Properties

Label 2793.2.a.bd
Level $2793$
Weight $2$
Character orbit 2793.a
Self dual yes
Analytic conductor $22.302$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,2,Mod(1,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2793.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3022172845\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1957.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{3} + \beta_{2} + \beta_1) q^{4} + ( - \beta_{3} - \beta_{2} - \beta_1 - 1) q^{5} - \beta_1 q^{6} + ( - \beta_{2} - 1) q^{8} + q^{9} + (\beta_{2} + 3 \beta_1 + 1) q^{10}+ \cdots + (2 \beta_{3} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{5} - 3 q^{8} + 4 q^{9} + 3 q^{10} - 2 q^{11} - 6 q^{13} - 4 q^{15} - 4 q^{16} + 2 q^{17} - 4 q^{19} - 12 q^{20} - 6 q^{22} + 5 q^{23} - 3 q^{24} - 4 q^{25} + 6 q^{26} + 4 q^{27} - 4 q^{29}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 4x^{2} - x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + \nu^{2} + 3\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.06150
0.396339
−0.693822
−1.76401
−2.06150 1.00000 2.24978 −3.24978 −2.06150 0 −0.514916 1.00000 6.69941
1.2 −0.396339 1.00000 −1.84292 0.842916 −0.396339 0 1.52310 1.00000 −0.334080
1.3 0.693822 1.00000 −1.51861 0.518610 0.693822 0 −2.44129 1.00000 0.359824
1.4 1.76401 1.00000 1.11175 −2.11175 1.76401 0 −1.56689 1.00000 −3.72516
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2793.2.a.bd 4
3.b odd 2 1 8379.2.a.bt 4
7.b odd 2 1 2793.2.a.bc 4
7.d odd 6 2 399.2.j.d 8
21.c even 2 1 8379.2.a.br 4
21.g even 6 2 1197.2.j.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.d 8 7.d odd 6 2
1197.2.j.k 8 21.g even 6 2
2793.2.a.bc 4 7.b odd 2 1
2793.2.a.bd 4 1.a even 1 1 trivial
8379.2.a.br 4 21.c even 2 1
8379.2.a.bt 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2793))\):

\( T_{2}^{4} - 4T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} + 4T_{5}^{3} - 7T_{5} + 3 \) Copy content Toggle raw display
\( T_{11}^{4} + 2T_{11}^{3} - 22T_{11}^{2} + 27T_{11} + 1 \) Copy content Toggle raw display
\( T_{13}^{4} + 6T_{13}^{3} - 10T_{13}^{2} - 107T_{13} - 141 \) Copy content Toggle raw display
\( T_{17}^{4} - 2T_{17}^{3} - 16T_{17}^{2} + 18T_{17} + 47 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 3 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 6 T^{3} + \cdots - 141 \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots + 47 \) Copy content Toggle raw display
$19$ \( (T + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 5 T^{3} + \cdots - 9 \) Copy content Toggle raw display
$29$ \( T^{4} + 4 T^{3} + \cdots + 303 \) Copy content Toggle raw display
$31$ \( T^{4} + 17 T^{3} + \cdots - 987 \) Copy content Toggle raw display
$37$ \( T^{4} + 3 T^{3} + \cdots + 31 \) Copy content Toggle raw display
$41$ \( T^{4} + 7 T^{3} + \cdots - 43 \) Copy content Toggle raw display
$43$ \( T^{4} + 15 T^{3} + \cdots - 301 \) Copy content Toggle raw display
$47$ \( T^{4} + 16 T^{3} + \cdots - 3527 \) Copy content Toggle raw display
$53$ \( T^{4} - 4 T^{3} + \cdots + 651 \) Copy content Toggle raw display
$59$ \( T^{4} + 17 T^{3} + \cdots - 961 \) Copy content Toggle raw display
$61$ \( T^{4} - 9 T^{3} + \cdots + 487 \) Copy content Toggle raw display
$67$ \( T^{4} + 5 T^{3} + \cdots + 1487 \) Copy content Toggle raw display
$71$ \( T^{4} - 6 T^{3} + \cdots - 47 \) Copy content Toggle raw display
$73$ \( T^{4} + 15 T^{3} + \cdots - 2477 \) Copy content Toggle raw display
$79$ \( T^{4} - 5 T^{3} + \cdots + 17931 \) Copy content Toggle raw display
$83$ \( T^{4} + 34 T^{3} + \cdots + 2733 \) Copy content Toggle raw display
$89$ \( T^{4} - 3 T^{3} + \cdots + 18133 \) Copy content Toggle raw display
$97$ \( T^{4} + 11 T^{3} + \cdots + 1451 \) Copy content Toggle raw display
show more
show less