Properties

Label 2793.2.a.bd
Level 27932793
Weight 22
Character orbit 2793.a
Self dual yes
Analytic conductor 22.30222.302
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,2,Mod(1,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2793=37219 2793 = 3 \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2793.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 22.302217284522.3022172845
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.1957.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x44x2x+1 x^{4} - 4x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 399)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+q3+(β3+β2+β1)q4+(β3β2β11)q5β1q6+(β21)q8+q9+(β2+3β1+1)q10++(2β3+β11)q99+O(q100) q - \beta_1 q^{2} + q^{3} + (\beta_{3} + \beta_{2} + \beta_1) q^{4} + ( - \beta_{3} - \beta_{2} - \beta_1 - 1) q^{5} - \beta_1 q^{6} + ( - \beta_{2} - 1) q^{8} + q^{9} + (\beta_{2} + 3 \beta_1 + 1) q^{10}+ \cdots + (2 \beta_{3} + \beta_1 - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q34q53q8+4q9+3q102q116q134q154q16+2q174q1912q206q22+5q233q244q25+6q26+4q274q29+2q99+O(q100) 4 q + 4 q^{3} - 4 q^{5} - 3 q^{8} + 4 q^{9} + 3 q^{10} - 2 q^{11} - 6 q^{13} - 4 q^{15} - 4 q^{16} + 2 q^{17} - 4 q^{19} - 12 q^{20} - 6 q^{22} + 5 q^{23} - 3 q^{24} - 4 q^{25} + 6 q^{26} + 4 q^{27} - 4 q^{29}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x44x2x+1 x^{4} - 4x^{2} - x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν34ν1 \nu^{3} - 4\nu - 1 Copy content Toggle raw display
β3\beta_{3}== ν3+ν2+3ν1 -\nu^{3} + \nu^{2} + 3\nu - 1 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+β1+2 \beta_{3} + \beta_{2} + \beta _1 + 2 Copy content Toggle raw display
ν3\nu^{3}== β2+4β1+1 \beta_{2} + 4\beta _1 + 1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.06150
0.396339
−0.693822
−1.76401
−2.06150 1.00000 2.24978 −3.24978 −2.06150 0 −0.514916 1.00000 6.69941
1.2 −0.396339 1.00000 −1.84292 0.842916 −0.396339 0 1.52310 1.00000 −0.334080
1.3 0.693822 1.00000 −1.51861 0.518610 0.693822 0 −2.44129 1.00000 0.359824
1.4 1.76401 1.00000 1.11175 −2.11175 1.76401 0 −1.56689 1.00000 −3.72516
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2793.2.a.bd 4
3.b odd 2 1 8379.2.a.bt 4
7.b odd 2 1 2793.2.a.bc 4
7.d odd 6 2 399.2.j.d 8
21.c even 2 1 8379.2.a.br 4
21.g even 6 2 1197.2.j.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.d 8 7.d odd 6 2
1197.2.j.k 8 21.g even 6 2
2793.2.a.bc 4 7.b odd 2 1
2793.2.a.bd 4 1.a even 1 1 trivial
8379.2.a.br 4 21.c even 2 1
8379.2.a.bt 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2793))S_{2}^{\mathrm{new}}(\Gamma_0(2793)):

T244T22+T2+1 T_{2}^{4} - 4T_{2}^{2} + T_{2} + 1 Copy content Toggle raw display
T54+4T537T5+3 T_{5}^{4} + 4T_{5}^{3} - 7T_{5} + 3 Copy content Toggle raw display
T114+2T11322T112+27T11+1 T_{11}^{4} + 2T_{11}^{3} - 22T_{11}^{2} + 27T_{11} + 1 Copy content Toggle raw display
T134+6T13310T132107T13141 T_{13}^{4} + 6T_{13}^{3} - 10T_{13}^{2} - 107T_{13} - 141 Copy content Toggle raw display
T1742T17316T172+18T17+47 T_{17}^{4} - 2T_{17}^{3} - 16T_{17}^{2} + 18T_{17} + 47 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T44T2+T+1 T^{4} - 4T^{2} + T + 1 Copy content Toggle raw display
33 (T1)4 (T - 1)^{4} Copy content Toggle raw display
55 T4+4T3++3 T^{4} + 4 T^{3} + \cdots + 3 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+2T3++1 T^{4} + 2 T^{3} + \cdots + 1 Copy content Toggle raw display
1313 T4+6T3+141 T^{4} + 6 T^{3} + \cdots - 141 Copy content Toggle raw display
1717 T42T3++47 T^{4} - 2 T^{3} + \cdots + 47 Copy content Toggle raw display
1919 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
2323 T45T3+9 T^{4} - 5 T^{3} + \cdots - 9 Copy content Toggle raw display
2929 T4+4T3++303 T^{4} + 4 T^{3} + \cdots + 303 Copy content Toggle raw display
3131 T4+17T3+987 T^{4} + 17 T^{3} + \cdots - 987 Copy content Toggle raw display
3737 T4+3T3++31 T^{4} + 3 T^{3} + \cdots + 31 Copy content Toggle raw display
4141 T4+7T3+43 T^{4} + 7 T^{3} + \cdots - 43 Copy content Toggle raw display
4343 T4+15T3+301 T^{4} + 15 T^{3} + \cdots - 301 Copy content Toggle raw display
4747 T4+16T3+3527 T^{4} + 16 T^{3} + \cdots - 3527 Copy content Toggle raw display
5353 T44T3++651 T^{4} - 4 T^{3} + \cdots + 651 Copy content Toggle raw display
5959 T4+17T3+961 T^{4} + 17 T^{3} + \cdots - 961 Copy content Toggle raw display
6161 T49T3++487 T^{4} - 9 T^{3} + \cdots + 487 Copy content Toggle raw display
6767 T4+5T3++1487 T^{4} + 5 T^{3} + \cdots + 1487 Copy content Toggle raw display
7171 T46T3+47 T^{4} - 6 T^{3} + \cdots - 47 Copy content Toggle raw display
7373 T4+15T3+2477 T^{4} + 15 T^{3} + \cdots - 2477 Copy content Toggle raw display
7979 T45T3++17931 T^{4} - 5 T^{3} + \cdots + 17931 Copy content Toggle raw display
8383 T4+34T3++2733 T^{4} + 34 T^{3} + \cdots + 2733 Copy content Toggle raw display
8989 T43T3++18133 T^{4} - 3 T^{3} + \cdots + 18133 Copy content Toggle raw display
9797 T4+11T3++1451 T^{4} + 11 T^{3} + \cdots + 1451 Copy content Toggle raw display
show more
show less