Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [399,2,Mod(58,399)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("399.58");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 399.j (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.310217769.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
58.1 |
|
−0.882007 | + | 1.52768i | 0.500000 | + | 0.866025i | −0.555874 | − | 0.962803i | −1.05587 | + | 1.82883i | −1.76401 | −0.893022 | + | 2.49048i | −1.56689 | −0.500000 | + | 0.866025i | −1.86258 | − | 3.22608i | ||||||||||||||||||||||||||||
58.2 | −0.346911 | + | 0.600868i | 0.500000 | + | 0.866025i | 0.759305 | + | 1.31516i | 0.259305 | − | 0.449130i | −0.693822 | −2.54751 | − | 0.714287i | −2.44129 | −0.500000 | + | 0.866025i | 0.179912 | + | 0.311616i | |||||||||||||||||||||||||||||
58.3 | 0.198169 | − | 0.343239i | 0.500000 | + | 0.866025i | 0.921458 | + | 1.59601i | 0.421458 | − | 0.729986i | 0.396339 | 1.79981 | − | 1.93925i | 1.52310 | −0.500000 | + | 0.866025i | −0.167040 | − | 0.289322i | |||||||||||||||||||||||||||||
58.4 | 1.03075 | − | 1.78531i | 0.500000 | + | 0.866025i | −1.12489 | − | 1.94836i | −1.62489 | + | 2.81439i | 2.06150 | 2.64072 | + | 0.163054i | −0.514916 | −0.500000 | + | 0.866025i | 3.34971 | + | 5.80186i | |||||||||||||||||||||||||||||
172.1 | −0.882007 | − | 1.52768i | 0.500000 | − | 0.866025i | −0.555874 | + | 0.962803i | −1.05587 | − | 1.82883i | −1.76401 | −0.893022 | − | 2.49048i | −1.56689 | −0.500000 | − | 0.866025i | −1.86258 | + | 3.22608i | |||||||||||||||||||||||||||||
172.2 | −0.346911 | − | 0.600868i | 0.500000 | − | 0.866025i | 0.759305 | − | 1.31516i | 0.259305 | + | 0.449130i | −0.693822 | −2.54751 | + | 0.714287i | −2.44129 | −0.500000 | − | 0.866025i | 0.179912 | − | 0.311616i | |||||||||||||||||||||||||||||
172.3 | 0.198169 | + | 0.343239i | 0.500000 | − | 0.866025i | 0.921458 | − | 1.59601i | 0.421458 | + | 0.729986i | 0.396339 | 1.79981 | + | 1.93925i | 1.52310 | −0.500000 | − | 0.866025i | −0.167040 | + | 0.289322i | |||||||||||||||||||||||||||||
172.4 | 1.03075 | + | 1.78531i | 0.500000 | − | 0.866025i | −1.12489 | + | 1.94836i | −1.62489 | − | 2.81439i | 2.06150 | 2.64072 | − | 0.163054i | −0.514916 | −0.500000 | − | 0.866025i | 3.34971 | − | 5.80186i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 399.2.j.d | ✓ | 8 |
3.b | odd | 2 | 1 | 1197.2.j.k | 8 | ||
7.c | even | 3 | 1 | inner | 399.2.j.d | ✓ | 8 |
7.c | even | 3 | 1 | 2793.2.a.bc | 4 | ||
7.d | odd | 6 | 1 | 2793.2.a.bd | 4 | ||
21.g | even | 6 | 1 | 8379.2.a.bt | 4 | ||
21.h | odd | 6 | 1 | 1197.2.j.k | 8 | ||
21.h | odd | 6 | 1 | 8379.2.a.br | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
399.2.j.d | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
399.2.j.d | ✓ | 8 | 7.c | even | 3 | 1 | inner |
1197.2.j.k | 8 | 3.b | odd | 2 | 1 | ||
1197.2.j.k | 8 | 21.h | odd | 6 | 1 | ||
2793.2.a.bc | 4 | 7.c | even | 3 | 1 | ||
2793.2.a.bd | 4 | 7.d | odd | 6 | 1 | ||
8379.2.a.br | 4 | 21.h | odd | 6 | 1 | ||
8379.2.a.bt | 4 | 21.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .