Properties

Label 2793.1.er.a.983.1
Level $2793$
Weight $1$
Character 2793.983
Analytic conductor $1.394$
Analytic rank $0$
Dimension $36$
Projective image $D_{126}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,1,Mod(59,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
chi = DirichletCharacter(H, H._module([63, 39, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.59");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2793.er (of order \(126\), degree \(36\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39388858028\)
Analytic rank: \(0\)
Dimension: \(36\)
Coefficient field: \(\Q(\zeta_{63})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{126}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{126} - \cdots)\)

Embedding invariants

Embedding label 983.1
Root \(0.980172 + 0.198146i\) of defining polynomial
Character \(\chi\) \(=\) 2793.983
Dual form 2793.1.er.a.1307.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.969077 + 0.246757i) q^{3} +(0.998757 + 0.0498459i) q^{4} +(-0.318487 - 0.947927i) q^{7} +(0.878222 + 0.478254i) q^{9} +O(q^{10})\) \(q+(0.969077 + 0.246757i) q^{3} +(0.998757 + 0.0498459i) q^{4} +(-0.318487 - 0.947927i) q^{7} +(0.878222 + 0.478254i) q^{9} +(0.955573 + 0.294755i) q^{12} +(-0.924027 + 1.04705i) q^{13} +(0.995031 + 0.0995678i) q^{16} +(-0.623490 - 0.781831i) q^{19} +(-0.0747301 - 0.997204i) q^{21} +(0.853291 - 0.521435i) q^{25} +(0.733052 + 0.680173i) q^{27} +(-0.270840 - 0.962624i) q^{28} +0.912421 q^{31} +(0.853291 + 0.521435i) q^{36} +(0.0678076 + 0.0730792i) q^{37} +(-1.15382 + 0.786662i) q^{39} +(0.722402 + 1.60101i) q^{43} +(0.939693 + 0.342020i) q^{48} +(-0.797133 + 0.603804i) q^{49} +(-0.975069 + 0.999689i) q^{52} +(-0.411287 - 0.911506i) q^{57} +(-1.76593 - 0.221300i) q^{61} +(0.173648 - 0.984808i) q^{63} +(0.988831 + 0.149042i) q^{64} +(-0.920301 - 1.09677i) q^{67} +(-0.332896 - 1.64674i) q^{73} +(0.955573 - 0.294755i) q^{75} +(-0.583744 - 0.811938i) q^{76} +(-0.413027 - 1.13478i) q^{79} +(0.542546 + 0.840026i) q^{81} +(-0.0249307 - 0.999689i) q^{84} +(1.28682 + 0.542439i) q^{91} +(0.884207 + 0.225147i) q^{93} +(-1.85839 + 0.676400i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 3 q^{12} + 3 q^{13} + 6 q^{19} - 3 q^{21} - 3 q^{27} - 3 q^{43} - 36 q^{52} - 3 q^{61} - 3 q^{64} + 3 q^{67} + 3 q^{73} + 3 q^{75} - 3 q^{79} + 3 q^{91} + 6 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2793\mathbb{Z}\right)^\times\).

\(n\) \(932\) \(2110\) \(2206\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.999689 0.0249307i \(-0.992063\pi\)
0.999689 + 0.0249307i \(0.00793651\pi\)
\(3\) 0.969077 + 0.246757i 0.969077 + 0.246757i
\(4\) 0.998757 + 0.0498459i 0.998757 + 0.0498459i
\(5\) 0 0 0.962624 0.270840i \(-0.0873016\pi\)
−0.962624 + 0.270840i \(0.912698\pi\)
\(6\) 0 0
\(7\) −0.318487 0.947927i −0.318487 0.947927i
\(8\) 0 0
\(9\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(10\) 0 0
\(11\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(12\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(13\) −0.924027 + 1.04705i −0.924027 + 1.04705i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.995031 + 0.0995678i 0.995031 + 0.0995678i
\(17\) 0 0 −0.0498459 0.998757i \(-0.515873\pi\)
0.0498459 + 0.998757i \(0.484127\pi\)
\(18\) 0 0
\(19\) −0.623490 0.781831i −0.623490 0.781831i
\(20\) 0 0
\(21\) −0.0747301 0.997204i −0.0747301 0.997204i
\(22\) 0 0
\(23\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(24\) 0 0
\(25\) 0.853291 0.521435i 0.853291 0.521435i
\(26\) 0 0
\(27\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(28\) −0.270840 0.962624i −0.270840 0.962624i
\(29\) 0 0 −0.992239 0.124344i \(-0.960317\pi\)
0.992239 + 0.124344i \(0.0396825\pi\)
\(30\) 0 0
\(31\) 0.912421 0.912421 0.456211 0.889872i \(-0.349206\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.853291 + 0.521435i 0.853291 + 0.521435i
\(37\) 0.0678076 + 0.0730792i 0.0678076 + 0.0730792i 0.766044 0.642788i \(-0.222222\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(38\) 0 0
\(39\) −1.15382 + 0.786662i −1.15382 + 0.786662i
\(40\) 0 0
\(41\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(42\) 0 0
\(43\) 0.722402 + 1.60101i 0.722402 + 1.60101i 0.797133 + 0.603804i \(0.206349\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.749781 0.661686i \(-0.769841\pi\)
0.749781 + 0.661686i \(0.230159\pi\)
\(48\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(49\) −0.797133 + 0.603804i −0.797133 + 0.603804i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.975069 + 0.999689i −0.975069 + 0.999689i
\(53\) 0 0 0.0498459 0.998757i \(-0.484127\pi\)
−0.0498459 + 0.998757i \(0.515873\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.411287 0.911506i −0.411287 0.911506i
\(58\) 0 0
\(59\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(60\) 0 0
\(61\) −1.76593 0.221300i −1.76593 0.221300i −0.826239 0.563320i \(-0.809524\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(62\) 0 0
\(63\) 0.173648 0.984808i 0.173648 0.984808i
\(64\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.920301 1.09677i −0.920301 1.09677i −0.995031 0.0995678i \(-0.968254\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.603804 0.797133i \(-0.706349\pi\)
0.603804 + 0.797133i \(0.293651\pi\)
\(72\) 0 0
\(73\) −0.332896 1.64674i −0.332896 1.64674i −0.698237 0.715867i \(-0.746032\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(74\) 0 0
\(75\) 0.955573 0.294755i 0.955573 0.294755i
\(76\) −0.583744 0.811938i −0.583744 0.811938i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.413027 1.13478i −0.413027 1.13478i −0.955573 0.294755i \(-0.904762\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(80\) 0 0
\(81\) 0.542546 + 0.840026i 0.542546 + 0.840026i
\(82\) 0 0
\(83\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(84\) −0.0249307 0.999689i −0.0249307 0.999689i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(90\) 0 0
\(91\) 1.28682 + 0.542439i 1.28682 + 0.542439i
\(92\) 0 0
\(93\) 0.884207 + 0.225147i 0.884207 + 0.225147i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.85839 + 0.676400i −1.85839 + 0.676400i −0.878222 + 0.478254i \(0.841270\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.878222 0.478254i 0.878222 0.478254i
\(101\) 0 0 −0.0995678 0.995031i \(-0.531746\pi\)
0.0995678 + 0.995031i \(0.468254\pi\)
\(102\) 0 0
\(103\) −1.19232 + 0.574189i −1.19232 + 0.574189i −0.921476 0.388435i \(-0.873016\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.930874 0.365341i \(-0.119048\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(108\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(109\) −1.03995 + 1.70181i −1.03995 + 1.70181i −0.456211 + 0.889872i \(0.650794\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(110\) 0 0
\(111\) 0.0476780 + 0.0875515i 0.0476780 + 0.0875515i
\(112\) −0.222521 0.974928i −0.222521 0.974928i
\(113\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.31226 + 0.477622i −1.31226 + 0.477622i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.733052 0.680173i −0.733052 0.680173i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.911287 + 0.0454804i 0.911287 + 0.0454804i
\(125\) 0 0
\(126\) 0 0
\(127\) −0.607381 1.44088i −0.607381 1.44088i −0.878222 0.478254i \(-0.841270\pi\)
0.270840 0.962624i \(-0.412698\pi\)
\(128\) 0 0
\(129\) 0.305003 + 1.72976i 0.305003 + 1.72976i
\(130\) 0 0
\(131\) 0 0 0.911506 0.411287i \(-0.134921\pi\)
−0.911506 + 0.411287i \(0.865079\pi\)
\(132\) 0 0
\(133\) −0.542546 + 0.840026i −0.542546 + 0.840026i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.270840 0.962624i \(-0.412698\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(138\) 0 0
\(139\) 1.56318 1.12385i 1.56318 1.12385i 0.623490 0.781831i \(-0.285714\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.921476 + 0.388435i −0.921476 + 0.388435i
\(148\) 0.0640806 + 0.0763683i 0.0640806 + 0.0763683i
\(149\) 0 0 −0.853291 0.521435i \(-0.825397\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(150\) 0 0
\(151\) −1.26631 + 1.36476i −1.26631 + 1.36476i −0.365341 + 0.930874i \(0.619048\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.19160 + 0.728171i −1.19160 + 0.728171i
\(157\) −0.161686 + 1.61581i −0.161686 + 1.61581i 0.500000 + 0.866025i \(0.333333\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.741114 0.356902i −0.741114 0.356902i 0.0249307 0.999689i \(-0.492063\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.797133 0.603804i \(-0.793651\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(168\) 0 0
\(169\) −0.118144 0.942765i −0.118144 0.942765i
\(170\) 0 0
\(171\) −0.173648 0.984808i −0.173648 0.984808i
\(172\) 0.641701 + 1.63503i 0.641701 + 1.63503i
\(173\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(174\) 0 0
\(175\) −0.766044 0.642788i −0.766044 0.642788i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(180\) 0 0
\(181\) 0.127533 0.0779338i 0.127533 0.0779338i −0.456211 0.889872i \(-0.650794\pi\)
0.583744 + 0.811938i \(0.301587\pi\)
\(182\) 0 0
\(183\) −1.65672 0.650213i −1.65672 0.650213i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.411287 0.911506i 0.411287 0.911506i
\(190\) 0 0
\(191\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(192\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(193\) −0.449842 + 1.76664i −0.449842 + 1.76664i 0.173648 + 0.984808i \(0.444444\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) 0.950582 + 0.428919i 0.950582 + 0.428919i 0.826239 0.563320i \(-0.190476\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(200\) 0 0
\(201\) −0.621206 1.28995i −0.621206 1.28995i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −1.02369 + 0.949843i −1.02369 + 0.949843i
\(209\) 0 0
\(210\) 0 0
\(211\) 1.88114 + 0.632030i 1.88114 + 0.632030i 0.980172 + 0.198146i \(0.0634921\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.290594 0.864909i −0.290594 0.864909i
\(218\) 0 0
\(219\) 0.0837437 1.67796i 0.0837437 1.67796i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.46908 + 1.11278i −1.46908 + 1.11278i −0.500000 + 0.866025i \(0.666667\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(224\) 0 0
\(225\) 0.998757 0.0498459i 0.998757 0.0498459i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) −0.365341 0.930874i −0.365341 0.930874i
\(229\) 0.395184 0.0296150i 0.395184 0.0296150i 0.124344 0.992239i \(-0.460317\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.998757 0.0498459i \(-0.0158730\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.120239 1.20161i −0.120239 1.20161i
\(238\) 0 0
\(239\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(240\) 0 0
\(241\) 0.633416 0.980720i 0.633416 0.980720i −0.365341 0.930874i \(-0.619048\pi\)
0.998757 0.0498459i \(-0.0158730\pi\)
\(242\) 0 0
\(243\) 0.318487 + 0.947927i 0.318487 + 0.947927i
\(244\) −1.75271 0.309049i −1.75271 0.309049i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.39474 + 0.0696085i 1.39474 + 0.0696085i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.246757 0.969077i \(-0.579365\pi\)
0.246757 + 0.969077i \(0.420635\pi\)
\(252\) 0.222521 0.974928i 0.222521 0.974928i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(257\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(258\) 0 0
\(259\) 0.0476780 0.0875515i 0.0476780 0.0875515i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.864487 1.14128i −0.864487 1.14128i
\(269\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(270\) 0 0
\(271\) 0.437626 1.03817i 0.437626 1.03817i −0.542546 0.840026i \(-0.682540\pi\)
0.980172 0.198146i \(-0.0634921\pi\)
\(272\) 0 0
\(273\) 1.11317 + 0.843197i 1.11317 + 0.843197i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.21135 1.12397i 1.21135 1.12397i 0.222521 0.974928i \(-0.428571\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(278\) 0 0
\(279\) 0.801308 + 0.436369i 0.801308 + 0.436369i
\(280\) 0 0
\(281\) 0 0 0.198146 0.980172i \(-0.436508\pi\)
−0.198146 + 0.980172i \(0.563492\pi\)
\(282\) 0 0
\(283\) 0.932526 + 1.71241i 0.932526 + 1.71241i 0.661686 + 0.749781i \(0.269841\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.995031 + 0.0995678i −0.995031 + 0.0995678i
\(290\) 0 0
\(291\) −1.96783 + 0.196912i −1.96783 + 0.196912i
\(292\) −0.250399 1.66129i −0.250399 1.66129i
\(293\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0.969077 0.246757i 0.969077 0.246757i
\(301\) 1.28756 1.19468i 1.28756 1.19468i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.542546 0.840026i −0.542546 0.840026i
\(305\) 0 0
\(306\) 0 0
\(307\) 0.641701 0.349452i 0.641701 0.349452i −0.124344 0.992239i \(-0.539683\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(308\) 0 0
\(309\) −1.29713 + 0.262221i −1.29713 + 0.262221i
\(310\) 0 0
\(311\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(312\) 0 0
\(313\) −0.580554 + 0.102367i −0.580554 + 0.102367i −0.456211 0.889872i \(-0.650794\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.355949 1.15396i −0.355949 1.15396i
\(317\) 0 0 0.889872 0.456211i \(-0.150794\pi\)
−0.889872 + 0.456211i \(0.849206\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(325\) −0.242495 + 1.37526i −0.242495 + 1.37526i
\(326\) 0 0
\(327\) −1.42773 + 1.39257i −1.42773 + 1.39257i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.94925 0.444904i 1.94925 0.444904i 0.969077 0.246757i \(-0.0793651\pi\)
0.980172 0.198146i \(-0.0634921\pi\)
\(332\) 0 0
\(333\) 0.0245997 + 0.0966090i 0.0245997 + 0.0966090i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.0249307 0.999689i 0.0249307 0.999689i
\(337\) −0.181513 + 0.0819019i −0.181513 + 0.0819019i −0.500000 0.866025i \(-0.666667\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.124344 0.992239i \(-0.539683\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(348\) 0 0
\(349\) −1.89055 + 0.141677i −1.89055 + 0.141677i −0.969077 0.246757i \(-0.920635\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(350\) 0 0
\(351\) −1.38953 + 0.139044i −1.38953 + 0.139044i
\(352\) 0 0
\(353\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(360\) 0 0
\(361\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(362\) 0 0
\(363\) −0.542546 0.840026i −0.542546 0.840026i
\(364\) 1.25818 + 0.605907i 1.25818 + 0.605907i
\(365\) 0 0
\(366\) 0 0
\(367\) −0.257336 0.421112i −0.257336 0.421112i 0.698237 0.715867i \(-0.253968\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0.871885 + 0.268941i 0.871885 + 0.268941i
\(373\) 0.258149 + 0.149042i 0.258149 + 0.149042i 0.623490 0.781831i \(-0.285714\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.747828 0.596373i 0.747828 0.596373i −0.173648 0.984808i \(-0.555556\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(380\) 0 0
\(381\) −0.233052 1.54620i −0.233052 1.54620i
\(382\) 0 0
\(383\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.131259 + 1.75153i −0.131259 + 1.75153i
\(388\) −1.88980 + 0.582926i −1.88980 + 0.582926i
\(389\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.191698 0.752847i 0.191698 0.752847i −0.797133 0.603804i \(-0.793651\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(398\) 0 0
\(399\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(400\) 0.900969 0.433884i 0.900969 0.433884i
\(401\) 0 0 −0.198146 0.980172i \(-0.563492\pi\)
0.198146 + 0.980172i \(0.436508\pi\)
\(402\) 0 0
\(403\) −0.843102 + 0.955350i −0.843102 + 0.955350i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.16868 + 0.885240i 1.16868 + 0.885240i 0.995031 0.0995678i \(-0.0317460\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.21946 + 0.514044i −1.21946 + 0.514044i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.79216 0.703372i 1.79216 0.703372i
\(418\) 0 0
\(419\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(420\) 0 0
\(421\) −0.0432546 0.866689i −0.0432546 0.866689i −0.921476 0.388435i \(-0.873016\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.352649 + 1.74446i 0.352649 + 1.74446i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.715867 0.698237i \(-0.246032\pi\)
−0.715867 + 0.698237i \(0.753968\pi\)
\(432\) 0.661686 + 0.749781i 0.661686 + 0.749781i
\(433\) 0.806265 1.78687i 0.806265 1.78687i 0.222521 0.974928i \(-0.428571\pi\)
0.583744 0.811938i \(-0.301587\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.12349 + 1.64786i −1.12349 + 1.64786i
\(437\) 0 0
\(438\) 0 0
\(439\) 0.0483195 1.93755i 0.0483195 1.93755i −0.222521 0.974928i \(-0.571429\pi\)
0.270840 0.962624i \(-0.412698\pi\)
\(440\) 0 0
\(441\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(442\) 0 0
\(443\) 0 0 −0.980172 0.198146i \(-0.936508\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(444\) 0.0432546 + 0.0898192i 0.0432546 + 0.0898192i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.173648 0.984808i −0.173648 0.984808i
\(449\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −1.56392 + 1.01008i −1.56392 + 1.01008i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.0810891 1.08206i −0.0810891 1.08206i −0.878222 0.478254i \(-0.841270\pi\)
0.797133 0.603804i \(-0.206349\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.889872 0.456211i \(-0.849206\pi\)
0.889872 + 0.456211i \(0.150794\pi\)
\(462\) 0 0
\(463\) 0.517616 0.159663i 0.517616 0.159663i −0.0249307 0.999689i \(-0.507937\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(468\) −1.33443 + 0.411618i −1.33443 + 0.411618i
\(469\) −0.746556 + 1.22169i −0.746556 + 1.22169i
\(470\) 0 0
\(471\) −0.555398 + 1.52594i −0.555398 + 1.52594i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.939693 0.342020i −0.939693 0.342020i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.749781 0.661686i \(-0.769841\pi\)
0.749781 + 0.661686i \(0.230159\pi\)
\(480\) 0 0
\(481\) −0.139174 + 0.00347077i −0.139174 + 0.00347077i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.698237 0.715867i −0.698237 0.715867i
\(485\) 0 0
\(486\) 0 0
\(487\) −0.590232 1.22563i −0.590232 1.22563i −0.955573 0.294755i \(-0.904762\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(488\) 0 0
\(489\) −0.630128 0.528741i −0.630128 0.528741i
\(490\) 0 0
\(491\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.907887 + 0.0908478i 0.907887 + 0.0908478i
\(497\) 0 0
\(498\) 0 0
\(499\) 1.32173 + 1.49770i 1.32173 + 1.49770i 0.698237 + 0.715867i \(0.253968\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.947927 0.318487i \(-0.103175\pi\)
−0.947927 + 0.318487i \(0.896825\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.118144 0.942765i 0.118144 0.942765i
\(508\) −0.534804 1.46936i −0.534804 1.46936i
\(509\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(510\) 0 0
\(511\) −1.45497 + 0.840026i −1.45497 + 0.840026i
\(512\) 0 0
\(513\) 0.0747301 0.997204i 0.0747301 0.997204i
\(514\) 0 0
\(515\) 0 0
\(516\) 0.218403 + 1.74281i 0.218403 + 1.74281i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) −0.541008 + 1.92286i −0.541008 + 1.92286i −0.222521 + 0.974928i \(0.571429\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(524\) 0 0
\(525\) −0.583744 0.811938i −0.583744 0.811938i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.411287 0.911506i −0.411287 0.911506i
\(530\) 0 0
\(531\) 0 0
\(532\) −0.583744 + 0.811938i −0.583744 + 0.811938i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.12922 1.27956i 1.12922 1.27956i 0.173648 0.984808i \(-0.444444\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(542\) 0 0
\(543\) 0.142820 0.0440542i 0.142820 0.0440542i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.708121 + 0.319516i 0.708121 + 0.319516i 0.733052 0.680173i \(-0.238095\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(548\) 0 0
