Properties

Label 2793.1.er.a.59.1
Level $2793$
Weight $1$
Character 2793.59
Analytic conductor $1.394$
Analytic rank $0$
Dimension $36$
Projective image $D_{126}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,1,Mod(59,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
chi = DirichletCharacter(H, H._module([63, 39, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.59");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2793.er (of order \(126\), degree \(36\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39388858028\)
Analytic rank: \(0\)
Dimension: \(36\)
Coefficient field: \(\Q(\zeta_{63})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{126}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{126} - \cdots)\)

Embedding invariants

Embedding label 59.1
Root \(-0.853291 + 0.521435i\) of defining polynomial
Character \(\chi\) \(=\) 2793.59
Dual form 2793.1.er.a.2651.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.995031 - 0.0995678i) q^{3} +(0.797133 + 0.603804i) q^{4} +(0.878222 + 0.478254i) q^{7} +(0.980172 + 0.198146i) q^{9} +O(q^{10})\) \(q+(-0.995031 - 0.0995678i) q^{3} +(0.797133 + 0.603804i) q^{4} +(0.878222 + 0.478254i) q^{7} +(0.980172 + 0.198146i) q^{9} +(-0.733052 - 0.680173i) q^{12} +(0.0291063 + 1.16712i) q^{13} +(0.270840 + 0.962624i) q^{16} +(-0.623490 + 0.781831i) q^{19} +(-0.826239 - 0.563320i) q^{21} +(0.661686 - 0.749781i) q^{25} +(-0.955573 - 0.294755i) q^{27} +(0.411287 + 0.911506i) q^{28} -0.248687 q^{31} +(0.661686 + 0.749781i) q^{36} +(-0.355949 - 1.15396i) q^{37} +(0.0872464 - 1.16422i) q^{39} +(-1.36879 + 1.40335i) q^{43} +(-0.173648 - 0.984808i) q^{48} +(0.542546 + 0.840026i) q^{49} +(-0.681513 + 0.947927i) q^{52} +(0.698237 - 0.715867i) q^{57} +(0.0989181 - 1.98201i) q^{61} +(0.766044 + 0.642788i) q^{63} +(-0.365341 + 0.930874i) q^{64} +(0.555398 - 1.52594i) q^{67} +(-0.405087 + 0.662896i) q^{73} +(-0.733052 + 0.680173i) q^{75} +(-0.969077 + 0.246757i) q^{76} +(1.65453 + 0.291738i) q^{79} +(0.921476 + 0.388435i) q^{81} +(-0.318487 - 0.947927i) q^{84} +(-0.532620 + 1.03891i) q^{91} +(0.247452 + 0.0247613i) q^{93} +(-0.126882 + 0.719581i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 3 q^{12} + 3 q^{13} + 6 q^{19} - 3 q^{21} - 3 q^{27} - 3 q^{43} - 36 q^{52} - 3 q^{61} - 3 q^{64} + 3 q^{67} + 3 q^{73} + 3 q^{75} - 3 q^{79} + 3 q^{91} + 6 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2793\mathbb{Z}\right)^\times\).

