Properties

Label 2793.1.ew.a.1370.1
Level $2793$
Weight $1$
Character 2793.1370
Analytic conductor $1.394$
Analytic rank $0$
Dimension $36$
Projective image $D_{126}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,1,Mod(143,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
chi = DirichletCharacter(H, H._module([63, 93, 119]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.143");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2793.ew (of order \(126\), degree \(36\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39388858028\)
Analytic rank: \(0\)
Dimension: \(36\)
Coefficient field: \(\Q(\zeta_{63})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{126}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{126} - \cdots)\)

Embedding invariants

Embedding label 1370.1
Root \(-0.583744 + 0.811938i\) of defining polynomial
Character \(\chi\) \(=\) 2793.1370
Dual form 2793.1.ew.a.1739.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.878222 - 0.478254i) q^{3} +(0.583744 + 0.811938i) q^{4} +(0.456211 - 0.889872i) q^{7} +(0.542546 - 0.840026i) q^{9} +(0.900969 + 0.433884i) q^{12} +(-1.05490 - 0.799058i) q^{13} +(-0.318487 + 0.947927i) q^{16} +(0.955573 - 0.294755i) q^{19} +(-0.0249307 - 0.999689i) q^{21} +(-0.542546 + 0.840026i) q^{25} +(0.0747301 - 0.997204i) q^{27} +(0.988831 - 0.149042i) q^{28} +(0.698237 - 1.20938i) q^{31} +(0.998757 - 0.0498459i) q^{36} +(0.278007 + 0.407761i) q^{37} +(-1.30859 - 0.197238i) q^{39} +(-0.507752 + 1.51125i) q^{43} +(0.173648 + 0.984808i) q^{48} +(-0.583744 - 0.811938i) q^{49} +(0.0329926 - 1.32296i) q^{52} +(0.698237 - 0.715867i) q^{57} +(0.353291 + 1.38746i) q^{61} +(-0.500000 - 0.866025i) q^{63} +(-0.955573 + 0.294755i) q^{64} +(-0.963900 - 1.14873i) q^{67} +(-0.747834 + 1.77407i) q^{73} +(-0.0747301 + 0.997204i) q^{75} +(0.797133 + 0.603804i) q^{76} +(-0.0681084 - 0.187126i) q^{79} +(-0.411287 - 0.911506i) q^{81} +(0.797133 - 0.603804i) q^{84} +(-1.19232 + 0.574189i) q^{91} +(0.0348151 - 1.39604i) q^{93} +(-0.254586 + 1.44383i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{12} - 3 q^{13} + 3 q^{19} + 3 q^{27} - 3 q^{28} - 3 q^{43} + 3 q^{52} - 18 q^{61} - 18 q^{63} - 3 q^{64} + 3 q^{67} + 6 q^{73} - 3 q^{75} + 6 q^{79} - 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2793\mathbb{Z}\right)^\times\).

\(n\) \(932\) \(2110\) \(2206\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.889872 0.456211i \(-0.849206\pi\)
0.889872 + 0.456211i \(0.150794\pi\)
\(3\) 0.878222 0.478254i 0.878222 0.478254i
\(4\) 0.583744 + 0.811938i 0.583744 + 0.811938i
\(5\) 0 0 −0.478254 0.878222i \(-0.658730\pi\)
0.478254 + 0.878222i \(0.341270\pi\)
\(6\) 0 0
\(7\) 0.456211 0.889872i 0.456211 0.889872i
\(8\) 0 0
\(9\) 0.542546 0.840026i 0.542546 0.840026i
\(10\) 0 0
\(11\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(12\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(13\) −1.05490 0.799058i −1.05490 0.799058i −0.0747301 0.997204i \(-0.523810\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.318487 + 0.947927i −0.318487 + 0.947927i
\(17\) 0 0 0.0995678 0.995031i \(-0.468254\pi\)
−0.0995678 + 0.995031i \(0.531746\pi\)
\(18\) 0 0
\(19\) 0.955573 0.294755i 0.955573 0.294755i
\(20\) 0 0
\(21\) −0.0249307 0.999689i −0.0249307 0.999689i
\(22\) 0 0
\(23\) 0 0 0.411287 0.911506i \(-0.365079\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(24\) 0 0
\(25\) −0.542546 + 0.840026i −0.542546 + 0.840026i
\(26\) 0 0
\(27\) 0.0747301 0.997204i 0.0747301 0.997204i
\(28\) 0.988831 0.149042i 0.988831 0.149042i
\(29\) 0 0 −0.962624 0.270840i \(-0.912698\pi\)
0.962624 + 0.270840i \(0.0873016\pi\)
\(30\) 0 0
\(31\) 0.698237 1.20938i 0.698237 1.20938i −0.270840 0.962624i \(-0.587302\pi\)
0.969077 0.246757i \(-0.0793651\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.998757 0.0498459i 0.998757 0.0498459i
\(37\) 0.278007 + 0.407761i 0.278007 + 0.407761i 0.939693 0.342020i \(-0.111111\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(38\) 0 0
\(39\) −1.30859 0.197238i −1.30859 0.197238i
\(40\) 0 0
\(41\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(42\) 0 0
\(43\) −0.507752 + 1.51125i −0.507752 + 1.51125i 0.318487 + 0.947927i \(0.396825\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.992239 0.124344i \(-0.960317\pi\)
0.992239 + 0.124344i \(0.0396825\pi\)
\(48\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(49\) −0.583744 0.811938i −0.583744 0.811938i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.0329926 1.32296i 0.0329926 1.32296i
\(53\) 0 0 0.811938 0.583744i \(-0.198413\pi\)
−0.811938 + 0.583744i \(0.801587\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.698237 0.715867i 0.698237 0.715867i
\(58\) 0 0
\(59\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(60\) 0 0
\(61\) 0.353291 + 1.38746i 0.353291 + 1.38746i 0.853291 + 0.521435i \(0.174603\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) −0.500000 0.866025i −0.500000 0.866025i
\(64\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.963900 1.14873i −0.963900 1.14873i −0.988831 0.149042i \(-0.952381\pi\)
0.0249307 0.999689i \(-0.492063\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.715867 0.698237i \(-0.753968\pi\)
0.715867 + 0.698237i \(0.246032\pi\)
\(72\) 0 0
\(73\) −0.747834 + 1.77407i −0.747834 + 1.77407i −0.124344 + 0.992239i \(0.539683\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(74\) 0 0
\(75\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(76\) 0.797133 + 0.603804i 0.797133 + 0.603804i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.0681084 0.187126i −0.0681084 0.187126i 0.900969 0.433884i \(-0.142857\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(80\) 0 0
\(81\) −0.411287 0.911506i −0.411287 0.911506i
\(82\) 0 0
\(83\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(84\) 0.797133 0.603804i 0.797133 0.603804i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(90\) 0 0
\(91\) −1.19232 + 0.574189i −1.19232 + 0.574189i
\(92\) 0 0
\(93\) 0.0348151 1.39604i 0.0348151 1.39604i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.254586 + 1.44383i −0.254586 + 1.44383i 0.542546 + 0.840026i \(0.317460\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.998757 + 0.0498459i −0.998757 + 0.0498459i
\(101\) 0 0 0.947927 0.318487i \(-0.103175\pi\)
−0.947927 + 0.318487i \(0.896825\pi\)
\(102\) 0 0
\(103\) 0.333345 0.849349i 0.333345 0.849349i −0.661686 0.749781i \(-0.730159\pi\)
0.995031 0.0995678i \(-0.0317460\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(108\) 0.853291 0.521435i 0.853291 0.521435i
\(109\) 1.65672 + 0.849349i 1.65672 + 0.849349i 0.995031 + 0.0995678i \(0.0317460\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(110\) 0 0
\(111\) 0.439165 + 0.225147i 0.439165 + 0.225147i
\(112\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(113\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.24356 + 0.452620i −1.24356 + 0.452620i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.38953 0.139044i 1.38953 0.139044i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.481141 + 1.88956i 0.481141 + 1.88956i 0.456211 + 0.889872i \(0.349206\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(128\) 0 0
\(129\) 0.276841 + 1.57004i 0.276841 + 1.57004i
\(130\) 0 0
\(131\) 0 0 −0.198146 0.980172i \(-0.563492\pi\)
0.198146 + 0.980172i \(0.436508\pi\)
\(132\) 0 0
\(133\) 0.173648 0.984808i 0.173648 0.984808i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.878222 0.478254i \(-0.841270\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(138\) 0 0
\(139\) −0.0785238 + 0.388435i −0.0785238 + 0.388435i 0.921476 + 0.388435i \(0.126984\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.900969 0.433884i −0.900969 0.433884i
\(148\) −0.168792 + 0.463752i −0.168792 + 0.463752i
\(149\) 0 0 −0.542546 0.840026i \(-0.682540\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(150\) 0 0
\(151\) 0.332083 0.487076i 0.332083 0.487076i −0.623490 0.781831i \(-0.714286\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.603736 1.17763i −0.603736 1.17763i
\(157\) −0.396169 1.95974i −0.396169 1.95974i −0.222521 0.974928i \(-0.571429\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.68752 0.254353i −1.68752 0.254353i −0.766044 0.642788i \(-0.777778\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(168\) 0 0
\(169\) 0.203486 + 0.723232i 0.203486 + 0.723232i
\(170\) 0 0
\(171\) 0.270840 0.962624i 0.270840 0.962624i
\(172\) −1.52344 + 0.469918i −1.52344 + 0.469918i
\(173\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(174\) 0 0
\(175\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(180\) 0 0
\(181\) −0.729774 0.0364215i −0.729774 0.0364215i −0.318487 0.947927i \(-0.603175\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(182\) 0 0
\(183\) 0.973826 + 1.04954i 0.973826 + 1.04954i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.853291 0.521435i −0.853291 0.521435i
\(190\) 0 0
\(191\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(192\) −0.698237 + 0.715867i −0.698237 + 0.715867i
\(193\) −0.498757 0.915871i −0.498757 0.915871i −0.998757 0.0498459i \(-0.984127\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.318487 0.947927i 0.318487 0.947927i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) 0.153934 0.761466i 0.153934 0.761466i −0.826239 0.563320i \(-0.809524\pi\)
0.980172 0.198146i \(-0.0634921\pi\)
\(200\) 0 0
\(201\) −1.39590 0.547852i −1.39590 0.547852i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.09342 0.745482i 1.09342 0.745482i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.630770 + 1.49636i −0.630770 + 1.49636i 0.222521 + 0.974928i \(0.428571\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.757652 1.17307i −0.757652 1.17307i
\(218\) 0 0
\(219\) 0.191693 + 1.91568i 0.191693 + 1.91568i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.574352 0.588854i 0.574352 0.588854i −0.365341 0.930874i \(-0.619048\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(224\) 0 0
\(225\) 0.411287 + 0.911506i 0.411287 + 0.911506i
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(229\) 1.56392 0.613792i 1.56392 0.613792i 0.583744 0.811938i \(-0.301587\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.149308 0.131765i −0.149308 0.131765i
\(238\) 0 0
\(239\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(240\) 0 0
\(241\) −0.0496136 + 0.00496459i −0.0496136 + 0.00496459i −0.124344 0.992239i \(-0.539683\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(242\) 0 0
\(243\) −0.797133 0.603804i −0.797133 0.603804i
\(244\) −0.920301 + 1.09677i −0.920301 + 1.09677i
\(245\) 0 0
\(246\) 0 0
\(247\) −1.24356 0.452620i −1.24356 0.452620i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.521435 0.853291i \(-0.674603\pi\)
0.521435 + 0.853291i \(0.325397\pi\)
\(252\) 0.411287 0.911506i 0.411287 0.911506i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.797133 0.603804i −0.797133 0.603804i
\(257\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(258\) 0 0
\(259\) 0.489685 0.0613655i 0.489685 0.0613655i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.370028 1.45319i 0.370028 1.45319i
\(269\) 0 0 −0.921476 0.388435i \(-0.873016\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(270\) 0 0
\(271\) 0.286943 0.0807334i 0.286943 0.0807334i −0.124344 0.992239i \(-0.539683\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(272\) 0 0
\(273\) −0.772510 + 1.07450i −0.772510 + 1.07450i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.78181 0.858075i −1.78181 0.858075i −0.955573 0.294755i \(-0.904762\pi\)
−0.826239 0.563320i \(-0.809524\pi\)
\(278\) 0 0
\(279\) −0.637086 1.24268i −0.637086 1.24268i
\(280\) 0 0
\(281\) 0 0 −0.992239 0.124344i \(-0.960317\pi\)
0.992239 + 0.124344i \(0.0396825\pi\)
\(282\) 0 0
\(283\) −0.728947 + 0.470804i −0.728947 + 0.470804i −0.853291 0.521435i \(-0.825397\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.980172 0.198146i −0.980172 0.198146i
\(290\) 0 0
\(291\) 0.466934 + 1.38976i 0.466934 + 1.38976i
\(292\) −1.87698 + 0.428408i −1.87698 + 0.428408i
\(293\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.853291 + 0.521435i −0.853291 + 0.521435i
\(301\) 1.11317 + 1.14128i 1.11317 + 1.14128i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.0249307 + 0.999689i −0.0249307 + 0.999689i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.871885 + 1.70067i −0.871885 + 1.70067i −0.173648 + 0.984808i \(0.555556\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(308\) 0 0
\(309\) −0.113454 0.905340i −0.113454 0.905340i
\(310\) 0 0
\(311\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(312\) 0 0
\(313\) 0.682128 1.87413i 0.682128 1.87413i 0.270840 0.962624i \(-0.412698\pi\)
0.411287 0.911506i \(-0.365079\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.112177 0.164534i 0.112177 0.164534i
\(317\) 0 0 0.811938 0.583744i \(-0.198413\pi\)
−0.811938 + 0.583744i \(0.801587\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.500000 0.866025i 0.500000 0.866025i
\(325\) 1.24356 0.452620i 1.24356 0.452620i
\(326\) 0 0
\(327\) 1.86117 0.0464147i 1.86117 0.0464147i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.97893 0.148300i 1.97893 0.148300i 0.980172 0.198146i \(-0.0634921\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(332\) 0 0
\(333\) 0.493361 0.0123037i 0.493361 0.0123037i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(337\) −0.906700 0.304635i −0.906700 0.304635i −0.173648 0.984808i \(-0.555556\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(348\) 0 0
\(349\) −0.0148583 + 0.0985783i −0.0148583 + 0.0985783i −0.995031 0.0995678i \(-0.968254\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(350\) 0 0
\(351\) −0.875656 + 0.992239i −0.875656 + 0.992239i
\(352\) 0 0
\(353\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(360\) 0 0
\(361\) 0.826239 0.563320i 0.826239 0.563320i
\(362\) 0 0
\(363\) −0.583744 + 0.811938i −0.583744 + 0.811938i
\(364\) −1.16221 0.632908i −1.16221 0.632908i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.59257 + 1.02859i 1.59257 + 1.02859i 0.969077 + 0.246757i \(0.0793651\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.15382 0.786662i 1.15382 0.786662i
\(373\) 1.36035i 1.36035i 0.733052 + 0.680173i \(0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.17733 0.268718i 1.17733 0.268718i 0.411287 0.911506i \(-0.365079\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(380\) 0 0
\(381\) 1.32624 + 1.42935i 1.32624 + 1.42935i
\(382\) 0 0
\(383\) 0 0 −0.124344 0.992239i \(-0.539683\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.994008 + 1.24645i 0.994008 + 1.24645i
\(388\) −1.32091 + 0.636119i −1.32091 + 0.636119i
\(389\) 0 0 −0.980172 0.198146i \(-0.936508\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.82245 0.0454489i −1.82245 0.0454489i −0.900969 0.433884i \(-0.857143\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(398\) 0 0
\(399\) −0.318487 0.947927i −0.318487 0.947927i
\(400\) −0.623490 0.781831i −0.623490 0.781831i
\(401\) 0 0 −0.603804 0.797133i \(-0.706349\pi\)
0.603804 + 0.797133i \(0.293651\pi\)
\(402\) 0 0
\(403\) −1.70294 + 0.717848i −1.70294 + 0.717848i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.60138 0.407761i 1.60138 0.407761i 0.661686 0.749781i \(-0.269841\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.884207 0.225147i 0.884207 0.225147i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.116809 + 0.378686i 0.116809 + 0.378686i
\(418\) 0 0
\(419\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(420\) 0 0
\(421\) −1.42529 + 0.643114i −1.42529 + 0.643114i −0.969077 0.246757i \(-0.920635\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.39584 + 0.318591i 1.39584 + 0.318591i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.521435 0.853291i \(-0.674603\pi\)
0.521435 + 0.853291i \(0.325397\pi\)
\(432\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(433\) −0.345587 1.02859i −0.345587 1.02859i −0.969077 0.246757i \(-0.920635\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.277479 + 1.84095i 0.277479 + 1.84095i
\(437\) 0 0
\(438\) 0 0
