Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2793,2,Mod(1,2793)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2793.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2793.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 4.4.1957.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 399) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.06150 | 1.00000 | 2.24978 | −3.24978 | −2.06150 | 0 | −0.514916 | 1.00000 | 6.69941 | ||||||||||||||||||||||||||||||
1.2 | −0.396339 | 1.00000 | −1.84292 | 0.842916 | −0.396339 | 0 | 1.52310 | 1.00000 | −0.334080 | |||||||||||||||||||||||||||||||
1.3 | 0.693822 | 1.00000 | −1.51861 | 0.518610 | 0.693822 | 0 | −2.44129 | 1.00000 | 0.359824 | |||||||||||||||||||||||||||||||
1.4 | 1.76401 | 1.00000 | 1.11175 | −2.11175 | 1.76401 | 0 | −1.56689 | 1.00000 | −3.72516 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2793.2.a.bd | 4 | |
3.b | odd | 2 | 1 | 8379.2.a.bt | 4 | ||
7.b | odd | 2 | 1 | 2793.2.a.bc | 4 | ||
7.d | odd | 6 | 2 | 399.2.j.d | ✓ | 8 | |
21.c | even | 2 | 1 | 8379.2.a.br | 4 | ||
21.g | even | 6 | 2 | 1197.2.j.k | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
399.2.j.d | ✓ | 8 | 7.d | odd | 6 | 2 | |
1197.2.j.k | 8 | 21.g | even | 6 | 2 | ||
2793.2.a.bc | 4 | 7.b | odd | 2 | 1 | ||
2793.2.a.bd | 4 | 1.a | even | 1 | 1 | trivial | |
8379.2.a.br | 4 | 21.c | even | 2 | 1 | ||
8379.2.a.bt | 4 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|
|