4.a.a 1 15.d odd 2 1
605.4.a.b 1 55.d odd 2 1
880.4.a.j 1 20.d odd 2 1
2475.4.a.h 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+1 T_{2} + 1 acting on S4new(Γ0(275))S_{4}^{\mathrm{new}}(\Gamma_0(275)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T9 T - 9 Copy content Toggle raw display
1111 T11 T - 11 Copy content Toggle raw display
1313 T+2 T + 2 Copy content Toggle raw display
1717 T+21 T + 21 Copy content Toggle raw display
1919 T+85 T + 85 Copy content Toggle raw display
2323 T+22 T + 22 Copy content Toggle raw display
2929 T+165 T + 165 Copy content Toggle raw display
3131 T+83 T + 83 Copy content Toggle raw display
3737 T+1 T + 1 Copy content Toggle raw display
4141 T+478 T + 478 Copy content Toggle raw display
4343 T8 T - 8 Copy content Toggle raw display
4747 T+126 T + 126 Copy content Toggle raw display
5353 T683 T - 683 Copy content Toggle raw display
5959 T+290 T + 290 Copy content Toggle raw display
6161 T257 T - 257 Copy content Toggle raw display
6767 T+776 T + 776 Copy content Toggle raw display
7171 T+313 T + 313 Copy content Toggle raw display
7373 T+902 T + 902 Copy content Toggle raw display
7979 T830 T - 830 Copy content Toggle raw display
8383 T+842 T + 842 Copy content Toggle raw display
8989 T25 T - 25 Copy content Toggle raw display
9797 T1784 T - 1784 Copy content Toggle raw display
show more
show less