Properties

Label 28.5.h.a.17.1
Level $28$
Weight $5$
Character 28.17
Analytic conductor $2.894$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [28,5,Mod(5,28)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("28.5");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 28.h (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89435896635\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.11337408.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Root \(3.17656i\) of defining polynomial
Character \(\chi\) \(=\) 28.17
Dual form 28.5.h.a.5.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.81152 - 4.50998i) q^{3} +(-26.9260 + 15.5457i) q^{5} +(-48.6720 - 5.65972i) q^{7} +(0.179888 + 0.311574i) q^{9} +(72.8605 - 126.198i) q^{11} +209.930i q^{13} +280.444 q^{15} +(-162.074 - 93.5735i) q^{17} +(153.531 - 88.6415i) q^{19} +(354.677 + 263.721i) q^{21} +(-166.842 - 288.979i) q^{23} +(170.838 - 295.901i) q^{25} +727.372i q^{27} -1387.57 q^{29} +(-1345.74 - 776.966i) q^{31} +(-1138.30 + 657.199i) q^{33} +(1398.53 - 604.248i) q^{35} +(1138.99 + 1972.78i) q^{37} +(946.779 - 1639.87i) q^{39} -781.977i q^{41} +837.131 q^{43} +(-9.68729 - 5.59296i) q^{45} +(-1296.36 + 748.454i) q^{47} +(2336.94 + 550.940i) q^{49} +(844.030 + 1461.90i) q^{51} +(2233.55 - 3868.63i) q^{53} +4530.67i q^{55} -1599.09 q^{57} +(-3815.50 - 2202.88i) q^{59} +(2257.75 - 1303.51i) q^{61} +(-6.99207 - 16.1831i) q^{63} +(-3263.51 - 5652.56i) q^{65} +(-2887.15 + 5000.70i) q^{67} +3009.82i q^{69} +1149.20 q^{71} +(-3194.47 - 1844.33i) q^{73} +(-2669.01 + 1540.96i) q^{75} +(-4260.52 + 5729.95i) q^{77} +(-1349.16 - 2336.81i) q^{79} +(3295.01 - 5707.12i) q^{81} -2689.70i q^{83} +5818.67 q^{85} +(10839.1 + 6257.93i) q^{87} +(5037.61 - 2908.47i) q^{89} +(1188.14 - 10217.7i) q^{91} +(7008.21 + 12138.6i) q^{93} +(-2755.99 + 4773.51i) q^{95} -7890.42i q^{97} +52.4268 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{3} - 27 q^{5} + 66 q^{7} + 90 q^{9} + 135 q^{11} - 486 q^{15} - 1107 q^{17} - 747 q^{19} + 2169 q^{21} + 243 q^{23} + 1878 q^{25} - 540 q^{29} - 5355 q^{31} - 1863 q^{33} + 6021 q^{35} + 2355 q^{37}+ \cdots + 8100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/28\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.81152 4.50998i −0.867947 0.501109i −0.00128125 0.999999i \(-0.500408\pi\)
−0.866665 + 0.498890i \(0.833741\pi\)
\(4\) 0 0
\(5\) −26.9260 + 15.5457i −1.07704 + 0.621829i −0.930096 0.367317i \(-0.880277\pi\)
−0.146943 + 0.989145i \(0.546943\pi\)
\(6\) 0 0
\(7\) −48.6720 5.65972i −0.993307 0.115505i
\(8\) 0 0
\(9\) 0.179888 + 0.311574i 0.00222083 + 0.00384660i
\(10\) 0 0
\(11\) 72.8605 126.198i 0.602153 1.04296i −0.390341 0.920670i \(-0.627643\pi\)
0.992494 0.122290i \(-0.0390236\pi\)
\(12\) 0 0
\(13\) 209.930i 1.24219i 0.783736 + 0.621094i \(0.213311\pi\)
−0.783736 + 0.621094i \(0.786689\pi\)
\(14\) 0 0
\(15\) 280.444 1.24642
\(16\) 0 0
\(17\) −162.074 93.5735i −0.560810 0.323784i 0.192661 0.981265i \(-0.438288\pi\)
−0.753470 + 0.657482i \(0.771622\pi\)
\(18\) 0 0
\(19\) 153.531 88.6415i 0.425295 0.245544i −0.272045 0.962284i \(-0.587700\pi\)
0.697340 + 0.716740i \(0.254367\pi\)
\(20\) 0 0
\(21\) 354.677 + 263.721i 0.804257 + 0.598007i
\(22\) 0 0
\(23\) −166.842 288.979i −0.315392 0.546275i 0.664129 0.747618i \(-0.268803\pi\)
−0.979521 + 0.201343i \(0.935469\pi\)
\(24\) 0 0
\(25\) 170.838 295.901i 0.273341 0.473441i
\(26\) 0 0
\(27\) 727.372i 0.997767i
\(28\) 0 0
\(29\) −1387.57 −1.64991 −0.824954 0.565199i \(-0.808799\pi\)
−0.824954 + 0.565199i \(0.808799\pi\)
\(30\) 0 0
\(31\) −1345.74 776.966i −1.40036 0.808497i −0.405930 0.913904i \(-0.633052\pi\)
−0.994429 + 0.105407i \(0.966385\pi\)
\(32\) 0 0
\(33\) −1138.30 + 657.199i −1.04527 + 0.603489i
\(34\) 0 0
\(35\) 1398.53 604.248i 1.14165 0.493264i
\(36\) 0 0
\(37\) 1138.99 + 1972.78i 0.831985 + 1.44104i 0.896462 + 0.443122i \(0.146129\pi\)
−0.0644762 + 0.997919i \(0.520538\pi\)
\(38\) 0 0
\(39\) 946.779 1639.87i 0.622471 1.07815i
\(40\) 0 0
\(41\) 781.977i 0.465185i −0.972574 0.232593i \(-0.925279\pi\)
0.972574 0.232593i \(-0.0747209\pi\)
\(42\) 0 0
\(43\) 837.131 0.452748 0.226374 0.974040i \(-0.427313\pi\)
0.226374 + 0.974040i \(0.427313\pi\)
\(44\) 0 0
\(45\) −9.68729 5.59296i −0.00478385 0.00276196i
\(46\) 0 0
\(47\) −1296.36 + 748.454i −0.586854 + 0.338820i −0.763853 0.645391i \(-0.776695\pi\)
0.176999 + 0.984211i \(0.443361\pi\)
\(48\) 0 0
\(49\) 2336.94 + 550.940i 0.973317 + 0.229463i
\(50\) 0 0
\(51\) 844.030 + 1461.90i 0.324502 + 0.562054i
\(52\) 0 0
\(53\) 2233.55 3868.63i 0.795141 1.37723i −0.127608 0.991825i \(-0.540730\pi\)
0.922749 0.385400i \(-0.125937\pi\)
\(54\) 0 0
\(55\) 4530.67i 1.49774i
\(56\) 0 0
\(57\) −1599.09 −0.492178
\(58\) 0 0
\(59\) −3815.50 2202.88i −1.09609 0.632829i −0.160900 0.986971i \(-0.551440\pi\)
−0.935192 + 0.354142i \(0.884773\pi\)
\(60\) 0 0
\(61\) 2257.75 1303.51i 0.606758 0.350312i −0.164938 0.986304i \(-0.552742\pi\)
0.771695 + 0.635992i \(0.219409\pi\)
\(62\) 0 0
\(63\) −6.99207 16.1831i −0.00176167 0.00407737i
\(64\) 0 0
\(65\) −3263.51 5652.56i −0.772427 1.33788i
\(66\) 0 0
\(67\) −2887.15 + 5000.70i −0.643162 + 1.11399i 0.341561 + 0.939860i \(0.389044\pi\)
−0.984723 + 0.174129i \(0.944289\pi\)
\(68\) 0 0
\(69\) 3009.82i 0.632183i
\(70\) 0 0
\(71\) 1149.20 0.227971 0.113986 0.993482i \(-0.463638\pi\)
0.113986 + 0.993482i \(0.463638\pi\)
\(72\) 0 0
\(73\) −3194.47 1844.33i −0.599450 0.346093i 0.169375 0.985552i \(-0.445825\pi\)
−0.768825 + 0.639459i \(0.779158\pi\)
\(74\) 0 0
\(75\) −2669.01 + 1540.96i −0.474491 + 0.273948i
\(76\) 0 0
\(77\) −4260.52 + 5729.95i −0.718589 + 0.966428i
\(78\) 0 0
\(79\) −1349.16 2336.81i −0.216177 0.374429i 0.737459 0.675392i \(-0.236025\pi\)
−0.953636 + 0.300963i \(0.902692\pi\)
\(80\) 0 0
\(81\) 3295.01 5707.12i 0.502211 0.869855i
\(82\) 0 0
\(83\) 2689.70i 0.390433i −0.980760 0.195217i \(-0.937459\pi\)
0.980760 0.195217i \(-0.0625410\pi\)
\(84\) 0 0
\(85\) 5818.67 0.805352
\(86\) 0 0
\(87\) 10839.1 + 6257.93i 1.43203 + 0.826784i
\(88\) 0 0
\(89\) 5037.61 2908.47i 0.635982 0.367184i −0.147083 0.989124i \(-0.546988\pi\)
0.783065 + 0.621940i \(0.213655\pi\)
\(90\) 0 0
\(91\) 1188.14 10217.7i 0.143478 1.23387i
\(92\) 0 0
\(93\) 7008.21 + 12138.6i 0.810291 + 1.40347i
\(94\) 0 0
\(95\) −2755.99 + 4773.51i −0.305373 + 0.528921i
\(96\) 0 0
\(97\) 7890.42i 0.838604i −0.907847 0.419302i \(-0.862275\pi\)
0.907847 0.419302i \(-0.137725\pi\)
\(98\) 0 0
\(99\) 52.4268 0.00534913
\(100\) 0 0
\(101\) 6860.28 + 3960.78i 0.672510 + 0.388274i 0.797027 0.603944i \(-0.206405\pi\)
−0.124517 + 0.992217i \(0.539738\pi\)
\(102\) 0 0
\(103\) −1479.71 + 854.312i −0.139477 + 0.0805271i −0.568115 0.822949i \(-0.692327\pi\)
0.428638 + 0.903476i \(0.358994\pi\)
\(104\) 0 0
\(105\) −13649.8 1587.23i −1.23807 0.143967i
\(106\) 0 0
\(107\) −2674.96 4633.17i −0.233641 0.404679i 0.725236 0.688501i \(-0.241731\pi\)
−0.958877 + 0.283822i \(0.908397\pi\)
\(108\) 0 0
\(109\) −10512.9 + 18208.9i −0.884851 + 1.53261i −0.0389661 + 0.999241i \(0.512406\pi\)
−0.845885 + 0.533366i \(0.820927\pi\)
\(110\) 0 0
\(111\) 20547.3i 1.66766i
\(112\) 0 0
\(113\) −9886.76 −0.774278 −0.387139 0.922021i \(-0.626537\pi\)
−0.387139 + 0.922021i \(0.626537\pi\)
\(114\) 0 0
\(115\) 8984.78 + 5187.36i 0.679378 + 0.392239i
\(116\) 0 0
\(117\) −65.4087 + 37.7637i −0.00477819 + 0.00275869i
\(118\) 0 0
\(119\) 7358.87 + 5471.71i 0.519658 + 0.386393i
\(120\) 0 0
\(121\) −3296.81 5710.24i −0.225177 0.390017i
\(122\) 0 0
\(123\) −3526.70 + 6108.43i −0.233109 + 0.403756i
\(124\) 0 0
\(125\) 8808.92i 0.563771i
\(126\) 0 0
\(127\) −12148.0 −0.753178 −0.376589 0.926380i \(-0.622903\pi\)
−0.376589 + 0.926380i \(0.622903\pi\)
\(128\) 0 0
\(129\) −6539.27 3775.45i −0.392961 0.226876i
\(130\) 0 0
\(131\) 4869.90 2811.64i 0.283777 0.163839i −0.351355 0.936242i \(-0.614279\pi\)
0.635132 + 0.772404i \(0.280946\pi\)
\(132\) 0 0
\(133\) −7974.38 + 3445.41i −0.450810 + 0.194777i
\(134\) 0 0
\(135\) −11307.5 19585.2i −0.620440 1.07463i
\(136\) 0 0
\(137\) −14897.8 + 25803.8i −0.793748 + 1.37481i 0.129884 + 0.991529i \(0.458540\pi\)
−0.923631 + 0.383282i \(0.874794\pi\)
\(138\) 0 0
\(139\) 15694.4i 0.812298i 0.913807 + 0.406149i \(0.133129\pi\)
−0.913807 + 0.406149i \(0.866871\pi\)
\(140\) 0 0
\(141\) 13502.1 0.679144
\(142\) 0 0
\(143\) 26492.7 + 15295.6i 1.29555 + 0.747987i
\(144\) 0 0
\(145\) 37361.7 21570.8i 1.77702 1.02596i
\(146\) 0 0
\(147\) −15770.3 14843.2i −0.729802 0.686900i
\(148\) 0 0
\(149\) 13728.4 + 23778.3i 0.618369 + 1.07105i 0.989783 + 0.142580i \(0.0455397\pi\)
−0.371414 + 0.928467i \(0.621127\pi\)
\(150\) 0 0
\(151\) 14971.0 25930.6i 0.656596 1.13726i −0.324896 0.945750i \(-0.605329\pi\)
0.981491 0.191507i \(-0.0613375\pi\)
\(152\) 0 0
\(153\) 67.3308i 0.00287628i
\(154\) 0 0
\(155\) 48314.0 2.01099
\(156\) 0 0
\(157\) −13415.4 7745.40i −0.544258 0.314228i 0.202545 0.979273i \(-0.435079\pi\)
−0.746803 + 0.665045i \(0.768412\pi\)
\(158\) 0 0
\(159\) −34894.9 + 20146.6i −1.38028 + 0.796905i
\(160\) 0 0
\(161\) 6485.01 + 15009.5i 0.250184 + 0.579048i
\(162\) 0 0
\(163\) −13669.3 23675.9i −0.514482 0.891108i −0.999859 0.0168034i \(-0.994651\pi\)
0.485377 0.874305i \(-0.338682\pi\)
\(164\) 0 0
\(165\) 20433.3 35391.5i 0.750533 1.29996i
\(166\) 0 0
\(167\) 19753.9i 0.708306i 0.935188 + 0.354153i \(0.115231\pi\)
−0.935188 + 0.354153i \(0.884769\pi\)
\(168\) 0 0
\(169\) −15509.5 −0.543029
\(170\) 0 0
\(171\) 55.2368 + 31.8910i 0.00188902 + 0.00109063i
\(172\) 0 0
\(173\) −19872.6 + 11473.4i −0.663991 + 0.383355i −0.793796 0.608184i \(-0.791898\pi\)
0.129805 + 0.991540i \(0.458565\pi\)
\(174\) 0 0
\(175\) −9989.77 + 13435.2i −0.326196 + 0.438700i
\(176\) 0 0
\(177\) 19869.9 + 34415.6i 0.634233 + 1.09852i
\(178\) 0 0
\(179\) −7039.56 + 12192.9i −0.219705 + 0.380540i −0.954718 0.297513i \(-0.903843\pi\)
0.735013 + 0.678053i \(0.237176\pi\)
\(180\) 0 0
\(181\) 12131.5i 0.370304i −0.982710 0.185152i \(-0.940722\pi\)
0.982710 0.185152i \(-0.0592778\pi\)
\(182\) 0 0
\(183\) −23515.2 −0.702178
\(184\) 0 0
\(185\) −61336.7 35412.8i −1.79216 1.03470i
\(186\) 0 0
\(187\) −23617.6 + 13635.6i −0.675387 + 0.389935i
\(188\) 0 0
\(189\) 4116.72 35402.7i 0.115247 0.991089i
\(190\) 0 0
\(191\) −15002.6 25985.3i −0.411245 0.712298i 0.583781 0.811911i \(-0.301573\pi\)
−0.995026 + 0.0996136i \(0.968239\pi\)
\(192\) 0 0
\(193\) 9352.36 16198.8i 0.251077 0.434878i −0.712746 0.701422i \(-0.752549\pi\)
0.963823 + 0.266545i \(0.0858820\pi\)
\(194\) 0 0
\(195\) 58873.4i 1.54828i
\(196\) 0 0
\(197\) −10271.9 −0.264678 −0.132339 0.991205i \(-0.542249\pi\)
−0.132339 + 0.991205i \(0.542249\pi\)
\(198\) 0 0
\(199\) 6225.42 + 3594.25i 0.157204 + 0.0907616i 0.576538 0.817070i \(-0.304403\pi\)
−0.419335 + 0.907832i \(0.637737\pi\)
\(200\) 0 0
\(201\) 45106.1 26042.0i 1.11646 0.644589i
\(202\) 0 0
\(203\) 67536.0 + 7853.28i 1.63887 + 0.190572i
\(204\) 0 0
\(205\) 12156.4 + 21055.5i 0.289266 + 0.501023i
\(206\) 0 0
\(207\) 60.0257 103.968i 0.00140087 0.00242637i
\(208\) 0 0
\(209\) 25833.8i 0.591421i
\(210\) 0 0
\(211\) −62160.8 −1.39621 −0.698107 0.715993i \(-0.745974\pi\)
−0.698107 + 0.715993i \(0.745974\pi\)
\(212\) 0 0
\(213\) −8977.02 5182.89i −0.197867 0.114238i
\(214\) 0 0
\(215\) −22540.6 + 13013.8i −0.487627 + 0.281532i
\(216\) 0 0
\(217\) 61102.7 + 45433.1i 1.29760 + 0.964834i
\(218\) 0 0
\(219\) 16635.8 + 28814.0i 0.346860 + 0.600780i
\(220\) 0 0
\(221\) 19643.9 34024.1i 0.402200 0.696631i
\(222\) 0 0
\(223\) 7060.74i 0.141984i 0.997477 + 0.0709921i \(0.0226165\pi\)
−0.997477 + 0.0709921i \(0.977383\pi\)
\(224\) 0 0
\(225\) 122.927 0.00242818
\(226\) 0 0
\(227\) −33869.7 19554.7i −0.657294 0.379489i 0.133951 0.990988i \(-0.457234\pi\)
−0.791245 + 0.611499i \(0.790567\pi\)
\(228\) 0 0
\(229\) 313.976 181.274i 0.00598723 0.00345673i −0.497003 0.867749i \(-0.665566\pi\)
0.502991 + 0.864292i \(0.332233\pi\)
\(230\) 0 0
\(231\) 59123.1 25544.8i 1.10798 0.478716i
\(232\) 0 0
\(233\) −3438.16 5955.07i −0.0633307 0.109692i 0.832622 0.553842i \(-0.186839\pi\)
−0.895952 + 0.444150i \(0.853506\pi\)
\(234\) 0 0
\(235\) 23270.5 40305.7i 0.421376 0.729845i
\(236\) 0 0
\(237\) 24338.7i 0.433313i
\(238\) 0 0
\(239\) 90119.7 1.57770 0.788849 0.614587i \(-0.210677\pi\)
0.788849 + 0.614587i \(0.210677\pi\)
\(240\) 0 0
\(241\) 37564.8 + 21688.1i 0.646766 + 0.373411i 0.787216 0.616677i \(-0.211522\pi\)
−0.140450 + 0.990088i \(0.544855\pi\)
\(242\) 0 0
\(243\) −454.272 + 262.274i −0.00769314 + 0.00444164i
\(244\) 0 0
\(245\) −71489.0 + 21494.7i −1.19099 + 0.358096i
\(246\) 0 0
\(247\) 18608.5 + 32230.8i 0.305012 + 0.528296i
\(248\) 0 0
\(249\) −12130.5 + 21010.6i −0.195650 + 0.338875i
\(250\) 0 0
\(251\) 57720.4i 0.916183i −0.888905 0.458091i \(-0.848533\pi\)
0.888905 0.458091i \(-0.151467\pi\)
\(252\) 0 0
\(253\) −48624.9 −0.759657
\(254\) 0 0
\(255\) −45452.6 26242.1i −0.699002 0.403569i
\(256\) 0 0
\(257\) −58712.4 + 33897.6i −0.888921 + 0.513219i −0.873589 0.486664i \(-0.838214\pi\)
−0.0153317 + 0.999882i \(0.504880\pi\)
\(258\) 0 0
\(259\) −44271.5 102466.i −0.659970 1.52749i
\(260\) 0 0
\(261\) −249.607 432.332i −0.00366417 0.00634653i
\(262\) 0 0
\(263\) 3383.74 5860.80i 0.0489198 0.0847317i −0.840529 0.541767i \(-0.817755\pi\)
0.889448 + 0.457036i \(0.151089\pi\)
\(264\) 0 0
\(265\) 138889.i 1.97777i
\(266\) 0 0
\(267\) −52468.5 −0.735998
\(268\) 0 0
\(269\) −72784.4 42022.1i −1.00585 0.580728i −0.0958768 0.995393i \(-0.530565\pi\)
−0.909974 + 0.414665i \(0.863899\pi\)
\(270\) 0 0
\(271\) −33737.9 + 19478.6i −0.459388 + 0.265228i −0.711787 0.702396i \(-0.752114\pi\)