\(549\) −1.44504 1.03891i −1.44504 1.03891i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.944147 + 0.752932i −0.944147 + 0.752932i
\(554\) 0 0
\(555\) 0 0
\(556\) 1.61726 1.04454i 1.61726 1.04454i
\(557\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(558\) 0 0
\(559\) −2.34385 0.722983i −2.34385 0.722983i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.623490 0.781831i 0.623490 0.781831i
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) −1.52344 0.469918i −1.52344 0.469918i −0.583744 0.811938i \(-0.698413\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.797133 + 0.603804i 0.797133 + 0.603804i
\(577\) −0.678448 + 0.541044i −0.678448 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(578\) 0 0
\(579\) −0.871863 + 1.60101i −0.871863 + 1.60101i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(588\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(589\) −0.568885 0.713360i −0.568885 0.713360i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.0601943 + 0.0794676i 0.0601943 + 0.0794676i
\(593\) 0 0 −0.0995678 0.995031i \(-0.531746\pi\)
0.0995678 + 0.995031i \(0.468254\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.815349 + 0.650219i 0.815349 + 0.650219i
\(598\) 0 0
\(599\) 0 0 0.198146 0.980172i \(-0.436508\pi\)
−0.198146 + 0.980172i \(0.563492\pi\)
\(600\) 0 0
\(601\) −0.126882 + 0.323289i −0.126882 + 0.323289i −0.980172 0.198146i \(-0.936508\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(602\) 0 0
\(603\) −0.283693 1.40335i −0.283693 1.40335i
\(604\) −1.33276 + 1.29994i −1.33276 + 1.29994i
\(605\) 0 0
\(606\) 0 0
\(607\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.466934 + 1.38976i −0.466934 + 1.38976i 0.411287 + 0.911506i \(0.365079\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(618\) 0 0
\(619\) 1.11334 0.642788i 1.11334 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −1.22641 + 0.667869i −1.22641 + 0.667869i
\(625\) 0.456211 0.889872i 0.456211 0.889872i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.242026 + 1.60574i −0.242026 + 1.60574i
\(629\) 0 0
\(630\) 0 0
\(631\) −0.240997 + 0.0613655i −0.240997 + 0.0613655i −0.365341 0.930874i \(-0.619048\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(632\) 0 0
\(633\) 1.66701 + 1.07667i 1.66701 + 1.07667i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.104359 1.39257i 0.104359 1.39257i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.992239 0.124344i \(-0.0396825\pi\)
−0.992239 + 0.124344i \(0.960317\pi\)
\(642\) 0 0
\(643\) −0.161686 0.116244i −0.161686 0.116244i 0.500000 0.866025i \(-0.333333\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.0681853 0.909870i −0.0681853 0.909870i
\(652\) −0.722402 0.393399i −0.722402 0.393399i
\(653\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.495204 1.60541i 0.495204 1.60541i
\(658\) 0 0
\(659\) 0 0 0.0498459 0.998757i \(-0.484127\pi\)
−0.0498459 + 0.998757i \(0.515873\pi\)
\(660\) 0 0
\(661\) −0.878222 0.478254i −0.878222 0.478254i −0.0249307 0.999689i \(-0.507937\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1.69824 + 0.715867i −1.69824 + 0.715867i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.0735546 0.488003i −0.0735546 0.488003i −0.995031 0.0995678i \(-0.968254\pi\)
0.921476 0.388435i \(-0.126984\pi\)
\(674\) 0 0
\(675\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(676\) −0.0710039 0.947482i −0.0710039 0.947482i
\(677\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(678\) 0 0
\(679\) 1.23305 + 1.54620i 1.23305 + 1.54620i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(684\) −0.124344 0.992239i −0.124344 0.992239i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.390272 + 0.0688154i 0.390272 + 0.0688154i
\(688\) 0.559404 + 1.66498i 0.559404 + 1.66498i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.72721 + 0.129436i 1.72721 + 0.129436i 0.900969 0.433884i \(-0.142857\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.733052 0.680173i −0.733052 0.680173i
\(701\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(702\) 0 0
\(703\) 0.0148583 0.0985783i 0.0148583 0.0985783i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.894330 1.74446i −0.894330 1.74446i −0.623490 0.781831i \(-0.714286\pi\)