\(439\) 0.290594 0.566825i 0.290594 0.566825i −0.698237 0.715867i \(-0.746032\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(440\) 0 0
\(441\) −0.998757 + 0.0498459i −0.998757 + 0.0498459i
\(442\) 0 0
\(443\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(444\) 0.0735546 + 0.488003i 0.0735546 + 0.488003i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(449\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.0586963 0.586581i 0.0586963 0.586581i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.197898 0.504237i −0.197898 0.504237i 0.797133 0.603804i \(-0.206349\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.0995678 0.995031i \(-0.468254\pi\)
−0.0995678 + 0.995031i \(0.531746\pi\)
\(462\) 0 0
\(463\) 1.61971 + 1.10430i 1.61971 + 1.10430i 0.921476 + 0.388435i \(0.126984\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(468\) −1.09342 0.745482i −1.09342 0.745482i
\(469\) −1.46197 + 0.333684i −1.46197 + 0.333684i
\(470\) 0 0
\(471\) −1.28518 1.53161i −1.28518 1.53161i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.270840 + 0.962624i −0.270840 + 0.962624i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.388435 0.921476i \(-0.626984\pi\)
0.388435 + 0.921476i \(0.373016\pi\)
\(480\) 0 0
\(481\) 0.0325545 0.652292i 0.0325545 0.652292i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.878222 0.478254i −0.878222 0.478254i
\(485\) 0 0
\(486\) 0 0
\(487\) −0.167917 1.11406i −0.167917 1.11406i −0.900969 0.433884i \(-0.857143\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(488\) 0 0
\(489\) −1.60366 + 0.583685i −1.60366 + 0.583685i
\(490\) 0 0
\(491\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.924027 + 1.04705i 0.924027 + 1.04705i
\(497\) 0 0
\(498\) 0 0
\(499\) −1.78596 0.752847i −1.78596 0.752847i −0.988831 0.149042i \(-0.952381\pi\)
−0.797133 0.603804i \(-0.793651\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.388435 0.921476i \(-0.626984\pi\)
0.388435 + 0.921476i \(0.373016\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.524594 + 0.537840i 0.524594 + 0.537840i
\(508\) −1.25334 + 1.49368i −1.25334 + 1.49368i
\(509\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(510\) 0 0
\(511\) 1.23753 + 1.47483i 1.23753 + 1.47483i
\(512\) 0 0
\(513\) −0.222521 0.974928i −0.222521 0.974928i
\(514\) 0 0
\(515\) 0 0
\(516\) −1.11317 + 1.14128i −1.11317 + 1.14128i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −1.65381 + 1.01062i −1.65381 + 1.01062i −0.698237 + 0.715867i \(0.746032\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(524\) 0 0
\(525\) 0.853291 + 0.521435i 0.853291 + 0.521435i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.661686 0.749781i −0.661686 0.749781i
\(530\) 0 0
\(531\) 0 0
\(532\) 0.900969 0.433884i 0.900969 0.433884i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.229160 + 1.82865i −0.229160 + 1.82865i 0.270840 + 0.962624i \(0.412698\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) −0.658322 + 0.317031i −0.658322 + 0.317031i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.72808 0.580605i 1.72808 0.580605i 0.733052 0.680173i \(-0.238095\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(548\) 0 0
\(549\) 1.35718 + 0.455988i 1.35718 + 0.455988i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.197590 0.0247613i −0.197590 0.0247613i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.361223 + 0.162990i −0.361223 + 0.162990i
\(557\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(558\) 0 0
\(559\) 1.74320 1.18850i 1.74320 1.18850i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.998757 0.0498459i −0.998757 0.0498459i
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 0.148717 + 1.98450i 0.148717 + 1.98450i 0.173648 + 0.984808i \(0.444444\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.270840 + 0.962624i −0.270840 + 0.962624i
\(577\) −0.460898 + 1.49419i −0.460898 + 1.49419i 0.365341 + 0.930874i \(0.380952\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(578\) 0 0
\(579\) −0.876038 0.565805i −0.876038 0.565805i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(588\) −0.173648 0.984808i −0.173648 0.984808i
\(589\) 0.310745 1.36146i 0.310745 1.36146i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.475069 + 0.133664i −0.475069 + 0.133664i
\(593\) 0 0 0.198146 0.980172i \(-0.436508\pi\)
−0.198146 + 0.980172i \(0.563492\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.228986 0.742355i −0.228986 0.742355i
\(598\) 0 0
\(599\) 0 0 0.603804 0.797133i \(-0.293651\pi\)
−0.603804 + 0.797133i \(0.706349\pi\)
\(600\) 0 0
\(601\) −1.12310 + 1.04209i −1.12310 + 1.04209i −0.124344 + 0.992239i \(0.539683\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(602\) 0 0
\(603\) −1.48792 + 0.186461i −1.48792 + 0.186461i
\(604\) 0.589327 0.0146969i 0.589327 0.0146969i
\(605\) 0 0
\(606\) 0 0
\(607\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.31724 0.997773i 1.31724 0.997773i 0.318487 0.947927i \(-0.396825\pi\)
0.998757 0.0498459i \(-0.0158730\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.270840 0.962624i \(-0.412698\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(618\) 0 0
\(619\) 0.684040i 0.684040i −0.939693 0.342020i \(-0.888889\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.603736 1.17763i 0.603736 1.17763i
\(625\) −0.411287 0.911506i −0.411287 0.911506i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.35992 1.46565i 1.35992 1.46565i
\(629\) 0 0
\(630\) 0 0
\(631\) −0.996206 + 0.608769i −0.996206 + 0.608769i −0.921476 0.388435i \(-0.873016\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(632\) 0 0
\(633\) 0.161686 + 1.61581i 0.161686 + 1.61581i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.0329926 + 1.32296i −0.0329926 + 1.32296i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.246757 0.969077i \(-0.420635\pi\)
−0.246757 + 0.969077i \(0.579365\pi\)
\(642\) 0 0
\(643\) 0.189528 + 0.937543i 0.189528 + 0.937543i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1.22641 0.667869i −1.22641 0.667869i
\(652\) −0.778561 1.51864i −0.778561 1.51864i
\(653\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.08453 + 1.59071i 1.08453 + 1.59071i
\(658\) 0 0
\(659\) 0 0 −0.911506 0.411287i \(-0.865079\pi\)
0.911506 + 0.411287i \(0.134921\pi\)
\(660\) 0 0
\(661\) −0.998757 0.0498459i −0.998757 0.0498459i −0.456211 0.889872i \(-0.650794\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.222786 0.791830i 0.222786 0.791830i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.558813 1.81163i 0.558813 1.81163i −0.0249307 0.999689i \(-0.507937\pi\)
0.583744 0.811938i \(-0.301587\pi\)
\(674\) 0 0
\(675\) 0.797133 + 0.603804i 0.797133 + 0.603804i
\(676\) −0.468436 + 0.587400i −0.468436 + 0.587400i
\(677\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) 0 0
\(679\) 1.16868 + 0.885240i 1.16868 + 0.885240i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(684\) 0.939693 0.342020i 0.939693 0.342020i
\(685\) 0 0
\(686\) 0 0
\(687\) 1.07992 1.28699i 1.07992 1.28699i
\(688\) −1.27084 0.962624i −1.27084 0.962624i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.35417 1.07992i 1.35417 1.07992i 0.365341 0.930874i \(-0.380952\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.411287 + 0.911506i −0.411287 + 0.911506i
\(701\) 0 0 −0.921476 0.388435i \(-0.873016\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(702\) 0 0
\(703\) 0.385845 + 0.307701i 0.385845 + 0.307701i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.633416 + 0.881028i 0.633416 + 0.881028i 0.998757 0.0498459i \(-0.0158730\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(710\) 0 0
\(711\) −0.194143 0.0443119i −0.194143 0.0443119i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.947927 0.318487i \(-0.896825\pi\)
0.947927 + 0.318487i \(0.103175\pi\)
\(720\) 0 0
\(721\) −0.603736 0.684116i −0.603736 0.684116i
\(722\) 0 0
\(723\) −0.0411974 + 0.0280879i −0.0411974 + 0.0280879i
\(724\) −0.396429 0.613792i −0.396429 0.613792i
\(725\) 0 0
\(726\) 0 0
\(727\) −1.02703 + 1.68065i −1.02703 + 1.68065i −0.365341 + 0.930874i \(0.619048\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(728\) 0 0
