Properties

Label 2793.2.a.x.1.3
Level $2793$
Weight $2$
Character 2793.1
Self dual yes
Analytic conductor $22.302$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,2,Mod(1,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2793.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3022172845\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 2793.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009 q^{2} +1.00000 q^{3} +2.70928 q^{4} -3.70928 q^{5} +2.17009 q^{6} +1.53919 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.17009 q^{2} +1.00000 q^{3} +2.70928 q^{4} -3.70928 q^{5} +2.17009 q^{6} +1.53919 q^{8} +1.00000 q^{9} -8.04945 q^{10} -1.07838 q^{11} +2.70928 q^{12} -0.921622 q^{13} -3.70928 q^{15} -2.07838 q^{16} -0.290725 q^{17} +2.17009 q^{18} -1.00000 q^{19} -10.0494 q^{20} -2.34017 q^{22} -7.60197 q^{23} +1.53919 q^{24} +8.75872 q^{25} -2.00000 q^{26} +1.00000 q^{27} +5.36910 q^{29} -8.04945 q^{30} -8.49693 q^{31} -7.58864 q^{32} -1.07838 q^{33} -0.630898 q^{34} +2.70928 q^{36} -10.6803 q^{37} -2.17009 q^{38} -0.921622 q^{39} -5.70928 q^{40} +3.75872 q^{41} -8.49693 q^{43} -2.92162 q^{44} -3.70928 q^{45} -16.4969 q^{46} +6.20620 q^{47} -2.07838 q^{48} +19.0072 q^{50} -0.290725 q^{51} -2.49693 q^{52} +4.78765 q^{53} +2.17009 q^{54} +4.00000 q^{55} -1.00000 q^{57} +11.6514 q^{58} -4.00000 q^{59} -10.0494 q^{60} +2.68035 q^{61} -18.4391 q^{62} -12.3112 q^{64} +3.41855 q^{65} -2.34017 q^{66} +1.26180 q^{67} -0.787653 q^{68} -7.60197 q^{69} -3.86603 q^{71} +1.53919 q^{72} -1.41855 q^{73} -23.1773 q^{74} +8.75872 q^{75} -2.70928 q^{76} -2.00000 q^{78} -10.5236 q^{79} +7.70928 q^{80} +1.00000 q^{81} +8.15676 q^{82} -8.72979 q^{83} +1.07838 q^{85} -18.4391 q^{86} +5.36910 q^{87} -1.65983 q^{88} +3.75872 q^{89} -8.04945 q^{90} -20.5958 q^{92} -8.49693 q^{93} +13.4680 q^{94} +3.70928 q^{95} -7.58864 q^{96} +13.5174 q^{97} -1.07838 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 3 q^{3} + q^{4} - 4 q^{5} + q^{6} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{2} + 3 q^{3} + q^{4} - 4 q^{5} + q^{6} + 3 q^{8} + 3 q^{9} - 6 q^{10} + q^{12} - 6 q^{13} - 4 q^{15} - 3 q^{16} - 8 q^{17} + q^{18} - 3 q^{19} - 12 q^{20} + 4 q^{22} - 4 q^{23} + 3 q^{24} + q^{25} - 6 q^{26} + 3 q^{27} + 20 q^{29} - 6 q^{30} - 8 q^{31} - 3 q^{32} + 2 q^{34} + q^{36} - 10 q^{37} - q^{38} - 6 q^{39} - 10 q^{40} - 14 q^{41} - 8 q^{43} - 12 q^{44} - 4 q^{45} - 32 q^{46} - 6 q^{47} - 3 q^{48} + 23 q^{50} - 8 q^{51} + 10 q^{52} + 4 q^{53} + q^{54} + 12 q^{55} - 3 q^{57} - 2 q^{58} - 12 q^{59} - 12 q^{60} - 14 q^{61} - 8 q^{62} - 11 q^{64} - 4 q^{65} + 4 q^{66} - 4 q^{67} + 8 q^{68} - 4 q^{69} + 2 q^{71} + 3 q^{72} + 10 q^{73} - 30 q^{74} + q^{75} - q^{76} - 6 q^{78} - 16 q^{79} + 16 q^{80} + 3 q^{81} + 18 q^{82} + 14 q^{83} - 8 q^{86} + 20 q^{87} - 16 q^{88} - 14 q^{89} - 6 q^{90} - 8 q^{92} - 8 q^{93} + 8 q^{94} + 4 q^{95} - 3 q^{96} - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009 1.53448 0.767241 0.641358i \(-0.221629\pi\)
0.767241 + 0.641358i \(0.221629\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.70928 1.35464
\(5\) −3.70928 −1.65884 −0.829419 0.558627i \(-0.811328\pi\)
−0.829419 + 0.558627i \(0.811328\pi\)
\(6\) 2.17009 0.885934
\(7\) 0 0
\(8\) 1.53919 0.544185
\(9\) 1.00000 0.333333
\(10\) −8.04945 −2.54546
\(11\) −1.07838 −0.325143 −0.162572 0.986697i \(-0.551979\pi\)
−0.162572 + 0.986697i \(0.551979\pi\)
\(12\) 2.70928 0.782100
\(13\) −0.921622 −0.255612 −0.127806 0.991799i \(-0.540793\pi\)
−0.127806 + 0.991799i \(0.540793\pi\)
\(14\) 0 0
\(15\) −3.70928 −0.957731
\(16\) −2.07838 −0.519594
\(17\) −0.290725 −0.0705111 −0.0352555 0.999378i \(-0.511225\pi\)
−0.0352555 + 0.999378i \(0.511225\pi\)
\(18\) 2.17009 0.511494
\(19\) −1.00000 −0.229416
\(20\) −10.0494 −2.24712
\(21\) 0 0
\(22\) −2.34017 −0.498927
\(23\) −7.60197 −1.58512 −0.792560 0.609794i \(-0.791252\pi\)
−0.792560 + 0.609794i \(0.791252\pi\)
\(24\) 1.53919 0.314186
\(25\) 8.75872 1.75174
\(26\) −2.00000 −0.392232
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.36910 0.997017 0.498509 0.866885i \(-0.333881\pi\)
0.498509 + 0.866885i \(0.333881\pi\)
\(30\) −8.04945 −1.46962
\(31\) −8.49693 −1.52609 −0.763047 0.646343i \(-0.776297\pi\)
−0.763047 + 0.646343i \(0.776297\pi\)
\(32\) −7.58864 −1.34149
\(33\) −1.07838 −0.187721
\(34\) −0.630898 −0.108198
\(35\) 0 0
\(36\) 2.70928 0.451546
\(37\) −10.6803 −1.75584 −0.877919 0.478809i \(-0.841069\pi\)
−0.877919 + 0.478809i \(0.841069\pi\)
\(38\) −2.17009 −0.352035
\(39\) −0.921622 −0.147578
\(40\) −5.70928 −0.902716
\(41\) 3.75872 0.587014 0.293507 0.955957i \(-0.405178\pi\)
0.293507 + 0.955957i \(0.405178\pi\)
\(42\) 0 0
\(43\) −8.49693 −1.29577 −0.647885 0.761738i \(-0.724346\pi\)
−0.647885 + 0.761738i \(0.724346\pi\)
\(44\) −2.92162 −0.440451
\(45\) −3.70928 −0.552946
\(46\) −16.4969 −2.43234
\(47\) 6.20620 0.905268 0.452634 0.891696i \(-0.350484\pi\)
0.452634 + 0.891696i \(0.350484\pi\)
\(48\) −2.07838 −0.299988
\(49\) 0 0
\(50\) 19.0072 2.68802
\(51\) −0.290725 −0.0407096
\(52\) −2.49693 −0.346262
\(53\) 4.78765 0.657635 0.328817 0.944394i \(-0.393350\pi\)
0.328817 + 0.944394i \(0.393350\pi\)
\(54\) 2.17009 0.295311
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 11.6514 1.52991
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) −10.0494 −1.29738
\(61\) 2.68035 0.343183 0.171592 0.985168i \(-0.445109\pi\)
0.171592 + 0.985168i \(0.445109\pi\)
\(62\) −18.4391 −2.34176
\(63\) 0 0
\(64\) −12.3112 −1.53891
\(65\) 3.41855 0.424019
\(66\) −2.34017 −0.288055
\(67\) 1.26180 0.154153 0.0770764 0.997025i \(-0.475441\pi\)
0.0770764 + 0.997025i \(0.475441\pi\)
\(68\) −0.787653 −0.0955170
\(69\) −7.60197 −0.915169
\(70\) 0 0
\(71\) −3.86603 −0.458813 −0.229407 0.973331i \(-0.573679\pi\)
−0.229407 + 0.973331i \(0.573679\pi\)
\(72\) 1.53919 0.181395
\(73\) −1.41855 −0.166029 −0.0830144 0.996548i \(-0.526455\pi\)
−0.0830144 + 0.996548i \(0.526455\pi\)
\(74\) −23.1773 −2.69430
\(75\) 8.75872 1.01137
\(76\) −2.70928 −0.310775
\(77\) 0 0
\(78\) −2.00000 −0.226455
\(79\) −10.5236 −1.18400 −0.591998 0.805939i \(-0.701661\pi\)
−0.591998 + 0.805939i \(0.701661\pi\)
\(80\) 7.70928 0.861923
\(81\) 1.00000 0.111111
\(82\) 8.15676 0.900763
\(83\) −8.72979 −0.958219 −0.479110 0.877755i \(-0.659040\pi\)
−0.479110 + 0.877755i \(0.659040\pi\)
\(84\) 0 0
\(85\) 1.07838 0.116966
\(86\) −18.4391 −1.98834
\(87\) 5.36910 0.575628
\(88\) −1.65983 −0.176938
\(89\) 3.75872 0.398424 0.199212 0.979956i \(-0.436162\pi\)
0.199212 + 0.979956i \(0.436162\pi\)
\(90\) −8.04945 −0.848486
\(91\) 0 0
\(92\) −20.5958 −2.14726
\(93\) −8.49693 −0.881090
\(94\) 13.4680 1.38912
\(95\) 3.70928 0.380564
\(96\) −7.58864 −0.774512
\(97\) 13.5174 1.37249 0.686244 0.727371i \(-0.259258\pi\)
0.686244 + 0.727371i \(0.259258\pi\)
\(98\) 0 0
\(99\) −1.07838 −0.108381
\(100\) 23.7298 2.37298
\(101\) 2.44748 0.243533 0.121767 0.992559i \(-0.461144\pi\)
0.121767 + 0.992559i \(0.461144\pi\)
\(102\) −0.630898 −0.0624682
\(103\) −19.5174 −1.92311 −0.961556 0.274610i \(-0.911451\pi\)
−0.961556 + 0.274610i \(0.911451\pi\)
\(104\) −1.41855 −0.139100
\(105\) 0 0
\(106\) 10.3896 1.00913
\(107\) 15.6514 1.51308 0.756540 0.653948i \(-0.226888\pi\)
0.756540 + 0.653948i \(0.226888\pi\)
\(108\) 2.70928 0.260700
\(109\) 14.0989 1.35043 0.675215 0.737621i \(-0.264051\pi\)
0.675215 + 0.737621i \(0.264051\pi\)
\(110\) 8.68035 0.827639
\(111\) −10.6803 −1.01373
\(112\) 0 0
\(113\) 18.7298 1.76195 0.880975 0.473162i \(-0.156887\pi\)
0.880975 + 0.473162i \(0.156887\pi\)
\(114\) −2.17009 −0.203247
\(115\) 28.1978 2.62946
\(116\) 14.5464 1.35060
\(117\) −0.921622 −0.0852040
\(118\) −8.68035 −0.799091
\(119\) 0 0
\(120\) −5.70928 −0.521183
\(121\) −9.83710 −0.894282
\(122\) 5.81658 0.526609
\(123\) 3.75872 0.338913
\(124\) −23.0205 −2.06730
\(125\) −13.9421 −1.24702
\(126\) 0 0
\(127\) −15.7854 −1.40073 −0.700363 0.713787i \(-0.746979\pi\)
−0.700363 + 0.713787i \(0.746979\pi\)
\(128\) −11.5392 −1.01993
\(129\) −8.49693 −0.748113
\(130\) 7.41855 0.650650
\(131\) −6.10731 −0.533598 −0.266799 0.963752i \(-0.585966\pi\)
−0.266799 + 0.963752i \(0.585966\pi\)
\(132\) −2.92162 −0.254295
\(133\) 0 0
\(134\) 2.73820 0.236545
\(135\) −3.70928 −0.319244
\(136\) −0.447480 −0.0383711
\(137\) 18.9939 1.62275 0.811377 0.584523i \(-0.198718\pi\)
0.811377 + 0.584523i \(0.198718\pi\)
\(138\) −16.4969 −1.40431
\(139\) −0.894960 −0.0759095 −0.0379548 0.999279i \(-0.512084\pi\)
−0.0379548 + 0.999279i \(0.512084\pi\)
\(140\) 0 0
\(141\) 6.20620 0.522657
\(142\) −8.38962 −0.704041
\(143\) 0.993857 0.0831105
\(144\) −2.07838 −0.173198
\(145\) −19.9155 −1.65389
\(146\) −3.07838 −0.254768
\(147\) 0 0
\(148\) −28.9360 −2.37852
\(149\) 20.9360 1.71514 0.857572 0.514364i \(-0.171972\pi\)
0.857572 + 0.514364i \(0.171972\pi\)
\(150\) 19.0072 1.55193
\(151\) 13.9421 1.13460 0.567298 0.823513i \(-0.307989\pi\)
0.567298 + 0.823513i \(0.307989\pi\)
\(152\) −1.53919 −0.124845
\(153\) −0.290725 −0.0235037
\(154\) 0 0
\(155\) 31.5174 2.53154
\(156\) −2.49693 −0.199914
\(157\) 2.31351 0.184638 0.0923191 0.995729i \(-0.470572\pi\)
0.0923191 + 0.995729i \(0.470572\pi\)
\(158\) −22.8371 −1.81682
\(159\) 4.78765 0.379686
\(160\) 28.1483 2.22532
\(161\) 0 0
\(162\) 2.17009 0.170498
\(163\) −17.6598 −1.38322 −0.691612 0.722269i \(-0.743099\pi\)
−0.691612 + 0.722269i \(0.743099\pi\)
\(164\) 10.1834 0.795191
\(165\) 4.00000 0.311400
\(166\) −18.9444 −1.47037
\(167\) −3.05172 −0.236149 −0.118074 0.993005i \(-0.537672\pi\)
−0.118074 + 0.993005i \(0.537672\pi\)
\(168\) 0 0
\(169\) −12.1506 −0.934662
\(170\) 2.34017 0.179483
\(171\) −1.00000 −0.0764719
\(172\) −23.0205 −1.75530
\(173\) −9.60197 −0.730024 −0.365012 0.931003i \(-0.618935\pi\)
−0.365012 + 0.931003i \(0.618935\pi\)
\(174\) 11.6514 0.883292
\(175\) 0 0
\(176\) 2.24128 0.168943
\(177\) −4.00000 −0.300658
\(178\) 8.15676 0.611375
\(179\) −0.814315 −0.0608648 −0.0304324 0.999537i \(-0.509688\pi\)