0.252399 + 0.967623i \(0.418780\pi\)
\(272\) 0 0
\(273\) −55362.9 + 74457.3i −0.742837 + 0.999038i
\(274\) 0 0
\(275\) −24894.7 43119.0i −0.329187 0.570168i
\(276\) 0 0
\(277\) 35691.1 61818.9i 0.465158 0.805678i −0.534050 0.845453i \(-0.679331\pi\)
0.999209 + 0.0397747i \(0.0126640\pi\)
\(278\) 0 0
\(279\) 559.066i 0.00718216i
\(280\) 0 0
\(281\) 57835.9 0.732462 0.366231 0.930524i \(-0.380648\pi\)
0.366231 + 0.930524i \(0.380648\pi\)
\(282\) 0 0
\(283\) 87465.4 + 50498.2i 1.09210 + 0.630526i 0.934135 0.356919i \(-0.116173\pi\)
0.157967 + 0.987444i \(0.449506\pi\)
\(284\) 0 0
\(285\) 43056.9 24858.9i 0.530094 0.306050i
\(286\) 0 0
\(287\) −4425.77 + 38060.4i −0.0537310 + 0.462072i
\(288\) 0 0
\(289\) −24248.5 41999.6i −0.290328 0.502863i
\(290\) 0 0
\(291\) −35585.7 + 61636.2i −0.420232 + 0.727863i
\(292\) 0 0
\(293\) 133132.i 1.55077i −0.631487 0.775387i \(-0.717555\pi\)
0.631487 0.775387i \(-0.282445\pi\)
\(294\) 0 0
\(295\) 136981. 1.57404
\(296\) 0 0
\(297\) 91793.0 + 52996.7i 1.04063 + 0.600808i
\(298\) 0 0
\(299\) 60665.3 35025.1i 0.678575 0.391776i
\(300\) 0 0
\(301\) −40744.9 4737.93i −0.449718 0.0522945i
\(302\) 0 0
\(303\) −35726.1 61879.5i −0.389135 0.674002i
\(304\) 0 0
\(305\) −40528.0 + 70196.5i −0.435668 + 0.754599i
\(306\) 0 0
\(307\) 7667.32i 0.0813517i 0.999172 + 0.0406758i \(0.0129511\pi\)
−0.999172 + 0.0406758i \(0.987049\pi\)
\(308\) 0 0
\(309\) 15411.7 0.161411
\(310\) 0 0
\(311\) −1424.80 822.609i −0.0147310 0.00850497i 0.492616 0.870247i \(-0.336041\pi\)
−0.507347 + 0.861742i \(0.669374\pi\)
\(312\) 0 0
\(313\) 97074.6 56046.0i 0.990871 0.572079i 0.0853362 0.996352i \(-0.472804\pi\)
0.905534 + 0.424273i \(0.139470\pi\)
\(314\) 0 0
\(315\) 439.846 + 327.048i 0.00443281 + 0.00329603i
\(316\) 0 0
\(317\) −1681.22 2911.96i −0.0167304 0.0289779i 0.857539 0.514419i \(-0.171992\pi\)
−0.874269 + 0.485441i \(0.838659\pi\)
\(318\) 0 0
\(319\) −101099. + 175109.i −0.993498 + 1.72079i
\(320\) 0 0
\(321\) 48256.1i 0.468319i
\(322\) 0 0
\(323\) −33178.0 −0.318013
\(324\) 0 0
\(325\) 62118.3 + 35864.0i 0.588103 + 0.339541i
\(326\) 0 0
\(327\) 164244. 94826.1i 1.53601 0.886814i
\(328\) 0 0
\(329\) 67332.5 29091.7i 0.622061 0.268768i
\(330\) 0 0
\(331\) 43484.9 + 75318.1i 0.396902 + 0.687454i 0.993342 0.115204i \(-0.0367520\pi\)
−0.596440 + 0.802658i \(0.703419\pi\)
\(332\) 0 0
\(333\) −409.780 + 709.759i −0.00369540 + 0.00640063i
\(334\) 0 0
\(335\) 179531.i 1.59975i
\(336\) 0 0
\(337\) −112228. −0.988195 −0.494098 0.869406i \(-0.664502\pi\)
−0.494098 + 0.869406i \(0.664502\pi\)
\(338\) 0 0
\(339\) 77230.6 + 44589.1i 0.672032 + 0.387998i
\(340\) 0 0
\(341\) −196103. + 113220.i −1.68646 + 0.973678i
\(342\) 0 0
\(343\) −110625. 40041.8i −0.940299 0.340350i
\(344\) 0 0
\(345\) −46789.8 81042.4i −0.393109 0.680885i
\(346\) 0 0
\(347\) 17145.7 29697.3i 0.142396 0.246637i −0.786003 0.618223i \(-0.787853\pi\)
0.928398 + 0.371587i \(0.121186\pi\)
\(348\) 0 0
\(349\) 133358.i 1.09488i −0.836844 0.547441i \(-0.815602\pi\)
0.836844 0.547441i \(-0.184398\pi\)
\(350\) 0 0
\(351\) −152697. −1.23941
\(352\) 0 0
\(353\) 131657. + 76012.1i 1.05656 + 0.610005i 0.924479 0.381234i \(-0.124501\pi\)
0.132081 + 0.991239i \(0.457834\pi\)
\(354\) 0 0
\(355\) −30943.4 + 17865.2i −0.245534 + 0.141759i
\(356\) 0 0
\(357\) −32806.7 75930.7i −0.257410 0.595773i
\(358\) 0 0
\(359\) 40660.5 + 70426.0i 0.315488 + 0.546442i 0.979541 0.201244i \(-0.0644983\pi\)
−0.664053 + 0.747686i \(0.731165\pi\)
\(360\) 0 0
\(361\) −49445.9 + 85642.8i −0.379416 + 0.657168i
\(362\) 0 0
\(363\) 59474.2i 0.451352i
\(364\) 0 0
\(365\) 114686. 0.860841
\(366\) 0 0
\(367\) −175518. 101336.i −1.30314 0.752368i −0.322198 0.946672i \(-0.604422\pi\)
−0.980941 + 0.194305i \(0.937755\pi\)
\(368\) 0 0
\(369\) 243.644 140.668i 0.00178938 0.00103310i
\(370\) 0 0
\(371\) −130607. + 175653.i −0.948895 + 1.27616i
\(372\) 0 0
\(373\) 38371.1 + 66460.8i 0.275795 + 0.477692i 0.970335 0.241762i \(-0.0777254\pi\)
−0.694540 + 0.719454i \(0.744392\pi\)
\(374\) 0 0
\(375\) −39728.1 + 68811.1i −0.282511 + 0.489323i
\(376\) 0 0
\(377\) 291293.i 2.04950i
\(378\) 0 0
\(379\) 13185.2 0.0917926 0.0458963 0.998946i \(-0.485386\pi\)
0.0458963 + 0.998946i \(0.485386\pi\)
\(380\) 0 0
\(381\) 94894.4 + 54787.3i 0.653718 + 0.377424i
\(382\) 0 0
\(383\) −228538. + 131947.i −1.55798 + 0.899499i −0.560528 + 0.828135i \(0.689402\pi\)
−0.997450 + 0.0713639i \(0.977265\pi\)
\(384\) 0 0
\(385\) 25642.4 220517.i 0.172996 1.48772i
\(386\) 0 0
\(387\) 150.590 + 260.829i 0.00100548 + 0.00174154i
\(388\) 0 0
\(389\) −50770.5 + 87937.0i −0.335515 + 0.581129i −0.983584 0.180453i \(-0.942244\pi\)
0.648069 + 0.761582i \(0.275577\pi\)
\(390\) 0 0
\(391\) 62448.1i 0.408475i
\(392\) 0 0
\(393\) −50721.7 −0.328405
\(394\) 0 0
\(395\) 72654.8 + 41947.3i 0.465661 + 0.268850i
\(396\) 0 0
\(397\) 186579. 107722.i 1.18381 0.683473i 0.226917 0.973914i \(-0.427135\pi\)
0.956893 + 0.290441i \(0.0938019\pi\)
\(398\) 0 0
\(399\) 77830.8 + 9050.38i 0.488884 + 0.0568488i
\(400\) 0 0
\(401\) −1625.64 2815.69i −0.0101096 0.0175104i 0.860926 0.508730i \(-0.169885\pi\)
−0.871036 + 0.491219i \(0.836551\pi\)
\(402\) 0 0
\(403\) 163108. 282512.i 1.00431 1.73951i
\(404\) 0 0
\(405\) 204893.i 1.24916i
\(406\) 0 0
\(407\) 331949. 2.00393
\(408\) 0 0
\(409\) −128989. 74472.0i −0.771094 0.445191i 0.0621707 0.998066i \(-0.480198\pi\)
−0.833265 + 0.552874i \(0.813531\pi\)
\(410\) 0 0
\(411\) 232750. 134378.i 1.37786 0.795508i
\(412\) 0 0
\(413\) 173240. + 128813.i 1.01566 + 0.755197i
\(414\) 0 0
\(415\) 41813.2 + 72422.6i 0.242783 + 0.420512i
\(416\) 0 0
\(417\) 70781.5 122597.i 0.407050 0.705031i
\(418\) 0 0
\(419\) 286696.i 1.63303i 0.577324 + 0.816515i \(0.304097\pi\)
−0.577324 + 0.816515i \(0.695903\pi\)
\(420\) 0 0
\(421\) −5357.63 −0.0302280 −0.0151140 0.999886i \(-0.504811\pi\)
−0.0151140 + 0.999886i \(0.504811\pi\)
\(422\) 0 0
\(423\) −466.398 269.275i −0.00260661 0.00150493i
\(424\) 0 0
\(425\) −55376.9 + 31971.9i −0.306585 + 0.177007i
\(426\) 0 0
\(427\) −117267. + 50666.3i −0.643159 + 0.277884i
\(428\) 0 0
\(429\) −137966. 238964.i −0.749646 1.29843i
\(430\) 0 0
\(431\) 27144.6 47015.8i 0.146126 0.253098i −0.783666 0.621182i \(-0.786653\pi\)
0.929793 + 0.368084i \(0.119986\pi\)
\(432\) 0 0
\(433\) 206336.i 1.10052i 0.834992 + 0.550262i \(0.185472\pi\)
−0.834992 + 0.550262i \(0.814528\pi\)
\(434\) 0 0
\(435\) −389136. −2.05647
\(436\) 0 0
\(437\) −51231.1 29578.3i −0.268269 0.154885i
\(438\) 0 0
\(439\) 63763.3 36813.8i 0.330858 0.191021i −0.325364 0.945589i \(-0.605487\pi\)
0.656222 + 0.754568i \(0.272153\pi\)
\(440\) 0 0
\(441\) 248.727 + 827.236i 0.00127893 + 0.00425356i
\(442\) 0 0
\(443\) −72316.4 125256.i −0.368493 0.638249i 0.620837 0.783940i \(-0.286793\pi\)
−0.989330 + 0.145691i \(0.953460\pi\)
\(444\) 0 0
\(445\) −90428.4 + 156627.i −0.456651 + 0.790943i
\(446\) 0 0
\(447\) 247660.i 1.23948i
\(448\) 0 0
\(449\) 305112. 1.51345 0.756723 0.653735i \(-0.226799\pi\)
0.756723 + 0.653735i \(0.226799\pi\)
\(450\) 0 0
\(451\) −98684.0 56975.2i −0.485170 0.280113i
\(452\) 0 0
\(453\) −233893. + 135038.i −1.13978 + 0.658052i
\(454\) 0 0
\(455\) 126850. + 293592.i 0.612726 + 1.41815i
\(456\) 0 0
\(457\) −17887.3 30981.7i −0.0856470 0.148345i 0.820020 0.572335i \(-0.193962\pi\)
−0.905667 + 0.423990i \(0.860629\pi\)
\(458\) 0 0
\(459\) 68062.7 117888.i 0.323061 0.559557i
\(460\) 0 0
\(461\) 332913.i 1.56649i 0.621710 + 0.783247i \(0.286438\pi\)
−0.621710 + 0.783247i \(0.713562\pi\)
\(462\) 0 0
\(463\) −45033.5 −0.210075 −0.105037 0.994468i \(-0.533496\pi\)
−0.105037 + 0.994468i \(0.533496\pi\)
\(464\) 0 0
\(465\) −377405. 217895.i −1.74543 1.00772i
\(466\) 0 0
\(467\) 94249.4 54414.9i 0.432160 0.249508i −0.268106 0.963389i \(-0.586398\pi\)
0.700266 + 0.713882i \(0.253065\pi\)
\(468\) 0 0
\(469\) 168826. 227054.i 0.767528 1.03224i
\(470\) 0 0
\(471\) 69863.2 + 121007.i 0.314925 + 0.545466i
\(472\) 0 0
\(473\) 60993.8 105644.i 0.272624 0.472198i
\(474\) 0 0
\(475\) 60573.4i 0.268470i
\(476\) 0 0
\(477\) 1607.15 0.00706351
\(478\) 0 0
\(479\) −330760. 190965.i −1.44159 0.832304i −0.443636 0.896207i \(-0.646312\pi\)
−0.997956 + 0.0639035i \(0.979645\pi\)
\(480\) 0 0
\(481\) −414146. + 239107.i −1.79004 + 1.03348i
\(482\) 0 0
\(483\) 17034.8 146494.i 0.0730200 0.627952i
\(484\) 0 0
\(485\) 122662. + 212457.i 0.521468 + 0.903209i
\(486\) 0 0
\(487\) 135129. 234050.i 0.569756 0.986847i −0.426833 0.904330i \(-0.640371\pi\)
0.996590 0.0825166i \(-0.0262958\pi\)
\(488\) 0 0
\(489\) 246593.i 1.03125i
\(490\) 0 0
\(491\) −240609. −0.998040 −0.499020 0.866590i \(-0.666307\pi\)
−0.499020 + 0.866590i \(0.666307\pi\)
\(492\) 0 0
\(493\) 224890. + 129840.i 0.925285 + 0.534214i
\(494\) 0 0
\(495\) −1411.64 + 815.012i −0.00576122 + 0.00332624i
\(496\) 0 0
\(497\) −55934.1 6504.17i −0.226445 0.0263317i
\(498\) 0 0
\(499\) 93314.5 + 161626.i 0.374756 + 0.649096i 0.990290 0.139014i \(-0.0443933\pi\)
−0.615535 + 0.788110i \(0.711060\pi\)
\(500\) 0 0
\(501\) 89089.9 154308.i 0.354938 0.614772i
\(502\) 0 0
\(503\) 349740.i 1.38232i −0.722700 0.691162i \(-0.757099\pi\)
0.722700 0.691162i \(-0.242901\pi\)
\(504\) 0 0
\(505\) −246293. −0.965759
\(506\) 0 0
\(507\) 121152. + 69947.4i 0.471320 + 0.272117i
\(508\) 0 0
\(509\) −109504. + 63222.4i −0.422665 + 0.244025i −0.696217 0.717832i \(-0.745135\pi\)
0.273552 + 0.961857i \(0.411801\pi\)
\(510\) 0 0
\(511\) 145043. + 107847.i 0.555463 + 0.413015i
\(512\) 0 0
\(513\) 64475.3 + 111675.i 0.244996 + 0.424345i
\(514\) 0 0
\(515\) 26561.8 46006.3i 0.100148 0.173462i
\(516\) 0 0
\(517\) 218131.i 0.816087i
\(518\) 0 0
\(519\) 206980. 0.768411
\(520\) 0 0
\(521\) 127740. + 73751.0i 0.470601 + 0.271702i 0.716491 0.697596i \(-0.245747\pi\)
−0.245890 + 0.969298i \(0.579080\pi\)
\(522\) 0 0
\(523\) 222222. 128300.i 0.812426 0.469054i −0.0353716 0.999374i \(-0.511261\pi\)
0.847798 + 0.530320i \(0.177928\pi\)
\(524\) 0 0
\(525\) 138628. 59895.6i 0.502958 0.217308i
\(526\) 0 0
\(527\) 145407. + 251852.i 0.523557 + 0.906827i
\(528\) 0 0
\(529\) 84247.8 145921.i 0.301056 0.521444i
\(530\) 0 0
\(531\) 1585.08i 0.00562163i
\(532\) 0 0
\(533\) 164160. 0.577847
\(534\) 0 0
