Properties

Label 55.4.a.a
Level $55$
Weight $4$
Character orbit 55.a
Self dual yes
Analytic conductor $3.245$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,4,Mod(1,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 55.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.24510505032\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 3 q^{3} - 7 q^{4} - 5 q^{5} - 3 q^{6} - 9 q^{7} - 15 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - 3 q^{3} - 7 q^{4} - 5 q^{5} - 3 q^{6} - 9 q^{7} - 15 q^{8} - 18 q^{9} - 5 q^{10} + 11 q^{11} + 21 q^{12} + 2 q^{13} - 9 q^{14} + 15 q^{15} + 41 q^{16} + 21 q^{17} - 18 q^{18} - 85 q^{19} + 35 q^{20} + 27 q^{21} + 11 q^{22} + 22 q^{23} + 45 q^{24} + 25 q^{25} + 2 q^{26} + 135 q^{27} + 63 q^{28} - 165 q^{29} + 15 q^{30} - 83 q^{31} + 161 q^{32} - 33 q^{33} + 21 q^{34} + 45 q^{35} + 126 q^{36} + q^{37} - 85 q^{38} - 6 q^{39} + 75 q^{40} - 478 q^{41} + 27 q^{42} - 8 q^{43} - 77 q^{44} + 90 q^{45} + 22 q^{46} + 126 q^{47} - 123 q^{48} - 262 q^{49} + 25 q^{50} - 63 q^{51} - 14 q^{52} - 683 q^{53} + 135 q^{54} - 55 q^{55} + 135 q^{56} + 255 q^{57} - 165 q^{58} - 290 q^{59} - 105 q^{60} + 257 q^{61} - 83 q^{62} + 162 q^{63} - 167 q^{64} - 10 q^{65} - 33 q^{66} + 776 q^{67} - 147 q^{68} - 66 q^{69} + 45 q^{70} - 313 q^{71} + 270 q^{72} + 902 q^{73} + q^{74} - 75 q^{75} + 595 q^{76} - 99 q^{77} - 6 q^{78} + 830 q^{79} - 205 q^{80} + 81 q^{81} - 478 q^{82} + 842 q^{83} - 189 q^{84} - 105 q^{85} - 8 q^{86} + 495 q^{87} - 165 q^{88} + 25 q^{89} + 90 q^{90} - 18 q^{91} - 154 q^{92} + 249 q^{93} + 126 q^{94} + 425 q^{95} - 483 q^{96} - 1784 q^{97} - 262 q^{98} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −3.00000 −7.00000 −5.00000 −3.00000 −9.00000 −15.0000 −18.0000 −5.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.4.a.a 1
3.b odd 2 1 495.4.a.a 1
4.b odd 2 1 880.4.a.j 1
5.b even 2 1 275.4.a.a 1
5.c odd 4 2 275.4.b.a 2
11.b odd 2 1 605.4.a.b 1
15.d odd 2 1 2475.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.4.a.a 1 1.a even 1 1 trivial
275.4.a.a 1 5.b even 2 1
275.4.b.a 2 5.c odd 4 2
495.4.a.a 1 3.b odd 2 1
605.4.a.b 1 11.b odd 2 1
880.4.a.j 1 4.b odd 2 1
2475.4.a.h 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(55))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 9 \) Copy content Toggle raw display
$11$ \( T - 11 \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T - 21 \) Copy content Toggle raw display
$19$ \( T + 85 \) Copy content Toggle raw display
$23$ \( T - 22 \) Copy content Toggle raw display
$29$ \( T + 165 \) Copy content Toggle raw display
$31$ \( T + 83 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T + 478 \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T - 126 \) Copy content Toggle raw display
$53$ \( T + 683 \) Copy content Toggle raw display
$59$ \( T + 290 \) Copy content Toggle raw display
$61$ \( T - 257 \) Copy content Toggle raw display
$67$ \( T - 776 \) Copy content Toggle raw display
$71$ \( T + 313 \) Copy content Toggle raw display
$73$ \( T - 902 \) Copy content Toggle raw display
$79$ \( T - 830 \) Copy content Toggle raw display
$83$ \( T - 842 \) Copy content Toggle raw display
$89$ \( T - 25 \) Copy content Toggle raw display
$97$ \( T + 1784 \) Copy content Toggle raw display
show more
show less