−0.270840 0.962624i \(-0.587302\pi\)
\(710\) 0 0
\(711\) 0.179985 1.19412i 0.179985 1.19412i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.0995678 0.995031i \(-0.468254\pi\)
−0.0995678 + 0.995031i \(0.531746\pi\)
\(720\) 0 0
\(721\) 0.924027 + 0.947358i 0.924027 + 0.947358i
\(722\) 0 0
\(723\) 0.855829 0.794093i 0.855829 0.794093i
\(724\) 0.131259 0.0714799i 0.131259 0.0714799i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.168792 + 0.662888i −0.168792 + 0.662888i 0.826239 + 0.563320i \(0.190476\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(728\) 0 0
\(729\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(730\) 0 0
\(731\) 0 0
\(732\) −1.62225 0.731986i −1.62225 0.731986i
\(733\) −0.233052 + 0.185853i −0.233052 + 0.185853i −0.733052 0.680173i \(-0.761905\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.78596 + 0.752847i 1.78596 + 0.752847i 0.988831 + 0.149042i \(0.0476190\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(740\) 0 0
\(741\) 1.33443 + 0.411618i 1.33443 + 0.411618i
\(742\) 0 0
\(743\) 0 0 −0.715867 0.698237i \(-0.753968\pi\)
0.715867 + 0.698237i \(0.246032\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.44352 + 0.406142i 1.44352 + 0.406142i 0.900969 0.433884i \(-0.142857\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.456211 0.889872i 0.456211 0.889872i
\(757\) 1.83379 + 0.773009i 1.83379 + 0.773009i 0.955573 + 0.294755i \(0.0952381\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(762\) 0 0
\(763\) 1.94440 + 0.443797i 1.94440 + 0.443797i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(769\) −1.02703 1.68065i −1.02703 1.68065i −0.661686 0.749781i \(-0.730159\pi\)
−0.365341 0.930874i \(-0.619048\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.537342 + 1.74202i −0.537342 + 1.74202i
\(773\) 0 0 −0.318487 0.947927i \(-0.603175\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(774\) 0 0
\(775\) 0.778561 0.475769i 0.778561 0.475769i
\(776\) 0 0
\(777\) 0.0678076 0.0730792i 0.0678076 0.0730792i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(785\) 0 0
\(786\) 0 0
\(787\) −1.31724 0.898081i −1.31724 0.898081i −0.318487 0.947927i \(-0.603175\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.86348 1.64453i 1.86348 1.64453i
\(794\) 0 0
\(795\) 0 0
\(796\) 0.928021 + 0.475769i 0.928021 + 0.475769i
\(797\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.556135 1.31931i −0.556135 1.31931i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(810\) 0 0
\(811\) 1.65042 + 0.0823692i 1.65042 + 0.0823692i 0.853291 0.521435i \(-0.174603\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(812\) 0 0
\(813\) 0.680270 0.898081i 0.680270 0.898081i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.801308 1.56301i 0.801308 1.56301i
\(818\) 0 0
\(819\) 0.870687 + 1.09181i 0.870687 + 1.09181i
\(820\) 0 0
\(821\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(822\) 0 0
\(823\) −0.510189 0.523071i −0.510189 0.523071i 0.411287 0.911506i \(-0.365079\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.715867 0.698237i \(-0.246032\pi\)
−0.715867 + 0.698237i \(0.753968\pi\)
\(828\) 0 0
\(829\) −0.354757 + 1.55429i −0.354757 + 1.55429i 0.411287 + 0.911506i \(0.365079\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(830\) 0 0
\(831\) 1.45124 0.790304i 1.45124 0.790304i
\(832\) −1.06976 + 0.897636i −1.06976 + 0.897636i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.668852 + 0.620604i 0.668852 + 0.620604i
\(838\) 0 0
\(839\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(840\) 0 0
\(841\) 0.969077 + 0.246757i 0.969077 + 0.246757i
\(842\) 0 0
\(843\) 0 0
\(844\) 1.84730 + 0.725011i 1.84730 + 0.725011i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.411287 + 0.911506i −0.411287 + 0.911506i
\(848\) 0 0
\(849\) 0.481141 + 1.88956i 0.481141 + 1.88956i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.803491 0.518950i 0.803491 0.518950i −0.0747301 0.997204i \(-0.523810\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.661686 0.749781i \(-0.730159\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(858\) 0 0
\(859\) −0.803491 0.518950i −0.803491 0.518950i 0.0747301 0.997204i \(-0.476190\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.988831 0.149042i −0.988831 0.149042i