\(n\) \(932\) \(2110\) \(2206\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.947927 0.318487i \(-0.896825\pi\)
0.947927 + 0.318487i \(0.103175\pi\)
\(3\) −0.995031 0.0995678i −0.995031 0.0995678i
\(4\) 0.797133 + 0.603804i 0.797133 + 0.603804i
\(5\) 0 0 0.911506 0.411287i \(-0.134921\pi\)
−0.911506 + 0.411287i \(0.865079\pi\)
\(6\) 0 0
\(7\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(8\) 0 0
\(9\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(10\) 0 0
\(11\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(12\) −0.733052 0.680173i −0.733052 0.680173i
\(13\) 0.0291063 + 1.16712i 0.0291063 + 1.16712i 0.826239 + 0.563320i \(0.190476\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.270840 + 0.962624i 0.270840 + 0.962624i
\(17\) 0 0 −0.603804 0.797133i \(-0.706349\pi\)
0.603804 + 0.797133i \(0.293651\pi\)
\(18\) 0 0
\(19\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(20\) 0 0
\(21\) −0.826239 0.563320i −0.826239 0.563320i
\(22\) 0 0
\(23\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(24\) 0 0
\(25\) 0.661686 0.749781i 0.661686 0.749781i
\(26\) 0 0
\(27\) −0.955573 0.294755i −0.955573 0.294755i
\(28\) 0.411287 + 0.911506i 0.411287 + 0.911506i
\(29\) 0 0 0.0498459 0.998757i \(-0.484127\pi\)
−0.0498459 + 0.998757i \(0.515873\pi\)
\(30\) 0 0
\(31\) −0.248687 −0.248687 −0.124344 0.992239i \(-0.539683\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.661686 + 0.749781i 0.661686 + 0.749781i
\(37\) −0.355949 1.15396i −0.355949 1.15396i −0.939693 0.342020i \(-0.888889\pi\)
0.583744 0.811938i \(-0.301587\pi\)
\(38\) 0 0
\(39\) 0.0872464 1.16422i 0.0872464 1.16422i
\(40\) 0 0
\(41\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(42\) 0 0
\(43\) −1.36879 + 1.40335i −1.36879 + 1.40335i −0.542546 + 0.840026i \(0.682540\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.999689 0.0249307i \(-0.00793651\pi\)
−0.999689 + 0.0249307i \(0.992063\pi\)
\(48\) −0.173648 0.984808i −0.173648 0.984808i
\(49\) 0.542546 + 0.840026i 0.542546 + 0.840026i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.681513 + 0.947927i −0.681513 + 0.947927i
\(53\) 0 0 0.603804 0.797133i \(-0.293651\pi\)
−0.603804 + 0.797133i \(0.706349\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.698237 0.715867i 0.698237 0.715867i
\(58\) 0 0
\(59\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(60\) 0 0
\(61\) 0.0989181 1.98201i 0.0989181 1.98201i −0.0747301 0.997204i \(-0.523810\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(62\) 0 0
\(63\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(64\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.555398 1.52594i 0.555398 1.52594i −0.270840 0.962624i \(-0.587302\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.840026 0.542546i \(-0.182540\pi\)
−0.840026 + 0.542546i \(0.817460\pi\)
\(72\) 0 0
\(73\) −0.405087 + 0.662896i −0.405087 + 0.662896i −0.988831 0.149042i \(-0.952381\pi\)
0.583744 + 0.811938i \(0.301587\pi\)
\(74\) 0 0
\(75\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(76\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.65453 + 0.291738i 1.65453 + 0.291738i 0.921476 0.388435i \(-0.126984\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(80\) 0 0
\(81\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(82\) 0 0
\(83\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(84\) −0.318487 0.947927i −0.318487 0.947927i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.318487 0.947927i \(-0.603175\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(90\) 0 0
\(91\) −0.532620 + 1.03891i −0.532620 + 1.03891i
\(92\) 0 0
\(93\) 0.247452 + 0.0247613i 0.247452 + 0.0247613i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.126882 + 0.719581i −0.126882 + 0.719581i 0.853291 + 0.521435i \(0.174603\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.980172 0.198146i 0.980172 0.198146i
\(101\) 0 0 −0.962624 0.270840i \(-0.912698\pi\)
0.962624 + 0.270840i \(0.0873016\pi\)
\(102\) 0 0
\(103\) −0.0449236 0.0216340i −0.0449236 0.0216340i 0.411287 0.911506i \(-0.365079\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(108\) −0.583744 0.811938i −0.583744 0.811938i
\(109\) −0.844734 + 0.745482i −0.844734 + 0.745482i −0.969077 0.246757i \(-0.920635\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(110\) 0 0
\(111\) 0.239283 + 1.18366i 0.239283 + 1.18366i
\(112\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(113\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.202732 + 1.14975i −0.202732 + 1.14975i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.198237 0.150159i −0.198237 0.150159i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.39146 + 0.713360i −1.39146 + 0.713360i −0.980172 0.198146i \(-0.936508\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(128\) 0 0
\(129\) 1.50171 1.26009i 1.50171 1.26009i
\(130\) 0 0
\(131\) 0 0 −0.715867 0.698237i \(-0.753968\pi\)
0.715867 + 0.698237i \(0.246032\pi\)
\(132\) 0 0
\(133\) −0.921476 + 0.388435i −0.921476 + 0.388435i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(138\) 0 0
\(139\) 0.449842 + 1.76664i 0.449842 + 1.76664i 0.623490 + 0.781831i \(0.285714\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.456211 0.889872i −0.456211 0.889872i
\(148\) 0.413027 1.13478i 0.413027 1.13478i
\(149\) 0 0 −0.661686 0.749781i \(-0.730159\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(150\) 0 0
\(151\) 0.0878620 0.284841i 0.0878620 0.284841i −0.900969 0.433884i \(-0.857143\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.772510 0.875360i 0.772510 0.875360i
\(157\) 0.475069 0.133664i 0.475069 0.133664i −0.0249307 0.999689i \(-0.507937\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.25818 0.605907i 1.25818 0.605907i 0.318487 0.947927i \(-0.396825\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(168\) 0 0
\(169\) −0.362575 + 0.0180954i −0.362575 + 0.0180954i
\(170\) 0 0
\(171\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(172\) −1.93845 + 0.292174i −1.93845 + 0.292174i
\(173\) 0 0 −0.542546 0.840026i \(-0.682540\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(174\) 0 0
\(175\) 0.939693 0.342020i 0.939693 0.342020i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(180\) 0 0
\(181\) 1.09342 1.23900i 1.09342 1.23900i 0.124344 0.992239i \(-0.460317\pi\)
0.969077 0.246757i \(-0.0793651\pi\)
\(182\) 0 0
\(183\) −0.295771 + 1.96231i −0.295771 + 1.96231i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.698237 0.715867i −0.698237 0.715867i
\(190\) 0 0
\(191\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(192\) 0.456211 0.889872i 0.456211 0.889872i
\(193\) 0.142555 1.42462i 0.142555 1.42462i −0.623490 0.781831i \(-0.714286\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) 1.07349 1.04705i 1.07349 1.04705i 0.0747301 0.997204i \(-0.476190\pi\)
0.998757 0.0498459i \(-0.0158730\pi\)
\(200\) 0 0
\(201\) −0.704573 + 1.46306i −0.704573 + 1.46306i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −1.11562 + 0.344123i −1.11562 + 0.344123i
\(209\) 0 0
\(210\) 0 0
\(211\) 0.0476780 + 0.0875515i 0.0476780 + 0.0875515i 0.900969 0.433884i \(-0.142857\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.218403 0.118936i −0.218403 0.118936i
\(218\) 0 0
\(219\) 0.469077 0.619268i 0.469077 0.619268i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.495031 + 0.766458i 0.495031 + 0.766458i 0.995031 0.0995678i \(-0.0317460\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 0.797133 0.603804i 0.797133 0.603804i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0.988831 0.149042i 0.988831 0.149042i
\(229\) 0.587470 0.861660i 0.587470 0.861660i −0.411287 0.911506i \(-0.634921\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.61726 0.455026i −1.61726 0.455026i
\(238\) 0 0
\(239\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(240\) 0 0
\(241\) 1.78596 0.752847i 1.78596 0.752847i 0.797133 0.603804i \(-0.206349\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(242\) 0 0
\(243\) −0.878222 0.478254i −0.878222 0.478254i
\(244\) 1.27560 1.52020i 1.27560 1.52020i
\(245\) 0 0
\(246\) 0 0
\(247\) −0.930642 0.704934i −0.930642 0.704934i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.0995678 0.995031i \(-0.531746\pi\)
0.0995678 + 0.995031i \(0.468254\pi\)
\(252\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(257\) 0 0 −0.456211 0.889872i \(-0.650794\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(258\) 0 0
\(259\) 0.239283 1.18366i 0.239283 1.18366i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.36410 0.881028i 1.36410 0.881028i
\(269\) 0 0 −0.853291 0.521435i \(-0.825397\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(270\) 0 0
\(271\) −1.77477 0.909870i −1.77477 0.909870i −0.921476 0.388435i \(-0.873016\pi\)
−0.853291 0.521435i \(-0.825397\pi\)
\(272\) 0 0
\(273\) 0.633416 0.980720i 0.633416 0.980720i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.142820 + 0.0440542i −0.142820 + 0.0440542i −0.365341 0.930874i \(-0.619048\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(278\) 0 0
\(279\) −0.243757 0.0492765i −0.243757 0.0492765i
\(280\) 0 0
\(281\) 0 0 −0.521435 0.853291i \(-0.674603\pi\)
0.521435 + 0.853291i \(0.325397\pi\)
\(282\) 0 0
\(283\) −0.386356 1.91120i −0.386356 1.91120i −0.411287 0.911506i \(-0.634921\pi\)
0.0249307 0.999689i \(-0.492063\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.270840 + 0.962624i −0.270840 + 0.962624i
\(290\) 0 0
\(291\) 0.197898 0.703372i 0.197898 0.703372i
\(292\) −0.723168 + 0.283822i −0.723168 + 0.283822i
\(293\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.995031 + 0.0995678i −0.995031 + 0.0995678i
\(301\) −1.87325 + 0.577822i −1.87325 + 0.577822i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.921476 0.388435i −0.921476 0.388435i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.93845 + 0.391866i −1.93845 + 0.391866i −0.939693 + 0.342020i \(0.888889\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(308\) 0 0
\(309\) 0.0425463 + 0.0259995i 0.0425463 + 0.0259995i
\(310\) 0 0
\(311\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(312\) 0 0
\(313\) −0.874413 1.04209i −0.874413 1.04209i −0.998757 0.0498459i \(-0.984127\pi\)
0.124344 0.992239i \(-0.460317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.14273 + 1.23157i 1.14273 + 1.23157i
\(317\) 0 0 −0.992239 0.124344i \(-0.960317\pi\)
0.992239 + 0.124344i \(0.0396825\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(325\) 0.894347 + 0.750446i 0.894347 + 0.750446i
\(326\) 0 0
\(327\) 0.914762 0.657669i 0.914762 0.657669i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.84832 0.421867i −1.84832 0.421867i −0.853291 0.521435i \(-0.825397\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(332\) 0 0
\(333\) −0.120239 1.20161i −0.120239 1.20161i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.318487 0.947927i 0.318487 0.947927i
\(337\) −1.37822 1.34428i −1.37822 1.34428i −0.878222 0.478254i \(-0.841270\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.998757 0.0498459i \(-0.0158730\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(348\) 0 0
\(349\) 0.538820 0.790304i 0.538820 0.790304i −0.456211 0.889872i \(-0.650794\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(350\) 0 0
\(351\) 0.316203 1.12385i 0.316203 1.12385i
\(352\) 0 0
\(353\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.698237 0.715867i \(-0.253968\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(360\) 0 0
\(361\) −0.222521 0.974928i −0.222521 0.974928i
\(362\) 0 0
\(363\) −0.921476 0.388435i −0.921476 0.388435i
\(364\) −1.05187 + 0.506554i −1.05187 + 0.506554i
\(365\) 0 0
\(366\) 0 0
\(367\) 0.149308 + 0.131765i 0.149308 + 0.131765i 0.733052 0.680173i \(-0.238095\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0.182301 + 0.169150i 0.182301 + 0.169150i
\(373\) 1.61232 + 0.930874i 1.61232 + 0.930874i 0.988831 + 0.149042i \(0.0476190\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.309834 0.247084i −0.309834 0.247084i 0.456211 0.889872i \(-0.349206\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(380\) 0 0
\(381\) 1.45557 0.571270i 1.45557 0.571270i
\(382\) 0 0
\(383\) 0 0 0.878222 0.478254i \(-0.158730\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.61971 + 1.10430i −1.61971 + 1.10430i
\(388\) −0.535628 + 0.496990i −0.535628 + 0.496990i
\(389\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.177205 1.77090i 0.177205 1.77090i −0.365341 0.930874i \(-0.619048\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(398\) 0 0