−0.0304324 + 0.999537i \(0.509688\pi\)
\(180\) −10.0494 −0.749042
\(181\) −20.1568 −1.49824 −0.749120 0.662434i \(-0.769523\pi\)
−0.749120 + 0.662434i \(0.769523\pi\)
\(182\) 0 0
\(183\) 2.68035 0.198137
\(184\) −11.7009 −0.862599
\(185\) 39.6163 2.91265
\(186\) −18.4391 −1.35202
\(187\) 0.313511 0.0229262
\(188\) 16.8143 1.22631
\(189\) 0 0
\(190\) 8.04945 0.583968
\(191\) 5.44521 0.394002 0.197001 0.980403i \(-0.436880\pi\)
0.197001 + 0.980403i \(0.436880\pi\)
\(192\) −12.3112 −0.888487
\(193\) 1.68649 0.121396 0.0606981 0.998156i \(-0.480667\pi\)
0.0606981 + 0.998156i \(0.480667\pi\)
\(194\) 29.3340 2.10606
\(195\) 3.41855 0.244808
\(196\) 0 0
\(197\) −10.3668 −0.738606 −0.369303 0.929309i \(-0.620404\pi\)
−0.369303 + 0.929309i \(0.620404\pi\)
\(198\) −2.34017 −0.166309
\(199\) 2.42469 0.171882 0.0859410 0.996300i \(-0.472610\pi\)
0.0859410 + 0.996300i \(0.472610\pi\)
\(200\) 13.4813 0.953274
\(201\) 1.26180 0.0890002
\(202\) 5.31124 0.373698
\(203\) 0 0
\(204\) −0.787653 −0.0551467
\(205\) −13.9421 −0.973761
\(206\) −42.3545 −2.95098
\(207\) −7.60197 −0.528373
\(208\) 1.91548 0.132815
\(209\) 1.07838 0.0745929
\(210\) 0 0
\(211\) 19.5174 1.34364 0.671818 0.740716i \(-0.265514\pi\)
0.671818 + 0.740716i \(0.265514\pi\)
\(212\) 12.9711 0.890857
\(213\) −3.86603 −0.264896
\(214\) 33.9649 2.32179
\(215\) 31.5174 2.14947
\(216\) 1.53919 0.104729
\(217\) 0 0
\(218\) 30.5958 2.07221
\(219\) −1.41855 −0.0958568
\(220\) 10.8371 0.730637
\(221\) 0.267938 0.0180235
\(222\) −23.1773 −1.55556
\(223\) −19.0205 −1.27371 −0.636854 0.770984i \(-0.719765\pi\)
−0.636854 + 0.770984i \(0.719765\pi\)
\(224\) 0 0
\(225\) 8.75872 0.583915
\(226\) 40.6453 2.70368
\(227\) −11.7321 −0.778684 −0.389342 0.921093i \(-0.627298\pi\)
−0.389342 + 0.921093i \(0.627298\pi\)
\(228\) −2.70928 −0.179426
\(229\) 27.4596 1.81458 0.907290 0.420505i \(-0.138147\pi\)
0.907290 + 0.420505i \(0.138147\pi\)
\(230\) 61.1917 4.03486
\(231\) 0 0
\(232\) 8.26406 0.542562
\(233\) −5.10504 −0.334442 −0.167221 0.985919i \(-0.553479\pi\)
−0.167221 + 0.985919i \(0.553479\pi\)
\(234\) −2.00000 −0.130744
\(235\) −23.0205 −1.50169
\(236\) −10.8371 −0.705435
\(237\) −10.5236 −0.683581
\(238\) 0 0
\(239\) −10.6537 −0.689130 −0.344565 0.938763i \(-0.611973\pi\)
−0.344565 + 0.938763i \(0.611973\pi\)
\(240\) 7.70928 0.497632
\(241\) 13.5174 0.870735 0.435368 0.900253i \(-0.356618\pi\)
0.435368 + 0.900253i \(0.356618\pi\)
\(242\) −21.3474 −1.37226
\(243\) 1.00000 0.0641500
\(244\) 7.26180 0.464889
\(245\) 0 0
\(246\) 8.15676 0.520056
\(247\) 0.921622 0.0586414
\(248\) −13.0784 −0.830478
\(249\) −8.72979 −0.553228
\(250\) −30.2557 −1.91354
\(251\) 18.2062 1.14917 0.574583 0.818447i \(-0.305164\pi\)
0.574583 + 0.818447i \(0.305164\pi\)
\(252\) 0 0
\(253\) 8.19779 0.515391
\(254\) −34.2557 −2.14939
\(255\) 1.07838 0.0675306
\(256\) −0.418551 −0.0261594
\(257\) −12.3402 −0.769759 −0.384879 0.922967i \(-0.625757\pi\)
−0.384879 + 0.922967i \(0.625757\pi\)
\(258\) −18.4391 −1.14797
\(259\) 0 0
\(260\) 9.26180 0.574392
\(261\) 5.36910 0.332339
\(262\) −13.2534 −0.818797
\(263\) 7.50307 0.462659 0.231330 0.972875i \(-0.425692\pi\)
0.231330 + 0.972875i \(0.425692\pi\)
\(264\) −1.65983 −0.102155
\(265\) −17.7587 −1.09091
\(266\) 0 0
\(267\) 3.75872 0.230030
\(268\) 3.41855 0.208821
\(269\) 4.34017 0.264625 0.132313 0.991208i \(-0.457760\pi\)
0.132313 + 0.991208i \(0.457760\pi\)
\(270\) −8.04945 −0.489874
\(271\) −26.0410 −1.58188 −0.790940 0.611893i \(-0.790408\pi\)
−0.790940 + 0.611893i \(0.790408\pi\)
\(272\) 0.604236 0.0366372
\(273\) 0 0
\(274\) 41.2183 2.49009
\(275\) −9.44521 −0.569568
\(276\) −20.5958 −1.23972
\(277\) 6.59583 0.396305 0.198152 0.980171i \(-0.436506\pi\)
0.198152 + 0.980171i \(0.436506\pi\)
\(278\) −1.94214 −0.116482
\(279\) −8.49693 −0.508698
\(280\) 0 0
\(281\) −11.6248 −0.693475 −0.346737 0.937962i \(-0.612710\pi\)
−0.346737 + 0.937962i \(0.612710\pi\)
\(282\) 13.4680 0.802008
\(283\) 17.9421 1.06655 0.533275 0.845942i \(-0.320961\pi\)
0.533275 + 0.845942i \(0.320961\pi\)
\(284\) −10.4741 −0.621526
\(285\) 3.70928 0.219719
\(286\) 2.15676 0.127532
\(287\) 0 0
\(288\) −7.58864 −0.447165
\(289\) −16.9155 −0.995028
\(290\) −43.2183 −2.53787
\(291\) 13.5174 0.792407
\(292\) −3.84324 −0.224909
\(293\) 23.7587 1.38800 0.694000 0.719975i \(-0.255847\pi\)
0.694000 + 0.719975i \(0.255847\pi\)
\(294\) 0 0
\(295\) 14.8371 0.863849
\(296\) −16.4391 −0.955502
\(297\) −1.07838 −0.0625738
\(298\) 45.4329 2.63186
\(299\) 7.00614 0.405176
\(300\) 23.7298 1.37004
\(301\) 0 0
\(302\) 30.2557 1.74102
\(303\) 2.44748 0.140604
\(304\) 2.07838 0.119203
\(305\) −9.94214 −0.569285
\(306\) −0.630898 −0.0360660
\(307\) 24.0144 1.37057 0.685286 0.728274i \(-0.259677\pi\)
0.685286 + 0.728274i \(0.259677\pi\)
\(308\) 0 0
\(309\) −19.5174 −1.11031
\(310\) 68.3956 3.88461
\(311\) −22.9854 −1.30339 −0.651693 0.758483i \(-0.725941\pi\)
−0.651693 + 0.758483i \(0.725941\pi\)
\(312\) −1.41855 −0.0803096