\(729\) −0.988831 0.149042i −0.988831 0.149042i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.283693 + 1.40335i −0.283693 + 1.40335i
\(733\) −0.925270 0.997204i −0.925270 0.997204i 0.0747301 0.997204i \(-0.476190\pi\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.444758 0.455988i 0.444758 0.455988i −0.456211 0.889872i \(-0.650794\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(740\) 0 0
\(741\) −1.30859 + 0.197238i −1.30859 + 0.197238i
\(742\) 0 0
\(743\) 0 0 −0.478254 0.878222i \(-0.658730\pi\)
0.478254 + 0.878222i \(0.341270\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.928021 1.51864i −0.928021 1.51864i −0.853291 0.521435i \(-0.825397\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.0747301 0.997204i −0.0747301 0.997204i
\(757\) −1.70213 0.433415i −1.70213 0.433415i −0.733052 0.680173i \(-0.761905\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(762\) 0 0
\(763\) 1.51162 1.08678i 1.51162 1.08678i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.988831 0.149042i −0.988831 0.149042i
\(769\) 0.0640806 1.28398i 0.0640806 1.28398i −0.733052 0.680173i \(-0.761905\pi\)
0.797133 0.603804i \(-0.206349\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.452485 0.939594i 0.452485 0.939594i
\(773\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(774\) 0 0
\(775\) 0.637086 + 1.24268i 0.637086 + 1.24268i
\(776\) 0 0
\(777\) 0.400703 0.288086i 0.400703 0.288086i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.955573 0.294755i 0.955573 0.294755i
\(785\) 0 0
\(786\) 0 0
\(787\) −1.24078 1.55589i −1.24078 1.55589i −0.698237 0.715867i \(-0.746032\pi\)
−0.542546 0.840026i \(-0.682540\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.735974 1.74594i 0.735974 1.74594i
\(794\) 0 0
\(795\) 0 0
\(796\) 0.708121 0.319516i 0.708121 0.319516i
\(797\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.370028 1.45319i −0.370028 1.45319i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0 0
\(811\) 0.813387 1.80265i 0.813387 1.80265i 0.270840 0.962624i \(-0.412698\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(812\) 0 0
\(813\) 0.213389 0.208134i 0.213389 0.208134i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.0397461 + 1.59377i −0.0397461 + 1.59377i
\(818\) 0 0
\(819\) −0.164553 + 1.31310i −0.164553 + 1.31310i
\(820\) 0 0
\(821\) 0 0 0.969077 0.246757i \(-0.0793651\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(822\) 0 0
\(823\) 1.63076 0.996539i 1.63076 0.996539i 0.661686 0.749781i \(-0.269841\pi\)
0.969077 0.246757i \(-0.0793651\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.478254 0.878222i \(-0.341270\pi\)
−0.478254 + 0.878222i \(0.658730\pi\)
\(828\) 0 0
\(829\) 0.148717 1.98450i 0.148717 1.98450i −0.0249307 0.999689i \(-0.507937\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(830\) 0 0
\(831\) −1.97520 + 0.0985783i −1.97520 + 0.0985783i
\(832\) 1.24356 + 0.452620i 1.24356 + 0.452620i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.15382 0.786662i −1.15382 0.786662i
\(838\) 0 0
\(839\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(840\) 0 0
\(841\) 0.853291 + 0.521435i 0.853291 + 0.521435i
\(842\) 0 0
\(843\) 0 0
\(844\) −1.58316 + 0.361346i −1.58316 + 0.361346i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.0249307 + 0.999689i −0.0249307 + 0.999689i
\(848\) 0 0
\(849\) −0.415013 + 0.762092i −0.415013 + 0.762092i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.980503 + 0.704934i 0.980503 + 0.704934i 0.955573 0.294755i \(-0.0952381\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.124344 0.992239i \(-0.539683\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(858\) 0 0
\(859\) 1.10074 + 0.496674i 1.10074 + 0.496674i 0.878222 0.478254i \(-0.158730\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(868\) 0.510189 1.29994i 0.510189 1.29994i
\(869\) 0 0
\(870\) 0 0
\(871\) 0.0989181 + 1.98201i 0.0989181 + 1.98201i
\(872\) 0 0
\(873\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(874\) 0 0
\(875\) 0 0
\(876\) −1.44352 + 1.27391i −1.44352 + 1.27391i
\(877\) 0.928021 1.51864i 0.928021 1.51864i 0.0747301 0.997204i \(-0.476190\pi\)
0.853291 0.521435i \(-0.174603\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 0 0
\(883\) 0.305003 + 1.72976i 0.305003 + 1.72976i 0.623490 + 0.781831i \(0.285714\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.661686 0.749781i \(-0.269841\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(888\) 0 0
\(889\) 1.90097 + 0.433884i 1.90097 + 0.433884i
\(890\) 0 0
\(891\) 0 0
\(892\) 0.813387 + 0.122598i 0.813387 + 0.122598i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) 1.52344 + 0.469918i 1.52344 + 0.469918i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.179985 + 0.237613i 0.179985 + 0.237613i 0.878222 0.478254i \(-0.158730\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(912\) 0.456211 + 0.889872i 0.456211 + 0.889872i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.41129 + 0.911506i 1.41129 + 0.911506i
\(917\) 0 0
\(918\) 0 0
\(919\) 0.573893 + 0.276372i 0.573893 + 0.276372i 0.698237 0.715867i \(-0.253968\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(920\) 0 0
\(921\) 0.0476462 + 1.91055i 0.0476462 + 1.91055i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.493361 + 0.0123037i −0.493361 + 0.0123037i
\(926\) 0 0
\(927\) −0.532620 0.740830i −0.532620 0.740830i
\(928\) 0 0
\(929\) 0 0 −0.889872 0.456211i \(-0.849206\pi\)
0.889872 + 0.456211i \(0.150794\pi\)
\(930\) 0 0
\(931\) −0.797133 0.603804i −0.797133 0.603804i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.98386 0.0494744i 1.98386 0.0494744i 0.988831 0.149042i \(-0.0476190\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(938\) 0 0
\(939\) −0.297251 1.97213i −0.297251 1.97213i
\(940\) 0 0
\(941\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(948\) 0.0198275 0.198146i 0.0198275 0.198146i
\(949\) 2.20648 1.27391i 2.20648 1.27391i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.246757 0.969077i \(-0.420635\pi\)
−0.246757 + 0.969077i \(0.579365\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.475069 0.822844i −0.475069 0.822844i
\(962\) 0 0
\(963\) 0 0
\(964\) −0.0329926 0.0373851i −0.0329926 0.0373851i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.08374 0.0540874i 1.08374 0.0540874i 0.500000 0.866025i \(-0.333333\pi\)
0.583744 + 0.811938i \(0.301587\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(972\) 0.0249307 0.999689i 0.0249307 0.999689i
\(973\) 0.309834 + 0.247084i 0.309834 + 0.247084i
\(974\) 0 0
\(975\) 0.875656 0.992239i 0.875656 0.992239i
\(976\) −1.42773 0.106994i −1.42773 0.106994i
\(977\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.61232 0.930874i 1.61232 0.930874i
\(982\) 0 0
\(983\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −0.358423 1.27391i −0.358423 1.27391i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.00496922 + 0.0995678i 0.00496922 + 0.0995678i 1.00000 \(0\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(992\) 0 0
\(993\) 1.66701 1.07667i 1.66701 1.07667i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.317225 + 1.24582i 0.317225 + 1.24582i 0.900969 + 0.433884i \(0.142857\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(998\) 0 0
\(999\) 0.427396 0.246757i 0.427396 0.246757i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.1.ew.a.1370.1 yes 36
3.2 odd 2 CM 2793.1.ew.a.1370.1 yes 36
19.10 odd 18 2793.1.er.a.2252.1 yes 36
49.24 odd 42 2793.1.er.a.857.1 36
57.29 even 18 2793.1.er.a.2252.1 yes 36
147.122 even 42 2793.1.er.a.857.1 36
931.808 even 126 inner 2793.1.ew.a.1739.1 yes 36
2793.1739 odd 126 inner 2793.1.ew.a.1739.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.1.er.a.857.1 36 49.24 odd 42
2793.1.er.a.857.1 36 147.122 even 42
2793.1.er.a.2252.1 yes 36 19.10 odd 18
2793.1.er.a.2252.1 yes 36 57.29 even 18
2793.1.ew.a.1370.1 yes 36 1.1 even 1 trivial
2793.1.ew.a.1370.1 yes 36 3.2 odd 2 CM
2793.1.ew.a.1739.1 yes 36 931.808 even 126 inner
2793.1.ew.a.1739.1 yes 36 2793.1739 odd 126 inner