\(399\) 0.955573 0.294755i 0.955573 0.294755i
\(400\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(401\) 0 0 0.521435 0.853291i \(-0.325397\pi\)
−0.521435 + 0.853291i \(0.674603\pi\)
\(402\) 0 0
\(403\) −0.00723836 0.290249i −0.00723836 0.290249i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.03688 1.60541i 1.03688 1.60541i 0.270840 0.962624i \(-0.412698\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.0227473 0.0443702i −0.0227473 0.0443702i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.271706 1.80265i −0.271706 1.80265i
\(418\) 0 0
\(419\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(420\) 0 0
\(421\) 0.523962 + 0.691726i 0.523962 + 0.691726i 0.980172 0.198146i \(-0.0634921\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.03478 1.69334i 1.03478 1.69334i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.811938 0.583744i \(-0.198413\pi\)
−0.811938 + 0.583744i \(0.801587\pi\)
\(432\) 0.0249307 0.999689i 0.0249307 0.999689i
\(433\) 1.19160 + 1.22169i 1.19160 + 1.22169i 0.969077 + 0.246757i \(0.0793651\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.12349 + 0.0841939i −1.12349 + 0.0841939i
\(437\) 0 0
\(438\) 0 0
\(439\) −0.633808 + 1.88643i −0.633808 + 1.88643i −0.222521 + 0.974928i \(0.571429\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(440\) 0 0
\(441\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(442\) 0 0
\(443\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(444\) −0.523962 + 1.08802i −0.523962 + 1.08802i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(449\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −0.115786 + 0.274678i −0.115786 + 0.274678i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.52272 1.03817i −1.52272 1.03817i −0.980172 0.198146i \(-0.936508\pi\)
−0.542546 0.840026i \(-0.682540\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.992239 0.124344i \(-0.0396825\pi\)
−0.992239 + 0.124344i \(0.960317\pi\)
\(462\) 0 0
\(463\) 0.602990 0.559493i 0.602990 0.559493i −0.318487 0.947927i \(-0.603175\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(468\) −0.855829 + 0.794093i −0.855829 + 0.794093i
\(469\) 1.21755 1.07450i 1.21755 1.07450i
\(470\) 0 0
\(471\) −0.486017 + 0.0856979i −0.486017 + 0.0856979i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.999689 0.0249307i \(-0.00793651\pi\)
−0.999689 + 0.0249307i \(0.992063\pi\)
\(480\) 0 0
\(481\) 1.33645 0.449024i 1.33645 0.449024i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.583744 + 0.811938i 0.583744 + 0.811938i
\(485\) 0 0
\(486\) 0 0
\(487\) −0.255779 + 0.531130i −0.255779 + 0.531130i −0.988831 0.149042i \(-0.952381\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(488\) 0 0
\(489\) −1.31226 + 0.477622i −1.31226 + 0.477622i
\(490\) 0 0
\(491\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.0673546 0.239393i −0.0673546 0.239393i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.0397461 1.59377i 0.0397461 1.59377i −0.583744 0.811938i \(-0.698413\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.478254 0.878222i \(-0.341270\pi\)
−0.478254 + 0.878222i \(0.658730\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.362575 + 0.0180954i 0.362575 + 0.0180954i
\(508\) −1.53991 0.271527i −1.53991 0.271527i
\(509\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(510\) 0 0
\(511\) −0.672789 + 0.388435i −0.672789 + 0.388435i
\(512\) 0 0
\(513\) 0.826239 0.563320i 0.826239 0.563320i
\(514\) 0 0
\(515\) 0 0
\(516\) 1.95791 0.0977151i 1.95791 0.0977151i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0.655701 1.45318i 0.655701 1.45318i −0.222521 0.974928i \(-0.571429\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(524\) 0 0
\(525\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.698237 0.715867i 0.698237 0.715867i
\(530\) 0 0
\(531\) 0 0
\(532\) −0.969077 0.246757i −0.969077 0.246757i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.0329926 + 1.32296i 0.0329926 + 1.32296i 0.766044 + 0.642788i \(0.222222\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(542\) 0 0
\(543\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.27406 + 1.24268i −1.27406 + 1.24268i −0.318487 + 0.947927i \(0.603175\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(548\) 0 0