\(313\) −0.523590 −0.0295951 −0.0147975 0.999891i \(-0.504710\pi\)
−0.0147975 + 0.999891i \(0.504710\pi\)
\(314\) 5.02052 0.283324
\(315\) 0 0
\(316\) −28.5113 −1.60389
\(317\) −17.1012 −0.960497 −0.480249 0.877132i \(-0.659454\pi\)
−0.480249 + 0.877132i \(0.659454\pi\)
\(318\) 10.3896 0.582621
\(319\) −5.78992 −0.324173
\(320\) 45.6658 2.55280
\(321\) 15.6514 0.873577
\(322\) 0 0
\(323\) 0.290725 0.0161764
\(324\) 2.70928 0.150515
\(325\) −8.07223 −0.447767
\(326\) −38.3234 −2.12253
\(327\) 14.0989 0.779671
\(328\) 5.78539 0.319444
\(329\) 0 0
\(330\) 8.68035 0.477837
\(331\) 25.1461 1.38215 0.691077 0.722781i \(-0.257137\pi\)
0.691077 + 0.722781i \(0.257137\pi\)
\(332\) −23.6514 −1.29804
\(333\) −10.6803 −0.585279
\(334\) −6.62249 −0.362366
\(335\) −4.68035 −0.255715
\(336\) 0 0
\(337\) −11.5753 −0.630547 −0.315274 0.949001i \(-0.602096\pi\)
−0.315274 + 0.949001i \(0.602096\pi\)
\(338\) −26.3679 −1.43422
\(339\) 18.7298 1.01726
\(340\) 2.92162 0.158447
\(341\) 9.16290 0.496199
\(342\) −2.17009 −0.117345
\(343\) 0 0
\(344\) −13.0784 −0.705139
\(345\) 28.1978 1.51812
\(346\) −20.8371 −1.12021
\(347\) −32.0144 −1.71862 −0.859311 0.511454i \(-0.829107\pi\)
−0.859311 + 0.511454i \(0.829107\pi\)
\(348\) 14.5464 0.779768
\(349\) 2.36683 0.126694 0.0633469 0.997992i \(-0.479823\pi\)
0.0633469 + 0.997992i \(0.479823\pi\)
\(350\) 0 0
\(351\) −0.921622 −0.0491926
\(352\) 8.18342 0.436178
\(353\) −15.4413 −0.821859 −0.410930 0.911667i \(-0.634796\pi\)
−0.410930 + 0.911667i \(0.634796\pi\)
\(354\) −8.68035 −0.461355
\(355\) 14.3402 0.761097
\(356\) 10.1834 0.539720
\(357\) 0 0
\(358\) −1.76713 −0.0933959
\(359\) 23.4329 1.23674 0.618371 0.785886i \(-0.287793\pi\)
0.618371 + 0.785886i \(0.287793\pi\)
\(360\) −5.70928 −0.300905
\(361\) 1.00000 0.0526316
\(362\) −43.7419 −2.29902
\(363\) −9.83710 −0.516314
\(364\) 0 0
\(365\) 5.26180 0.275415
\(366\) 5.81658 0.304038
\(367\) 31.3028 1.63399 0.816997 0.576642i \(-0.195637\pi\)
0.816997 + 0.576642i \(0.195637\pi\)
\(368\) 15.7998 0.823620
\(369\) 3.75872 0.195671
\(370\) 85.9709 4.46941
\(371\) 0 0
\(372\) −23.0205 −1.19356
\(373\) −23.6742 −1.22580 −0.612902 0.790159i \(-0.709998\pi\)
−0.612902 + 0.790159i \(0.709998\pi\)
\(374\) 0.680346 0.0351799
\(375\) −13.9421 −0.719969
\(376\) 9.55252 0.492634
\(377\) −4.94828 −0.254850
\(378\) 0 0
\(379\) −7.41855 −0.381065 −0.190533 0.981681i \(-0.561022\pi\)
−0.190533 + 0.981681i \(0.561022\pi\)
\(380\) 10.0494 0.515526
\(381\) −15.7854 −0.808710
\(382\) 11.8166 0.604589
\(383\) 7.10504 0.363051 0.181525 0.983386i \(-0.441897\pi\)
0.181525 + 0.983386i \(0.441897\pi\)
\(384\) −11.5392 −0.588857
\(385\) 0 0
\(386\) 3.65983 0.186280
\(387\) −8.49693 −0.431923
\(388\) 36.6225 1.85923
\(389\) 16.2557 0.824194 0.412097 0.911140i \(-0.364796\pi\)
0.412097 + 0.911140i \(0.364796\pi\)
\(390\) 7.41855 0.375653
\(391\) 2.21008 0.111769
\(392\) 0 0
\(393\) −6.10731 −0.308073
\(394\) −22.4969 −1.13338
\(395\) 39.0349 1.96406
\(396\) −2.92162 −0.146817
\(397\) −26.5113 −1.33056 −0.665282 0.746592i \(-0.731689\pi\)
−0.665282 + 0.746592i \(0.731689\pi\)
\(398\) 5.26180 0.263750
\(399\) 0 0
\(400\) −18.2039 −0.910197
\(401\) −6.04945 −0.302095 −0.151048 0.988527i \(-0.548265\pi\)
−0.151048 + 0.988527i \(0.548265\pi\)
\(402\) 2.73820 0.136569
\(403\) 7.83096 0.390088
\(404\) 6.63090 0.329899
\(405\) −3.70928 −0.184315
\(406\) 0 0
\(407\) 11.5174 0.570899
\(408\) −0.447480 −0.0221536
\(409\) −37.1194 −1.83544 −0.917718 0.397231i \(-0.869971\pi\)
−0.917718 + 0.397231i \(0.869971\pi\)
\(410\) −30.2557 −1.49422
\(411\) 18.9939 0.936898
\(412\) −52.8781 −2.60512
\(413\) 0 0
\(414\) −16.4969 −0.810780
\(415\) 32.3812 1.58953
\(416\) 6.99386 0.342902
\(417\) −0.894960 −0.0438264
\(418\) 2.34017 0.114462
\(419\) 23.3523 1.14083 0.570417 0.821355i \(-0.306782\pi\)
0.570417 + 0.821355i \(0.306782\pi\)
\(420\) 0 0
\(421\) 7.57531 0.369198 0.184599 0.982814i \(-0.440901\pi\)
0.184599 + 0.982814i \(0.440901\pi\)
\(422\) 42.3545 2.06179
\(423\) 6.20620 0.301756
\(424\) 7.36910 0.357875
\(425\) −2.54638 −0.123517
\(426\) −8.38962 −0.406478
\(427\) 0 0
\(428\) 42.4040 2.04967
\(429\) 0.993857 0.0479839
\(430\) 68.3956 3.29833
\(431\) −5.90707 −0.284533 −0.142267 0.989828i \(-0.545439\pi\)
−0.142267 + 0.989828i \(0.545439\pi\)
\(432\) −2.07838 −0.0999960
\(433\) 7.47641 0.359293 0.179647 0.983731i \(-0.442505\pi\)
0.179647 + 0.983731i \(0.442505\pi\)
\(434\) 0 0
\(435\) −19.9155 −0.954874
\(436\) 38.1978 1.82934
\(437\) 7.60197 0.363651
\(438\) −3.07838 −0.147091
\(439\) 9.49079 0.452970 0.226485 0.974015i \(-0.427276\pi\)
0.226485 + 0.974015i \(0.427276\pi\)
\(440\) 6.15676 0.293512
\(441\) 0 0
\(442\) 0.581449 0.0276567
\(443\) −25.1773 −1.19621 −0.598104 0.801418i \(-0.704079\pi\)
−0.598104 + 0.801418i \(0.704079\pi\)
\(444\) −28.9360 −1.37324
\(445\) −13.9421 −0.660921
\(446\) −41.2762 −1.95448
\(447\) 20.9360 0.990239
\(448\) 0 0
\(449\) −32.4040 −1.52924 −0.764620 0.644482i \(-0.777073\pi\)
