Properties

Label 399.2.j.d
Level 399399
Weight 22
Character orbit 399.j
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(58,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.58");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.j (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 8.0.310217769.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+4x62x5+15x44x3+5x2+x+1 x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β5+1)q3+(β7+β6+β4+β1)q4+(β5β4++β1)q5+(β3β1)q6+(β6β4+β1)q7++(2β6+β3β11)q99+O(q100) q - \beta_1 q^{2} + ( - \beta_{5} + 1) q^{3} + (\beta_{7} + \beta_{6} + \beta_{4} + \cdots - \beta_1) q^{4} + ( - \beta_{5} - \beta_{4} + \cdots + \beta_1) q^{5} + (\beta_{3} - \beta_1) q^{6} + ( - \beta_{6} - \beta_{4} + \cdots - \beta_1) q^{7}+ \cdots + ( - 2 \beta_{6} + \beta_{3} - \beta_1 - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q34q5+2q76q84q9+3q10+2q11+12q13+2q148q15+4q16+2q174q19+24q20+q2112q225q233q24+4q25+4q99+O(q100) 8 q + 4 q^{3} - 4 q^{5} + 2 q^{7} - 6 q^{8} - 4 q^{9} + 3 q^{10} + 2 q^{11} + 12 q^{13} + 2 q^{14} - 8 q^{15} + 4 q^{16} + 2 q^{17} - 4 q^{19} + 24 q^{20} + q^{21} - 12 q^{22} - 5 q^{23} - 3 q^{24} + 4 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+4x62x5+15x44x3+5x2+x+1 x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (49ν7+64ν6256ν5+338ν41088ν3+1216ν21385ν+256)/289 ( -49\nu^{7} + 64\nu^{6} - 256\nu^{5} + 338\nu^{4} - 1088\nu^{3} + 1216\nu^{2} - 1385\nu + 256 ) / 289 Copy content Toggle raw display
β3\beta_{3}== (60ν7+16ν6+225ν560ν4+884ν3+15ν2+304ν+64)/289 ( 60\nu^{7} + 16\nu^{6} + 225\nu^{5} - 60\nu^{4} + 884\nu^{3} + 15\nu^{2} + 304\nu + 64 ) / 289 Copy content Toggle raw display
β4\beta_{4}== (63ν741ν6+164ν5352ν4+697ν3779ν2490ν164)/289 ( 63\nu^{7} - 41\nu^{6} + 164\nu^{5} - 352\nu^{4} + 697\nu^{3} - 779\nu^{2} - 490\nu - 164 ) / 289 Copy content Toggle raw display
β5\beta_{5}== (64ν7+60ν6240ν5+353ν41020ν3+1140ν2305ν+240)/289 ( -64\nu^{7} + 60\nu^{6} - 240\nu^{5} + 353\nu^{4} - 1020\nu^{3} + 1140\nu^{2} - 305\nu + 240 ) / 289 Copy content Toggle raw display
β6\beta_{6}== (164ν763ν6615ν5+164ν42108ν341ν241ν+37)/289 ( -164\nu^{7} - 63\nu^{6} - 615\nu^{5} + 164\nu^{4} - 2108\nu^{3} - 41\nu^{2} - 41\nu + 37 ) / 289 Copy content Toggle raw display
β7\beta_{7}== (180ν7+48ν6+675ν5180ν4+2363ν3+45ν2+45ν+481)/289 ( 180\nu^{7} + 48\nu^{6} + 675\nu^{5} - 180\nu^{4} + 2363\nu^{3} + 45\nu^{2} + 45\nu + 481 ) / 289 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7+β6+2β5+β4β2β12 \beta_{7} + \beta_{6} + 2\beta_{5} + \beta_{4} - \beta_{2} - \beta _1 - 2 Copy content Toggle raw display
ν3\nu^{3}== β7+3β33β1+1 -\beta_{7} + 3\beta_{3} - 3\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== 7β54β4+4β2+5β1 -7\beta_{5} - 4\beta_{4} + 4\beta_{2} + 5\beta_1 Copy content Toggle raw display
ν5\nu^{5}== 5β7+β6+6β5+β411β35β25β16 5\beta_{7} + \beta_{6} + 6\beta_{5} + \beta_{4} - 11\beta_{3} - 5\beta_{2} - 5\beta _1 - 6 Copy content Toggle raw display
ν6\nu^{6}== 16β715β6+7β37β1+27 -16\beta_{7} - 15\beta_{6} + 7\beta_{3} - 7\beta _1 + 27 Copy content Toggle raw display
ν7\nu^{7}== 30β58β4+23β2+65β1 -30\beta_{5} - 8\beta_{4} + 23\beta_{2} + 65\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) β5-\beta_{5} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
58.1
0.882007 1.52768i
0.346911 0.600868i
−0.198169 + 0.343239i
−1.03075 + 1.78531i
0.882007 + 1.52768i
0.346911 + 0.600868i
−0.198169 0.343239i
−1.03075 1.78531i
−0.882007 + 1.52768i 0.500000 + 0.866025i −0.555874 0.962803i −1.05587 + 1.82883i −1.76401 −0.893022 + 2.49048i −1.56689 −0.500000 + 0.866025i −1.86258 3.22608i
58.2 −0.346911 + 0.600868i 0.500000 + 0.866025i 0.759305 + 1.31516i 0.259305 0.449130i −0.693822 −2.54751 0.714287i −2.44129 −0.500000 + 0.866025i 0.179912 + 0.311616i
58.3 0.198169 0.343239i 0.500000 + 0.866025i 0.921458 + 1.59601i 0.421458 0.729986i 0.396339 1.79981 1.93925i 1.52310 −0.500000 + 0.866025i −0.167040 0.289322i
58.4 1.03075 1.78531i 0.500000 + 0.866025i −1.12489 1.94836i −1.62489 + 2.81439i 2.06150 2.64072 + 0.163054i −0.514916 −0.500000 + 0.866025i 3.34971 + 5.80186i
172.1 −0.882007 1.52768i 0.500000 0.866025i −0.555874 + 0.962803i −1.05587 1.82883i −1.76401 −0.893022 2.49048i −1.56689 −0.500000 0.866025i −1.86258 + 3.22608i
172.2 −0.346911 0.600868i 0.500000 0.866025i 0.759305 1.31516i 0.259305 + 0.449130i −0.693822 −2.54751 + 0.714287i −2.44129 −0.500000 0.866025i 0.179912 0.311616i
172.3 0.198169 + 0.343239i 0.500000 0.866025i 0.921458 1.59601i 0.421458 + 0.729986i 0.396339 1.79981 + 1.93925i 1.52310 −0.500000 0.866025i −0.167040 + 0.289322i
172.4 1.03075 + 1.78531i 0.500000 0.866025i −1.12489 + 1.94836i −1.62489 2.81439i 2.06150 2.64072 0.163054i −0.514916 −0.500000 0.866025i 3.34971 5.80186i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 58.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.j.d 8
3.b odd 2 1 1197.2.j.k 8
7.c even 3 1 inner 399.2.j.d 8
7.c even 3 1 2793.2.a.bc 4
7.d odd 6 1 2793.2.a.bd 4
21.g even 6 1 8379.2.a.bt 4
21.h odd 6 1 1197.2.j.k 8
21.h odd 6 1 8379.2.a.br 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.d 8 1.a even 1 1 trivial
399.2.j.d 8 7.c even 3 1 inner
1197.2.j.k 8 3.b odd 2 1
1197.2.j.k 8 21.h odd 6 1
2793.2.a.bc 4 7.c even 3 1
2793.2.a.bd 4 7.d odd 6 1
8379.2.a.br 4 21.h odd 6 1
8379.2.a.bt 4 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28+4T26+2T25+15T24+4T23+5T22T2+1 T_{2}^{8} + 4T_{2}^{6} + 2T_{2}^{5} + 15T_{2}^{4} + 4T_{2}^{3} + 5T_{2}^{2} - T_{2} + 1 acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+4T6++1 T^{8} + 4 T^{6} + \cdots + 1 Copy content Toggle raw display
33 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
55 T8+4T7++9 T^{8} + 4 T^{7} + \cdots + 9 Copy content Toggle raw display
77 T82T7++2401 T^{8} - 2 T^{7} + \cdots + 2401 Copy content Toggle raw display
1111 T82T7++1 T^{8} - 2 T^{7} + \cdots + 1 Copy content Toggle raw display
1313 (T46T3+141)2 (T^{4} - 6 T^{3} + \cdots - 141)^{2} Copy content Toggle raw display
1717 T82T7++2209 T^{8} - 2 T^{7} + \cdots + 2209 Copy content Toggle raw display
1919 (T2+T+1)4 (T^{2} + T + 1)^{4} Copy content Toggle raw display
2323 T8+5T7++81 T^{8} + 5 T^{7} + \cdots + 81 Copy content Toggle raw display
2929 (T4+4T3++303)2 (T^{4} + 4 T^{3} + \cdots + 303)^{2} Copy content Toggle raw display
3131 T8+17T7++974169 T^{8} + 17 T^{7} + \cdots + 974169 Copy content Toggle raw display
3737 T83T7++961 T^{8} - 3 T^{7} + \cdots + 961 Copy content Toggle raw display
4141 (T47T347T2+43)2 (T^{4} - 7 T^{3} - 47 T^{2} + \cdots - 43)^{2} Copy content Toggle raw display
4343 (T4+15T3+301)2 (T^{4} + 15 T^{3} + \cdots - 301)^{2} Copy content Toggle raw display
4747 T8+16T7++12439729 T^{8} + 16 T^{7} + \cdots + 12439729 Copy content Toggle raw display
5353 T8+4T7++423801 T^{8} + 4 T^{7} + \cdots + 423801 Copy content Toggle raw display
5959 T8+17T7++923521 T^{8} + 17 T^{7} + \cdots + 923521 Copy content Toggle raw display
6161 T89T7++237169 T^{8} - 9 T^{7} + \cdots + 237169 Copy content Toggle raw display
6767 T85T7++2211169 T^{8} - 5 T^{7} + \cdots + 2211169 Copy content Toggle raw display
7171 (T46T3+43T47)2 (T^{4} - 6 T^{3} + 43 T - 47)^{2} Copy content Toggle raw display
7373 T8+15T7++6135529 T^{8} + 15 T^{7} + \cdots + 6135529 Copy content Toggle raw display
7979 T8+5T7++321520761 T^{8} + 5 T^{7} + \cdots + 321520761 Copy content Toggle raw display
8383 (T434T3++2733)2 (T^{4} - 34 T^{3} + \cdots + 2733)^{2} Copy content Toggle raw display
8989 T83T7++328805689 T^{8} - 3 T^{7} + \cdots + 328805689 Copy content Toggle raw display
9797 (T411T3++1451)2 (T^{4} - 11 T^{3} + \cdots + 1451)^{2} Copy content Toggle raw display
show more
show less