\(549\) 0.489685 1.92311i 0.489685 1.92311i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.31352 + 1.04750i 1.31352 + 1.04750i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.708121 + 1.67986i −0.708121 + 1.67986i
\(557\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(558\) 0 0
\(559\) −1.67772 1.55670i −1.67772 1.55670i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) −0.795429 0.738050i −0.795429 0.738050i 0.173648 0.984808i \(-0.444444\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.542546 + 0.840026i −0.542546 + 0.840026i
\(577\) −0.678448 0.541044i −0.678448 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(578\) 0 0
\(579\) −0.283693 + 1.40335i −0.283693 + 1.40335i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(588\) 0.173648 0.984808i 0.173648 0.984808i
\(589\) 0.155054 0.194432i 0.155054 0.194432i
\(590\) 0 0
\(591\) 0 0
\(592\) 1.01442 0.655184i 1.01442 0.655184i
\(593\) 0 0 −0.962624 0.270840i \(-0.912698\pi\)
0.962624 + 0.270840i \(0.0873016\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.17241 + 0.934962i −1.17241 + 0.934962i
\(598\) 0 0
\(599\) 0 0 −0.521435 0.853291i \(-0.674603\pi\)
0.521435 + 0.853291i \(0.325397\pi\)
\(600\) 0 0
\(601\) 1.51498 + 0.228346i 1.51498 + 0.228346i 0.853291 0.521435i \(-0.174603\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(602\) 0 0
\(603\) 0.846746 1.38564i 0.846746 1.38564i
\(604\) 0.242026 0.174005i 0.242026 0.174005i
\(605\) 0 0
\(606\) 0 0
\(607\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.67841 + 0.914013i −1.67841 + 0.914013i −0.698237 + 0.715867i \(0.746032\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(618\) 0 0
\(619\) 0.592396 0.342020i 0.592396 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 1.14434 0.231333i 1.14434 0.231333i
\(625\) −0.124344 0.992239i −0.124344 0.992239i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.459400 + 0.180301i 0.459400 + 0.180301i
\(629\) 0 0
\(630\) 0 0
\(631\) 1.98759 0.198888i 1.98759 0.198888i 0.988831 0.149042i \(-0.0476190\pi\)
0.998757 0.0498459i \(-0.0158730\pi\)
\(632\) 0 0
\(633\) −0.0387238 0.0918636i −0.0387238 0.0918636i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.964623 + 0.657669i −0.964623 + 0.657669i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.0498459 0.998757i \(-0.515873\pi\)
0.0498459 + 0.998757i \(0.484127\pi\)
\(642\) 0 0
\(643\) 0.475069 1.86571i 0.475069 1.86571i −0.0249307 0.999689i \(-0.507937\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0.205475 + 0.140091i 0.205475 + 0.140091i
\(652\) 1.36879 + 0.276706i 1.36879 + 0.276706i
\(653\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.528406 + 0.569486i −0.528406 + 0.569486i
\(658\) 0 0
\(659\) 0 0 0.603804 0.797133i \(-0.293651\pi\)
−0.603804 + 0.797133i \(0.706349\pi\)
\(660\) 0 0
\(661\) −0.980172 0.198146i −0.980172 0.198146i −0.318487 0.947927i \(-0.603175\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.416256 0.811938i −0.416256 0.811938i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.185370 0.0727524i 0.185370 0.0727524i −0.270840 0.962624i \(-0.587302\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(674\) 0 0
\(675\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(676\) −0.299947 0.204500i −0.299947 0.204500i
\(677\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(678\) 0 0
\(679\) −0.455573 + 0.571270i −0.455573 + 0.571270i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(684\) −0.998757 + 0.0498459i −0.998757 + 0.0498459i
\(685\) 0 0
\(686\) 0 0
\(687\) −0.670344 + 0.798885i −0.670344 + 0.798885i
\(688\) −1.72162 0.937543i −1.72162 0.937543i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.975699 + 1.43109i 0.975699 + 1.43109i 0.900969 + 0.433884i \(0.142857\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(701\) 0 0 0.878222 0.478254i \(-0.158730\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(702\) 0 0
\(703\) 1.12413 + 0.441189i 1.12413 + 0.441189i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.212203 + 1.69334i −0.212203 + 1.69334i 0.411287 + 0.911506i \(0.365079\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(710\) 0 0