−0.764620 + 0.644482i \(0.777073\pi\)
\(450\) 19.0072 0.896007
\(451\) −4.05332 −0.190864
\(452\) 50.7442 2.38680
\(453\) 13.9421 0.655059
\(454\) −25.4596 −1.19488
\(455\) 0 0
\(456\) −1.53919 −0.0720791
\(457\) 8.86830 0.414841 0.207421 0.978252i \(-0.433493\pi\)
0.207421 + 0.978252i \(0.433493\pi\)
\(458\) 59.5897 2.78444
\(459\) −0.290725 −0.0135699
\(460\) 76.3956 3.56196
\(461\) −8.70313 −0.405345 −0.202673 0.979247i \(-0.564963\pi\)
−0.202673 + 0.979247i \(0.564963\pi\)
\(462\) 0 0
\(463\) −6.21008 −0.288607 −0.144303 0.989533i \(-0.546094\pi\)
−0.144303 + 0.989533i \(0.546094\pi\)
\(464\) −11.1590 −0.518045
\(465\) 31.5174 1.46159
\(466\) −11.0784 −0.513196
\(467\) −16.4619 −0.761764 −0.380882 0.924624i \(-0.624380\pi\)
−0.380882 + 0.924624i \(0.624380\pi\)
\(468\) −2.49693 −0.115421
\(469\) 0 0
\(470\) −49.9565 −2.30432
\(471\) 2.31351 0.106601
\(472\) −6.15676 −0.283388
\(473\) 9.16290 0.421311
\(474\) −22.8371 −1.04894
\(475\) −8.75872 −0.401878
\(476\) 0 0
\(477\) 4.78765 0.219212
\(478\) −23.1194 −1.05746
\(479\) −16.5320 −0.755366 −0.377683 0.925935i \(-0.623279\pi\)
−0.377683 + 0.925935i \(0.623279\pi\)
\(480\) 28.1483 1.28479
\(481\) 9.84324 0.448813
\(482\) 29.3340 1.33613
\(483\) 0 0
\(484\) −26.6514 −1.21143
\(485\) −50.1399 −2.27674
\(486\) 2.17009 0.0984371
\(487\) −25.6742 −1.16341 −0.581705 0.813400i \(-0.697614\pi\)
−0.581705 + 0.813400i \(0.697614\pi\)
\(488\) 4.12556 0.186755
\(489\) −17.6598 −0.798605
\(490\) 0 0
\(491\) 27.3340 1.23357 0.616784 0.787133i \(-0.288435\pi\)
0.616784 + 0.787133i \(0.288435\pi\)
\(492\) 10.1834 0.459104
\(493\) −1.56093 −0.0703008
\(494\) 2.00000 0.0899843
\(495\) 4.00000 0.179787
\(496\) 17.6598 0.792950
\(497\) 0 0
\(498\) −18.9444 −0.848919
\(499\) −10.0410 −0.449499 −0.224749 0.974417i \(-0.572156\pi\)
−0.224749 + 0.974417i \(0.572156\pi\)
\(500\) −37.7731 −1.68926
\(501\) −3.05172 −0.136341
\(502\) 39.5090 1.76337
\(503\) −36.8287 −1.64211 −0.821055 0.570849i \(-0.806614\pi\)
−0.821055 + 0.570849i \(0.806614\pi\)
\(504\) 0 0
\(505\) −9.07838 −0.403983
\(506\) 17.7899 0.790858
\(507\) −12.1506 −0.539628
\(508\) −42.7670 −1.89748
\(509\) 14.1301 0.626305 0.313153 0.949703i \(-0.398615\pi\)
0.313153 + 0.949703i \(0.398615\pi\)
\(510\) 2.34017 0.103625
\(511\) 0 0
\(512\) 22.1701 0.979789
\(513\) −1.00000 −0.0441511
\(514\) −26.7792 −1.18118
\(515\) 72.3956 3.19013
\(516\) −23.0205 −1.01342
\(517\) −6.69263 −0.294342
\(518\) 0 0
\(519\) −9.60197 −0.421480
\(520\) 5.26180 0.230745
\(521\) −28.1711 −1.23420 −0.617100 0.786885i \(-0.711693\pi\)
−0.617100 + 0.786885i \(0.711693\pi\)
\(522\) 11.6514 0.509969
\(523\) 32.1834 1.40728 0.703641 0.710555i \(-0.251556\pi\)
0.703641 + 0.710555i \(0.251556\pi\)
\(524\) −16.5464 −0.722832
\(525\) 0 0
\(526\) 16.2823 0.709943
\(527\) 2.47027 0.107606
\(528\) 2.24128 0.0975390
\(529\) 34.7899 1.51261
\(530\) −38.5380 −1.67398
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) −3.46412 −0.150048
\(534\) 8.15676 0.352977
\(535\) −58.0554 −2.50995
\(536\) 1.94214 0.0838877
\(537\) −0.814315 −0.0351403
\(538\) 9.41855 0.406063
\(539\) 0 0
\(540\) −10.0494 −0.432459
\(541\) −41.0349 −1.76423 −0.882114 0.471036i \(-0.843880\pi\)
−0.882114 + 0.471036i \(0.843880\pi\)
\(542\) −56.5113 −2.42737
\(543\) −20.1568 −0.865009
\(544\) 2.20620 0.0945902
\(545\) −52.2967 −2.24014
\(546\) 0 0
\(547\) 9.67420 0.413639 0.206820 0.978379i \(-0.433689\pi\)
0.206820 + 0.978379i \(0.433689\pi\)
\(548\) 51.4596 2.19824
\(549\) 2.68035 0.114394
\(550\) −20.4969 −0.873992
\(551\) −5.36910 −0.228731
\(552\) −11.7009 −0.498022
\(553\) 0 0
\(554\) 14.3135 0.608123
\(555\) 39.6163 1.68162
\(556\) −2.42469 −0.102830
\(557\) −40.1399 −1.70078 −0.850392 0.526150i \(-0.823635\pi\)
−0.850392 + 0.526150i \(0.823635\pi\)
\(558\) −18.4391 −0.780588
\(559\) 7.83096 0.331214
\(560\) 0 0
\(561\) 0.313511 0.0132364
\(562\) −25.2267 −1.06413
\(563\) −44.0989 −1.85855 −0.929273 0.369393i \(-0.879566\pi\)
−0.929273 + 0.369393i \(0.879566\pi\)
\(564\) 16.8143 0.708010
\(565\) −69.4740 −2.92279
\(566\) 38.9360 1.63660
\(567\) 0 0
\(568\) −5.95055 −0.249680
\(569\) −13.4147 −0.562372 −0.281186 0.959653i \(-0.590728\pi\)
−0.281186 + 0.959653i \(0.590728\pi\)
\(570\) 8.04945 0.337154
\(571\) −27.8310 −1.16469 −0.582345 0.812942i \(-0.697865\pi\)
−0.582345 + 0.812942i \(0.697865\pi\)
\(572\) 2.69263 0.112585
\(573\) 5.44521 0.227477
\(574\) 0 0
\(575\) −66.5835 −2.77673
\(576\) −12.3112 −0.512968
\(577\) 34.1978 1.42367 0.711836 0.702345i \(-0.247864\pi\)
0.711836 + 0.702345i \(0.247864\pi\)
\(578\) −36.7081 −1.52685
\(579\) 1.68649 0.0700881
\(580\) −53.9565 −2.24042
\(581\) 0 0
\(582\) 29.3340 1.21593
\(583\) −5.16290 −0.213825
\(584\) −2.18342 −0.0903505
\(585\) 3.41855 0.141340
\(586\) 51.5585 2.12986
\(587\) −33.1422 −1.36793 −0.683963 0.729517i \(-0.739745\pi\)
−0.683963 + 0.729517i \(0.739745\pi\)
\(588\) 0 0
\(589\) 8.49693 0.350110
\(590\) 32.1978 1.32556