\(868\) −0.247121 0.878319i −0.247121 0.878319i
\(869\) 0 0
\(870\) 0 0
\(871\) 1.99876 + 0.0498459i 1.99876 + 0.0498459i
\(872\) 0 0
\(873\) −1.95557 0.294755i −1.95557 0.294755i
\(874\) 0 0
\(875\) 0 0
\(876\) 0.167279 1.67170i 0.167279 1.67170i
\(877\) 1.07349 + 1.04705i 1.07349 + 1.04705i 0.998757 + 0.0498459i \(0.0158730\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 0 0
\(883\) −1.87005 0.680641i −1.87005 0.680641i −0.969077 0.246757i \(-0.920635\pi\)
−0.900969 0.433884i \(-0.857143\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(888\) 0 0
\(889\) −1.17241 + 1.03465i −1.17241 + 1.03465i
\(890\) 0 0
\(891\) 0 0
\(892\) −1.52272 + 1.03817i −1.52272 + 1.03817i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 1.54255 0.840026i 1.54255 0.840026i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.06797 0.358820i −1.06797 0.358820i −0.270840 0.962624i \(-0.587302\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(912\) −0.318487 0.947927i −0.318487 0.947927i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.396169 0.00987984i 0.396169 0.00987984i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.85205 0.571281i −1.85205 0.571281i −0.998757 0.0498459i \(-0.984127\pi\)
−0.853291 0.521435i \(-0.825397\pi\)
\(920\) 0 0
\(921\) 0.708087 0.180301i 0.708087 0.180301i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.0959657 + 0.0270006i 0.0959657 + 0.0270006i
\(926\) 0 0
\(927\) −1.32173 0.0659646i −1.32173 0.0659646i
\(928\) 0 0
\(929\) 0 0 −0.999689 0.0249307i \(-0.992063\pi\)
0.999689 + 0.0249307i \(0.00793651\pi\)
\(930\) 0 0
\(931\) 0.969077 + 0.246757i 0.969077 + 0.246757i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.92465 + 0.541513i 1.92465 + 0.541513i 0.969077 + 0.246757i \(0.0793651\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(938\) 0 0
\(939\) −0.587862 0.0440542i −0.587862 0.0440542i
\(940\) 0 0
\(941\) 0 0 0.969077 0.246757i \(-0.0793651\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.995031 0.0995678i \(-0.968254\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(948\) −0.0601943 1.20611i −0.0601943 1.20611i
\(949\) 2.03182 + 1.17307i 2.03182 + 1.17307i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.388435 0.921476i \(-0.373016\pi\)
−0.388435 + 0.921476i \(0.626984\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.167487 −0.167487
\(962\) 0 0
\(963\) 0 0
\(964\) 0.681513 0.947927i 0.681513 0.947927i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.67274 + 1.02219i 1.67274 + 1.02219i 0.939693 + 0.342020i \(0.111111\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(972\) 0.270840 + 0.962624i 0.270840 + 0.962624i
\(973\) −1.56318 1.12385i −1.56318 1.12385i
\(974\) 0 0
\(975\) −0.574352 + 1.27289i −0.574352 + 1.27289i
\(976\) −1.73512 0.396030i −1.73512 0.396030i
\(977\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.72721 + 0.997204i −1.72721 + 0.997204i
\(982\) 0 0
\(983\) 0 0 0.698237 0.715867i \(-0.253968\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 1.38953 + 0.139044i 1.38953 + 0.139044i
\(989\) 0 0
\(990\) 0 0
\(991\) 1.89527 + 0.0472650i 1.89527 + 0.0472650i 0.955573 0.294755i \(-0.0952381\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(992\) 0 0
\(993\) 1.99876 + 0.0498459i 1.99876 + 0.0498459i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.18926 + 1.57004i −1.18926 + 1.57004i −0.456211 + 0.889872i \(0.650794\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(998\) 0 0
\(999\) 0.0996918i 0.0996918i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.1.er.a.983.1 36
3.2 odd 2 CM 2793.1.er.a.983.1 36
19.15 odd 18 2793.1.ew.a.395.1 yes 36
49.33 odd 42 2793.1.ew.a.1895.1 yes 36
57.53 even 18 2793.1.ew.a.395.1 yes 36
147.131 even 42 2793.1.ew.a.1895.1 yes 36
931.376 even 126 inner 2793.1.er.a.1307.1 yes 36
2793.1307 odd 126 inner 2793.1.er.a.1307.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.1.er.a.983.1 36 1.1 even 1 trivial
2793.1.er.a.983.1 36 3.2 odd 2 CM
2793.1.er.a.1307.1 yes 36 931.376 even 126 inner
2793.1.er.a.1307.1 yes 36 2793.1307 odd 126 inner
2793.1.ew.a.395.1 yes 36 19.15 odd 18
2793.1.ew.a.395.1 yes 36 57.53 even 18
2793.1.ew.a.1895.1 yes 36 49.33 odd 42
2793.1.ew.a.1895.1 yes 36 147.131 even 42