\(711\) 1.56392 + 0.613792i 1.56392 + 0.613792i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.962624 0.270840i \(-0.0873016\pi\)
−0.962624 + 0.270840i \(0.912698\pi\)
\(720\) 0 0
\(721\) −0.0291063 0.0404844i −0.0291063 0.0404844i
\(722\) 0 0
\(723\) −1.85205 + 0.571281i −1.85205 + 0.571281i
\(724\) 1.61971 0.327432i 1.61971 0.327432i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.196110 + 1.95983i −0.196110 + 1.95983i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(728\) 0 0
\(729\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(730\) 0 0
\(731\) 0 0
\(732\) −1.42062 + 1.38564i −1.42062 + 1.38564i
\(733\) 1.45557 + 1.16078i 1.45557 + 1.16078i 0.955573 + 0.294755i \(0.0952381\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.907887 + 1.77090i −0.907887 + 1.77090i −0.365341 + 0.930874i \(0.619048\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(740\) 0 0
\(741\) 0.855829 + 0.794093i 0.855829 + 0.794093i
\(742\) 0 0
\(743\) 0 0 −0.811938 0.583744i \(-0.801587\pi\)
0.811938 + 0.583744i \(0.198413\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.82245 + 0.822319i 1.82245 + 0.822319i 0.921476 + 0.388435i \(0.126984\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.124344 0.992239i −0.124344 0.992239i
\(757\) 0.247121 0.482027i 0.247121 0.482027i −0.733052 0.680173i \(-0.761905\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(762\) 0 0
\(763\) −1.09839 + 0.250701i −1.09839 + 0.250701i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.900969 0.433884i 0.900969 0.433884i
\(769\) 0.963900 + 0.850647i 0.963900 + 0.850647i 0.988831 0.149042i \(-0.0476190\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.973826 1.04954i 0.973826 1.04954i
\(773\) 0 0 −0.878222 0.478254i \(-0.841270\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(774\) 0 0
\(775\) −0.164553 + 0.186461i −0.164553 + 0.186461i
\(776\) 0 0
\(777\) −0.355949 + 1.15396i −0.355949 + 1.15396i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.661686 + 0.749781i −0.661686 + 0.749781i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.0810891 + 1.08206i 0.0810891 + 1.08206i 0.878222 + 0.478254i \(0.158730\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.31613 + 0.0577608i 2.31613 + 0.0577608i
\(794\) 0 0
\(795\) 0 0
\(796\) 1.48792 0.186461i 1.48792 0.186461i
\(797\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.44504 + 0.740830i −1.44504 + 0.740830i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(810\) 0 0
\(811\) 0.119140 + 0.0902447i 0.119140 + 0.0902447i 0.661686 0.749781i \(-0.269841\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(812\) 0 0
\(813\) 1.67535 + 1.08206i 1.67535 + 1.08206i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.243757 1.94513i −0.243757 1.94513i
\(818\) 0 0
\(819\) −0.727916 + 0.912778i −0.727916 + 0.912778i
\(820\) 0 0
\(821\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(822\) 0 0
\(823\) −1.15445 1.60574i −1.15445 1.60574i −0.698237 0.715867i \(-0.746032\pi\)
−0.456211 0.889872i \(-0.650794\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.811938 0.583744i \(-0.198413\pi\)
−0.811938 + 0.583744i \(0.801587\pi\)
\(828\) 0 0
\(829\) 0.241456 + 1.05789i 0.241456 + 1.05789i 0.939693 + 0.342020i \(0.111111\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(830\) 0 0
\(831\) 0.146497 0.0296150i 0.146497 0.0296150i
\(832\) −1.09708 0.399304i −1.09708 0.399304i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.237639 + 0.0733019i 0.237639 + 0.0733019i
\(838\) 0 0
\(839\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(840\) 0 0
\(841\) −0.995031 0.0995678i −0.995031 0.0995678i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.0148583 + 0.0985783i −0.0148583 + 0.0985783i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(848\) 0 0
\(849\) 0.194143 + 1.94017i 0.194143 + 1.94017i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.153934 0.365174i 0.153934 0.365174i −0.826239 0.563320i \(-0.809524\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(858\) 0 0
\(859\) −0.153934 0.365174i −0.153934 0.365174i 0.826239 0.563320i \(-0.190476\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.365341 0.930874i 0.365341 0.930874i
\(868\) −0.102282 0.226680i −0.102282 0.226680i
\(869\) 0 0
\(870\) 0 0
\(871\) 1.79713 + 0.603804i 1.79713 + 0.603804i
\(872\) 0 0
\(873\) −0.266948 + 0.680173i −0.266948 + 0.680173i
\(874\) 0 0
\(875\) 0 0
\(876\) 0.747834 0.210408i 0.747834 0.210408i
\(877\) 1.62337 + 1.16712i 1.62337 + 1.16712i 0.826239 + 0.563320i \(0.190476\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 0 0
\(883\) 0.0940619 + 0.533452i 0.0940619 + 0.533452i 0.995031 + 0.0995678i \(0.0317460\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(888\) 0 0
\(889\) −1.56318 0.0389832i −1.56318 0.0389832i
\(890\) 0 0
\(891\) 0 0
\(892\) −0.0681853 + 0.909870i −0.0681853 + 0.909870i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 1.92148 0.388435i 1.92148 0.388435i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.953833 + 1.75153i 0.953833 + 1.75153i 0.542546 + 0.840026i \(0.317460\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(912\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.988565 0.332140i 0.988565 0.332140i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.45882 1.35359i −1.45882 1.35359i −0.797133 0.603804i \(-0.793651\pi\)
−0.661686 0.749781i \(-0.730159\pi\)
\(920\) 0 0
\(921\) 1.96783 0.196912i 1.96783 0.196912i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.10074 0.496674i −1.10074 0.496674i
\(926\) 0 0
\(927\) −0.0397461 0.0301065i −0.0397461 0.0301065i
\(928\) 0 0
\(929\) 0 0 −0.947927 0.318487i \(-0.896825\pi\)
0.947927 + 0.318487i \(0.103175\pi\)
\(930\) 0 0
\(931\) −0.995031 0.0995678i −0.995031 0.0995678i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.72808 0.779741i −1.72808 0.779741i −0.995031 0.0995678i \(-0.968254\pi\)
−0.733052 0.680173i \(-0.761905\pi\)
\(938\) 0 0
\(939\) 0.766310 + 1.12397i 0.766310 + 1.12397i
\(940\) 0 0
\(941\) 0 0 0.995031 0.0995678i \(-0.0317460\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(948\) −1.01442 1.33922i −1.01442 1.33922i
\(949\) −0.785472 0.453493i −0.785472 0.453493i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.889872 0.456211i \(-0.849206\pi\)
0.889872 + 0.456211i \(0.150794\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.938155 −0.938155
\(962\) 0 0
\(963\) 0 0
\(964\) 1.87822 + 0.478254i 1.87822 + 0.478254i
\(965\) 0 0
\(966\) 0 0
\(967\) −1.12922 1.27956i −1.12922 1.27956i −0.955573 0.294755i \(-0.904762\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.853291 0.521435i \(-0.825397\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(972\) −0.411287 0.911506i −0.411287 0.911506i
\(973\) −0.449842 + 1.76664i −0.449842 + 1.76664i
\(974\) 0 0
\(975\) −0.815183 0.835765i −0.815183 0.835765i
\(976\) 1.93472 0.441588i 1.93472 0.441588i
\(977\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.975699 + 0.563320i −0.975699 + 0.563320i
\(982\) 0 0
\(983\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −0.316203 1.12385i −0.316203 1.12385i
\(989\) 0 0
\(990\) 0 0
\(991\) −0.906700 0.304635i −0.906700 0.304635i −0.173648 0.984808i \(-0.555556\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(992\) 0 0
\(993\) 1.79713 + 0.603804i 1.79713 + 0.603804i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.07992 + 0.697484i 1.07992 + 0.697484i 0.955573 0.294755i \(-0.0952381\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(998\) 0 0
\(999\) 1.20761i 1.20761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.1.er.a.59.1 36
3.2 odd 2 CM 2793.1.er.a.59.1 36
19.10 odd 18 2793.1.ew.a.941.1 yes 36
49.5 odd 42 2793.1.ew.a.1769.1 yes 36
57.29 even 18 2793.1.ew.a.941.1 yes 36
147.5 even 42 2793.1.ew.a.1769.1 yes 36
931.789 even 126 inner 2793.1.er.a.2651.1 yes 36
2793.2651 odd 126 inner 2793.1.er.a.2651.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.1.er.a.59.1 36 1.1 even 1 trivial
2793.1.er.a.59.1 36 3.2 odd 2 CM
2793.1.er.a.2651.1 yes 36 931.789 even 126 inner
2793.1.er.a.2651.1 yes 36 2793.2651 odd 126 inner
2793.1.ew.a.941.1 yes 36 19.10 odd 18
2793.1.ew.a.941.1 yes 36 57.29 even 18
2793.1.ew.a.1769.1 yes 36 49.5 odd 42
2793.1.ew.a.1769.1 yes 36 147.5 even 42