Properties

Label 2775.2.a.be
Level $2775$
Weight $2$
Character orbit 2775.a
Self dual yes
Analytic conductor $22.158$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2775,2,Mod(1,2775)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2775, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2775.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2775 = 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2775.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.1584865609\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.297869800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 9x^{4} + 7x^{3} + 23x^{2} + 2x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - q^{3} + (\beta_{2} + 2) q^{4} + ( - \beta_1 + 1) q^{6} + \beta_{3} q^{7} + (\beta_{5} + \beta_{4} - \beta_{2} + \cdots - 2) q^{8} + q^{9} + ( - \beta_{4} + \beta_{3} - 1) q^{11}+ \cdots + ( - \beta_{4} + \beta_{3} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} - 6 q^{3} + 12 q^{4} + 4 q^{6} - q^{7} - 9 q^{8} + 6 q^{9} - 5 q^{11} - 12 q^{12} - q^{13} - 4 q^{14} + 20 q^{16} - 15 q^{17} - 4 q^{18} + 11 q^{19} + q^{21} - 10 q^{22} - 12 q^{23} + 9 q^{24}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 9x^{4} + 7x^{3} + 23x^{2} + 2x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{5} + 4\nu^{4} + 2\nu^{3} - 14\nu^{2} + 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 3\nu^{4} - 5\nu^{3} + 10\nu^{2} + 8\nu - 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 3\nu^{4} + 6\nu^{3} - 12\nu^{2} - 12\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + 2\beta_{2} + 8\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{5} + 4\beta_{4} + \beta_{3} + 10\beta_{2} + 24\beta _1 + 21 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 14\beta_{5} + 18\beta_{4} + 3\beta_{3} + 30\beta_{2} + 84\beta _1 + 56 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.69361
−1.52727
−0.722059
0.458591
2.02507
3.45927
−2.69361 −1.00000 5.25551 0 2.69361 2.97039 −8.76907 1.00000 0
1.2 −2.52727 −1.00000 4.38709 0 2.52727 −3.70785 −6.03281 1.00000 0
1.3 −1.72206 −1.00000 0.965489 0 1.72206 −0.768516 1.78149 1.00000 0
1.4 −0.541409 −1.00000 −1.70688 0 0.541409 3.40524 2.00694 1.00000 0
1.5 1.02507 −1.00000 −0.949227 0 −1.02507 −1.59014 −3.02317 1.00000 0
1.6 2.45927 −1.00000 4.04801 0 −2.45927 −1.30912 5.03662 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2775.2.a.be 6
3.b odd 2 1 8325.2.a.cl 6
5.b even 2 1 2775.2.a.bf yes 6
15.d odd 2 1 8325.2.a.ci 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2775.2.a.be 6 1.a even 1 1 trivial
2775.2.a.bf yes 6 5.b even 2 1
8325.2.a.ci 6 15.d odd 2 1
8325.2.a.cl 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2775))\):

\( T_{2}^{6} + 4T_{2}^{5} - 4T_{2}^{4} - 29T_{2}^{3} - 15T_{2}^{2} + 29T_{2} + 16 \) Copy content Toggle raw display
\( T_{7}^{6} + T_{7}^{5} - 19T_{7}^{4} - 22T_{7}^{3} + 75T_{7}^{2} + 140T_{7} + 60 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 4 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + T^{5} + \cdots + 60 \) Copy content Toggle raw display
$11$ \( T^{6} + 5 T^{5} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{6} + T^{5} - 41 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{6} + 15 T^{5} + \cdots - 520 \) Copy content Toggle raw display
$19$ \( T^{6} - 11 T^{5} + \cdots - 4073 \) Copy content Toggle raw display
$23$ \( T^{6} + 12 T^{5} + \cdots - 708 \) Copy content Toggle raw display
$29$ \( T^{6} + 9 T^{5} + \cdots + 344 \) Copy content Toggle raw display
$31$ \( T^{6} - 14 T^{5} + \cdots + 21036 \) Copy content Toggle raw display
$37$ \( (T - 1)^{6} \) Copy content Toggle raw display
$41$ \( T^{6} + 4 T^{5} + \cdots - 398 \) Copy content Toggle raw display
$43$ \( T^{6} - 58 T^{4} + \cdots - 905 \) Copy content Toggle raw display
$47$ \( T^{6} + 15 T^{5} + \cdots + 104 \) Copy content Toggle raw display
$53$ \( T^{6} + 41 T^{5} + \cdots + 65524 \) Copy content Toggle raw display
$59$ \( T^{6} + 3 T^{5} + \cdots + 908 \) Copy content Toggle raw display
$61$ \( T^{6} - 5 T^{5} + \cdots + 35216 \) Copy content Toggle raw display
$67$ \( T^{6} + 4 T^{5} + \cdots - 257820 \) Copy content Toggle raw display
$71$ \( T^{6} - 3 T^{5} + \cdots + 1888 \) Copy content Toggle raw display
$73$ \( T^{6} + 11 T^{5} + \cdots + 35570 \) Copy content Toggle raw display
$79$ \( T^{6} - 4 T^{5} + \cdots - 84024 \) Copy content Toggle raw display
$83$ \( T^{6} + 27 T^{5} + \cdots + 245568 \) Copy content Toggle raw display
$89$ \( T^{6} + 15 T^{5} + \cdots + 127800 \) Copy content Toggle raw display
$97$ \( T^{6} - 17 T^{5} + \cdots + 162368 \) Copy content Toggle raw display
show more
show less