\(591\) −10.3668 −0.426435
\(592\) 22.1978 0.912324
\(593\) −29.7503 −1.22170 −0.610849 0.791747i \(-0.709172\pi\)
−0.610849 + 0.791747i \(0.709172\pi\)
\(594\) −2.34017 −0.0960185
\(595\) 0 0
\(596\) 56.7214 2.32340
\(597\) 2.42469 0.0992361
\(598\) 15.2039 0.621735
\(599\) 2.19183 0.0895557 0.0447778 0.998997i \(-0.485742\pi\)
0.0447778 + 0.998997i \(0.485742\pi\)
\(600\) 13.4813 0.550373
\(601\) −31.9877 −1.30481 −0.652403 0.757872i \(-0.726239\pi\)
−0.652403 + 0.757872i \(0.726239\pi\)
\(602\) 0 0
\(603\) 1.26180 0.0513843
\(604\) 37.7731 1.53697
\(605\) 36.4885 1.48347
\(606\) 5.31124 0.215755
\(607\) 27.5174 1.11690 0.558449 0.829539i \(-0.311397\pi\)
0.558449 + 0.829539i \(0.311397\pi\)
\(608\) 7.58864 0.307760
\(609\) 0 0
\(610\) −21.5753 −0.873559
\(611\) −5.71978 −0.231397
\(612\) −0.787653 −0.0318390
\(613\) 6.59583 0.266403 0.133201 0.991089i \(-0.457474\pi\)
0.133201 + 0.991089i \(0.457474\pi\)
\(614\) 52.1133 2.10312
\(615\) −13.9421 −0.562201
\(616\) 0 0
\(617\) −3.47641 −0.139955 −0.0699775 0.997549i \(-0.522293\pi\)
−0.0699775 + 0.997549i \(0.522293\pi\)
\(618\) −42.3545 −1.70375
\(619\) −26.9893 −1.08479 −0.542396 0.840123i \(-0.682483\pi\)
−0.542396 + 0.840123i \(0.682483\pi\)
\(620\) 85.3894 3.42932
\(621\) −7.60197 −0.305056
\(622\) −49.8804 −2.00002
\(623\) 0 0
\(624\) 1.91548 0.0766805
\(625\) 7.92162 0.316865
\(626\) −1.13624 −0.0454131
\(627\) 1.07838 0.0430663
\(628\) 6.26794 0.250118
\(629\) 3.10504 0.123806
\(630\) 0 0
\(631\) −10.3402 −0.411636 −0.205818 0.978590i \(-0.565985\pi\)
−0.205818 + 0.978590i \(0.565985\pi\)
\(632\) −16.1978 −0.644314
\(633\) 19.5174 0.775749
\(634\) −37.1110 −1.47387
\(635\) 58.5523 2.32358
\(636\) 12.9711 0.514336
\(637\) 0 0
\(638\) −12.5646 −0.497438
\(639\) −3.86603 −0.152938
\(640\) 42.8020 1.69190
\(641\) 35.1955 1.39014 0.695070 0.718942i \(-0.255373\pi\)
0.695070 + 0.718942i \(0.255373\pi\)
\(642\) 33.9649 1.34049
\(643\) −12.4657 −0.491600 −0.245800 0.969321i \(-0.579051\pi\)
−0.245800 + 0.969321i \(0.579051\pi\)
\(644\) 0 0
\(645\) 31.5174 1.24100
\(646\) 0.630898 0.0248223
\(647\) 11.8804 0.467067 0.233533 0.972349i \(-0.424971\pi\)
0.233533 + 0.972349i \(0.424971\pi\)
\(648\) 1.53919 0.0604650
\(649\) 4.31351 0.169320
\(650\) −17.5174 −0.687091
\(651\) 0 0
\(652\) −47.8453 −1.87377
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 30.5958 1.19639
\(655\) 22.6537 0.885153
\(656\) −7.81205 −0.305009
\(657\) −1.41855 −0.0553429
\(658\) 0 0
\(659\) 12.5464 0.488737 0.244369 0.969682i \(-0.421419\pi\)
0.244369 + 0.969682i \(0.421419\pi\)
\(660\) 10.8371 0.421834
\(661\) −11.6430 −0.452860 −0.226430 0.974027i \(-0.572706\pi\)
−0.226430 + 0.974027i \(0.572706\pi\)
\(662\) 54.5692 2.12089
\(663\) 0.267938 0.0104059
\(664\) −13.4368 −0.521449
\(665\) 0 0
\(666\) −23.1773 −0.898101
\(667\) −40.8157 −1.58039
\(668\) −8.26794 −0.319896
\(669\) −19.0205 −0.735376
\(670\) −10.1568 −0.392390
\(671\) −2.89043 −0.111584
\(672\) 0 0
\(673\) 41.3484 1.59386 0.796932 0.604069i \(-0.206455\pi\)
0.796932 + 0.604069i \(0.206455\pi\)
\(674\) −25.1194 −0.967564
\(675\) 8.75872 0.337123
\(676\) −32.9194 −1.26613
\(677\) 19.1773 0.737043 0.368521 0.929619i \(-0.379864\pi\)
0.368521 + 0.929619i \(0.379864\pi\)
\(678\) 40.6453 1.56097
\(679\) 0 0
\(680\) 1.65983 0.0636515
\(681\) −11.7321 −0.449574
\(682\) 19.8843 0.761409
\(683\) −22.2907 −0.852931 −0.426465 0.904504i \(-0.640241\pi\)
−0.426465 + 0.904504i \(0.640241\pi\)
\(684\) −2.70928 −0.103592
\(685\) −70.4534 −2.69189
\(686\) 0 0
\(687\) 27.4596 1.04765
\(688\) 17.6598 0.673275
\(689\) −4.41241 −0.168099
\(690\) 61.1917 2.32953
\(691\) 30.0410 1.14281 0.571407 0.820666i \(-0.306398\pi\)
0.571407 + 0.820666i \(0.306398\pi\)
\(692\) −26.0144 −0.988918
\(693\) 0 0
\(694\) −69.4740 −2.63720
\(695\) 3.31965 0.125922
\(696\) 8.26406 0.313248
\(697\) −1.09275 −0.0413910
\(698\) 5.13624 0.194409
\(699\) −5.10504 −0.193090
\(700\) 0 0
\(701\) −1.20394 −0.0454721 −0.0227360 0.999742i \(-0.507238\pi\)
−0.0227360 + 0.999742i \(0.507238\pi\)
\(702\) −2.00000 −0.0754851
\(703\) 10.6803 0.402817
\(704\) 13.2762 0.500365
\(705\) −23.0205 −0.867003
\(706\) −33.5090 −1.26113
\(707\) 0 0
\(708\) −10.8371 −0.407283
\(709\) −33.2351 −1.24817 −0.624086 0.781356i \(-0.714528\pi\)
−0.624086 + 0.781356i \(0.714528\pi\)
\(710\) 31.1194 1.16789
\(711\) −10.5236 −0.394665
\(712\) 5.78539 0.216816
\(713\) 64.5934 2.41904
\(714\) 0 0
\(715\) −3.68649 −0.137867
\(716\) −2.20620 −0.0824497
\(717\) −10.6537 −0.397869
\(718\) 50.8515 1.89776
\(719\) −10.2062 −0.380627 −0.190314 0.981723i \(-0.560950\pi\)
−0.190314 + 0.981723i \(0.560950\pi\)
\(720\) 7.70928 0.287308
\(721\) 0 0
\(722\) 2.17009 0.0807623
\(723\) 13.5174 0.502719
\(724\) −54.6102 −2.02957
\(725\) 47.0265 1.74652
\(726\) −21.3474 −0.792275
\(727\) 26.8371 0.995333 0.497666 0.867368i \(-0.334190\pi\)
0.497666 + 0.867368i \(0.334190\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 11.4186 0.422620
\(731\) 2.47027 0.0913661
\(732\) 7.26180 0.268404
\(733\) −2.46573 −0.0910739 −0.0455369 0.998963i \(-0.514500\pi\)
−0.0455369 + 0.998963i \(0.514500\pi\)
\(734\) 67.9299 2.50734
\(735\) 0 0
\(736\) 57.6886 2.12643
\(737\) −1.36069 −0.0501217
\(738\) 8.15676 0.300254
\(739\) 0.863763 0.0317741 0.0158870 0.999874i \(-0.494943\pi\)
0.0158870 + 0.999874i \(0.494943\pi\)
\(740\) 107.332 3.94559
\(741\) 0.921622 0.0338566
\(742\) 0 0
\(743\) −36.1171 −1.32501 −0.662505 0.749058i \(-0.730507\pi\)
−0.662505 + 0.749058i \(0.730507\pi\)
\(744\) −13.0784 −0.479477
\(745\) −77.6574 −2.84515
\(746\) −51.3751 −1.88097
\(747\) −8.72979 −0.319406
\(748\) 0.849388 0.0310567
\(749\) 0 0
\(750\) −30.2557 −1.10478
\(751\) −33.8264 −1.23434 −0.617172 0.786828i \(-0.711722\pi\)
−0.617172 + 0.786828i \(0.711722\pi\)
\(752\) −12.8988 −0.470372
\(753\) 18.2062 0.663471
\(754\) −10.7382 −0.391062
\(755\) −51.7152 −1.88211
\(756\) 0 0
\(757\) −13.6865 −0.497444 −0.248722 0.968575i \(-0.580011\pi\)
−0.248722 + 0.968575i \(0.580011\pi\)
\(758\) −16.0989 −0.584738
\(759\) 8.19779 0.297561
\(760\) 5.70928 0.207097
\(761\) 7.86150 0.284979 0.142490 0.989796i \(-0.454489\pi\)
0.142490 + 0.989796i \(0.454489\pi\)
\(762\) −34.2557 −1.24095
\(763\) 0 0
\(764\) 14.7526 0.533730
\(765\) 1.07838 0.0389888
\(766\) 15.4186 0.557095
\(767\) 3.68649 0.133111
\(768\) −0.418551 −0.0151031
\(769\) −2.31351 −0.0834273 −0.0417137 0.999130i \(-0.513282\pi\)
−0.0417137 + 0.999130i \(0.513282\pi\)
\(770\) 0 0
\(771\) −12.3402 −0.444420
\(772\) 4.56916 0.164448
\(773\) 32.9216 1.18411 0.592054 0.805898i \(-0.298317\pi\)
0.592054 + 0.805898i \(0.298317\pi\)
\(774\) −18.4391 −0.662779
\(775\) −74.4222 −2.67333
\(776\) 20.8059 0.746888
\(777\) 0 0
\(778\) 35.2762 1.26471
\(779\) −3.75872 −0.134670
\(780\) 9.26180 0.331625
\(781\) 4.16904 0.149180
\(782\) 4.79606 0.171507
\(783\) 5.36910 0.191876
\(784\) 0 0
\(785\) −8.58145 −0.306285
\(786\) −13.2534 −0.472733
\(787\) −24.8104 −0.884397 −0.442198 0.896917i \(-0.645801\pi\)
−0.442198 + 0.896917i \(0.645801\pi\)
\(788\) −28.0866 −1.00054
\(789\) 7.50307 0.267116
\(790\) 84.7091 3.01381
\(791\) 0 0
\(792\) −1.65983 −0.0589794
\(793\) −2.47027 −0.0877217
\(794\) −57.5318 −2.04173
\(795\) −17.7587 −0.629837
\(796\) 6.56916 0.232838
\(797\) −2.59583 −0.0919488 −0.0459744 0.998943i \(-0.514639\pi\)
−0.0459744 + 0.998943i \(0.514639\pi\)
\(798\) 0 0
\(799\) −1.80430 −0.0638314
\(800\) −66.4668 −2.34996
\(801\) 3.75872 0.132808
\(802\) −13.1278 −0.463560
\(803\) 1.52973 0.0539831
\(804\) 3.41855 0.120563
\(805\) 0 0
\(806\) 16.9939 0.598583
\(807\) 4.34017 0.152781
\(808\) 3.76713 0.132527
\(809\) 38.6803 1.35993 0.679964 0.733245i \(-0.261995\pi\)
0.679964 + 0.733245i \(0.261995\pi\)
\(810\) −8.04945 −0.282829
\(811\) 44.9939 1.57995 0.789974 0.613140i \(-0.210094\pi\)
0.789974 + 0.613140i \(0.210094\pi\)
\(812\) 0 0
\(813\) −26.0410 −0.913299
\(814\) 24.9939 0.876034
\(815\) 65.5052 2.29455
\(816\) 0.604236 0.0211525
\(817\) 8.49693 0.297270
\(818\) −80.5523 −2.81645
\(819\) 0 0
\(820\) −37.7731 −1.31909
\(821\) 3.77310 0.131682 0.0658410 0.997830i \(-0.479027\pi\)
0.0658410 + 0.997830i \(0.479027\pi\)
\(822\) 41.2183 1.43765
\(823\) −14.6537 −0.510795 −0.255398 0.966836i \(-0.582206\pi\)
−0.255398 + 0.966836i \(0.582206\pi\)
\(824\) −30.0410 −1.04653
\(825\) −9.44521 −0.328840
\(826\) 0 0
\(827\) −15.4368 −0.536790 −0.268395 0.963309i \(-0.586493\pi\)
−0.268395 + 0.963309i \(0.586493\pi\)
\(828\) −20.5958 −0.715754
\(829\) −8.57691 −0.297889 −0.148944 0.988846i \(-0.547588\pi\)
−0.148944 + 0.988846i \(0.547588\pi\)
\(830\) 70.2700 2.43911
\(831\) 6.59583 0.228807
\(832\) 11.3463 0.393363
\(833\) 0 0
\(834\) −1.94214 −0.0672508
\(835\) 11.3197 0.391733
\(836\) 2.92162 0.101046
\(837\) −8.49693 −0.293697
\(838\) 50.6765 1.75059
\(839\) −31.0349 −1.07144 −0.535722 0.844395i \(-0.679960\pi\)
−0.535722 + 0.844395i \(0.679960\pi\)
\(840\) 0 0
\(841\) −0.172740 −0.00595654
\(842\) 16.4391 0.566528
\(843\) −11.6248 −0.400378
\(844\) 52.8781 1.82014
\(845\) 45.0700 1.55045
\(846\) 13.4680 0.463039
\(847\) 0 0
\(848\) −9.95055 −0.341703
\(849\) 17.9421 0.615773
\(850\) −5.52586 −0.189535
\(851\) 81.1917 2.78321
\(852\) −10.4741 −0.358838
\(853\) −11.4140 −0.390808 −0.195404 0.980723i \(-0.562602\pi\)
−0.195404 + 0.980723i \(0.562602\pi\)
\(854\) 0 0
\(855\) 3.70928 0.126855
\(856\) 24.0905 0.823396
\(857\) −22.7936 −0.778615 −0.389308 0.921108i \(-0.627286\pi\)
−0.389308 + 0.921108i \(0.627286\pi\)
\(858\) 2.15676 0.0736304
\(859\) 30.7838 1.05033 0.525164 0.851001i \(-0.324004\pi\)
0.525164 + 0.851001i \(0.324004\pi\)
\(860\) 85.3894 2.91176
\(861\) 0 0
\(862\) −12.8188 −0.436612
\(863\) 10.0228 0.341180 0.170590 0.985342i \(-0.445433\pi\)
0.170590 + 0.985342i \(0.445433\pi\)
\(864\) −7.58864 −0.258171
\(865\) 35.6163 1.21099
\(866\) 16.2245 0.551329
\(867\) −16.9155 −0.574480
\(868\) 0 0
\(869\) 11.3484 0.384968
\(870\) −43.2183 −1.46524
\(871\) −1.16290 −0.0394033
\(872\) 21.7009 0.734884
\(873\) 13.5174 0.457496
\(874\) 16.4969 0.558017
\(875\) 0 0
\(876\) −3.84324 −0.129851
\(877\) −32.8371 −1.10883 −0.554415 0.832240i \(-0.687058\pi\)
−0.554415 + 0.832240i \(0.687058\pi\)
\(878\) 20.5958 0.695075
\(879\) 23.7587 0.801362
\(880\) −8.31351 −0.280248
\(881\) 45.0700 1.51845 0.759223 0.650831i \(-0.225579\pi\)
0.759223 + 0.650831i \(0.225579\pi\)
\(882\) 0 0
\(883\) 54.5523 1.83583 0.917916 0.396774i \(-0.129870\pi\)
0.917916 + 0.396774i \(0.129870\pi\)
\(884\) 0.725919 0.0244153
\(885\) 14.8371 0.498744
\(886\) −54.6369 −1.83556
\(887\) −16.4657 −0.552865 −0.276433 0.961033i \(-0.589152\pi\)
−0.276433 + 0.961033i \(0.589152\pi\)
\(888\) −16.4391 −0.551659
\(889\) 0 0
\(890\) −30.2557 −1.01417
\(891\) −1.07838 −0.0361270
\(892\) −51.5318 −1.72541
\(893\) −6.20620 −0.207683
\(894\) 45.4329 1.51950
\(895\) 3.02052 0.100965
\(896\) 0 0
\(897\) 7.00614 0.233928
\(898\) −70.3195 −2.34659
\(899\) −45.6209 −1.52154
\(900\) 23.7298 0.790993
\(901\) −1.39189 −0.0463705
\(902\) −8.79606 −0.292877
\(903\) 0 0
\(904\) 28.8287 0.958828
\(905\) 74.7670 2.48534
\(906\) 30.2557 1.00518
\(907\) −23.5708 −0.782655 −0.391327 0.920252i \(-0.627984\pi\)
−0.391327 + 0.920252i \(0.627984\pi\)
\(908\) −31.7854 −1.05484
\(909\) 2.44748 0.0811778
\(910\) 0 0
\(911\) −0.616522 −0.0204263 −0.0102131 0.999948i \(-0.503251\pi\)
−0.0102131 + 0.999948i \(0.503251\pi\)
\(912\) 2.07838 0.0688220
\(913\) 9.41402 0.311558
\(914\) 19.2450 0.636567
\(915\) −9.94214 −0.328677
\(916\) 74.3956 2.45810
\(917\) 0 0
\(918\) −0.630898 −0.0208227
\(919\) 53.6742 1.77055 0.885274 0.465069i \(-0.153971\pi\)
0.885274 + 0.465069i \(0.153971\pi\)
\(920\) 43.4017 1.43091
\(921\) 24.0144 0.791301
\(922\) −18.8865 −0.621995
\(923\) 3.56302 0.117278
\(924\) 0 0
\(925\) −93.5462 −3.07578
\(926\) −13.4764 −0.442862
\(927\) −19.5174 −0.641037
\(928\) −40.7442 −1.33749
\(929\) 50.2616 1.64903 0.824515 0.565840i \(-0.191448\pi\)
0.824515 + 0.565840i \(0.191448\pi\)
\(930\) 68.3956 2.24278
\(931\) 0 0
\(932\) −13.8310 −0.453048
\(933\) −22.9854 −0.752510
\(934\) −35.7237 −1.16891
\(935\) −1.16290 −0.0380308
\(936\) −1.41855 −0.0463668
\(937\) −8.63931 −0.282234 −0.141117 0.989993i \(-0.545069\pi\)
−0.141117 + 0.989993i \(0.545069\pi\)
\(938\) 0 0
\(939\) −0.523590 −0.0170867
\(940\) −62.3689 −2.03425
\(941\) −30.2122 −0.984889 −0.492444 0.870344i \(-0.663896\pi\)
−0.492444 + 0.870344i \(0.663896\pi\)
\(942\) 5.02052 0.163577
\(943\) −28.5737 −0.930488
\(944\) 8.31351 0.270582
\(945\) 0 0
\(946\) 19.8843 0.646494
\(947\) 27.1727 0.882995 0.441498 0.897262i \(-0.354447\pi\)
0.441498 + 0.897262i \(0.354447\pi\)
\(948\) −28.5113 −0.926004
\(949\) 1.30737 0.0424390
\(950\) −19.0072 −0.616675
\(951\) −17.1012 −0.554543
\(952\) 0 0
\(953\) 44.5029 1.44159 0.720795 0.693148i \(-0.243777\pi\)
0.720795 + 0.693148i \(0.243777\pi\)
\(954\) 10.3896 0.336376
\(955\) −20.1978 −0.653585
\(956\) −28.8638 −0.933521
\(957\) −5.78992 −0.187162
\(958\) −35.8759 −1.15910
\(959\) 0 0
\(960\) 45.6658 1.47386
\(961\) 41.1978 1.32896
\(962\) 21.3607 0.688696
\(963\) 15.6514 0.504360
\(964\) 36.6225 1.17953
\(965\) −6.25565 −0.201377
\(966\) 0 0
\(967\) −18.6004 −0.598147 −0.299074 0.954230i \(-0.596678\pi\)
−0.299074 + 0.954230i \(0.596678\pi\)
\(968\) −15.1412 −0.486655
\(969\) 0.290725 0.00933942
\(970\) −108.808 −3.49361
\(971\) −16.0533 −0.515176 −0.257588 0.966255i \(-0.582928\pi\)
−0.257588 + 0.966255i \(0.582928\pi\)
\(972\) 2.70928 0.0869000
\(973\) 0 0
\(974\) −55.7152 −1.78523
\(975\) −8.07223 −0.258518
\(976\) −5.57077 −0.178316
\(977\) −15.8394 −0.506746 −0.253373 0.967369i \(-0.581540\pi\)
−0.253373 + 0.967369i \(0.581540\pi\)
\(978\) −38.3234 −1.22545
\(979\) −4.05332 −0.129545
\(980\) 0 0
\(981\) 14.0989 0.450143
\(982\) 59.3172 1.89289
\(983\) 23.0349 0.734699 0.367350 0.930083i \(-0.380265\pi\)
0.367350 + 0.930083i \(0.380265\pi\)
\(984\) 5.78539 0.184431
\(985\) 38.4534 1.22523
\(986\) −3.38735 −0.107875
\(987\) 0 0
\(988\) 2.49693 0.0794379
\(989\) 64.5934 2.05395
\(990\) 8.68035 0.275880
\(991\) −42.8371 −1.36077 −0.680383 0.732857i \(-0.738186\pi\)
−0.680383 + 0.732857i \(0.738186\pi\)
\(992\) 64.4801 2.04725
\(993\) 25.1461 0.797987
\(994\) 0 0
\(995\) −8.99386 −0.285124
\(996\) −23.6514 −0.749424
\(997\) 23.7899 0.753434 0.376717 0.926328i \(-0.377053\pi\)
0.376717 + 0.926328i \(0.377053\pi\)
\(998\) −21.7899 −0.689748
\(999\) −10.6803 −0.337911
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.2.a.x.1.3 3
3.2 odd 2 8379.2.a.bp.1.1 3
7.6 odd 2 399.2.a.d.1.3 3
21.20 even 2 1197.2.a.l.1.1 3
28.27 even 2 6384.2.a.bx.1.3 3
35.34 odd 2 9975.2.a.z.1.1 3
133.132 even 2 7581.2.a.n.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.d.1.3 3 7.6 odd 2
1197.2.a.l.1.1 3 21.20 even 2
2793.2.a.x.1.3 3 1.1 even 1 trivial
6384.2.a.bx.1.3 3 28.27 even 2
7581.2.a.n.1.1 3 133.132 even 2
8379.2.a.bp.1.1 3 3.2 odd 2
9975.2.a.z.1.1 3 35.34 odd 2