\(535\) 144052. + 83168.3i 0.503281 + 0.290570i
\(536\) 0 0
\(537\) 109979. 63496.6i 0.381384 0.220192i
\(538\) 0 0
\(539\) 239798. 254775.i 0.825407 0.876959i
\(540\) 0 0
\(541\) −198343. 343541.i −0.677678 1.17377i −0.975678 0.219207i \(-0.929653\pi\)
0.298001 0.954566i \(-0.403680\pi\)
\(542\) 0 0
\(543\) −54713.1 + 94765.8i −0.185563 + 0.321405i
\(544\) 0 0
\(545\) 653723.i 2.20090i
\(546\) 0 0
\(547\) −266914. −0.892065 −0.446032 0.895017i \(-0.647163\pi\)
−0.446032 + 0.895017i \(0.647163\pi\)
\(548\) 0 0
\(549\) 812.281 + 468.971i 0.00269502 + 0.00155597i
\(550\) 0 0
\(551\) −213036. + 122997.i −0.701698 + 0.405125i
\(552\) 0 0
\(553\) 52440.6 + 121373.i 0.171482 + 0.396892i
\(554\) 0 0
\(555\) 319422. + 553255.i 1.03700 + 1.79614i
\(556\) 0 0
\(557\) −205639. + 356177.i −0.662819 + 1.14804i 0.317052 + 0.948408i \(0.397307\pi\)
−0.979872 + 0.199629i \(0.936026\pi\)
\(558\) 0 0
\(559\) 175739.i 0.562398i
\(560\) 0 0
\(561\) 245986. 0.781599
\(562\) 0 0
\(563\) −490992. 283475.i −1.54902 0.894329i −0.998217 0.0596957i \(-0.980987\pi\)
−0.550806 0.834633i \(-0.685680\pi\)
\(564\) 0 0
\(565\) 266211. 153697.i 0.833928 0.481468i
\(566\) 0 0
\(567\) −192675. + 259128.i −0.599322 + 0.806025i
\(568\) 0 0
\(569\) −298656. 517288.i −0.922459 1.59775i −0.795597 0.605826i \(-0.792843\pi\)
−0.126863 0.991920i \(-0.540491\pi\)
\(570\) 0 0
\(571\) −124106. + 214958.i −0.380645 + 0.659296i −0.991155 0.132713i \(-0.957631\pi\)
0.610510 + 0.792009i \(0.290965\pi\)
\(572\) 0 0
\(573\) 270647.i 0.824315i
\(574\) 0 0
\(575\) −114012. −0.344839
\(576\) 0 0
\(577\) 52929.2 + 30558.7i 0.158980 + 0.0917873i 0.577379 0.816476i \(-0.304075\pi\)
−0.418399 + 0.908263i \(0.637409\pi\)
\(578\) 0 0
\(579\) −146112. + 84357.9i −0.435842 + 0.251634i
\(580\) 0 0
\(581\) −15222.9 + 130913.i −0.0450968 + 0.387820i
\(582\) 0 0
\(583\) −325475. 563740.i −0.957593 1.65860i
\(584\) 0 0
\(585\) 1174.13 2033.65i 0.00343087 0.00594244i
\(586\) 0 0
\(587\) 199552.i 0.579136i 0.957157 + 0.289568i \(0.0935117\pi\)
−0.957157 + 0.289568i \(0.906488\pi\)
\(588\) 0 0
\(589\) −275486. −0.794087
\(590\) 0 0
\(591\) 80239.1 + 46326.0i 0.229726 + 0.132633i
\(592\) 0 0
\(593\) 135567. 78269.4i 0.385517 0.222578i −0.294699 0.955590i \(-0.595219\pi\)
0.680216 + 0.733012i \(0.261886\pi\)
\(594\) 0 0
\(595\) −283206. 32932.0i −0.799961 0.0930218i
\(596\) 0 0
\(597\) −32420.0 56153.1i −0.0909629 0.157552i
\(598\) 0 0
\(599\) −146312. + 253420.i −0.407781 + 0.706297i −0.994641 0.103392i \(-0.967031\pi\)
0.586860 + 0.809688i \(0.300364\pi\)
\(600\) 0 0
\(601\) 71047.1i 0.196697i −0.995152 0.0983485i \(-0.968644\pi\)
0.995152 0.0983485i \(-0.0313560\pi\)
\(602\) 0 0
\(603\) −2077.45 −0.00571342
\(604\) 0 0
\(605\) 177540. + 102503.i 0.485048 + 0.280043i
\(606\) 0 0
\(607\) 138904. 80196.3i 0.376997 0.217659i −0.299514 0.954092i \(-0.596825\pi\)
0.676511 + 0.736433i \(0.263491\pi\)
\(608\) 0 0
\(609\) −492141. 365932.i −1.32695 0.986657i
\(610\) 0 0
\(611\) −157123. 272144.i −0.420878 0.728982i
\(612\) 0 0
\(613\) 33763.5 58480.1i 0.0898517 0.155628i −0.817597 0.575791i \(-0.804694\pi\)
0.907448 + 0.420164i \(0.138027\pi\)
\(614\) 0 0
\(615\) 219300.i 0.579815i
\(616\) 0 0
\(617\) −18373.7 −0.0482644 −0.0241322 0.999709i \(-0.507682\pi\)
−0.0241322 + 0.999709i \(0.507682\pi\)
\(618\) 0 0
\(619\) 511947. + 295573.i 1.33612 + 0.771407i 0.986229 0.165385i \(-0.0528868\pi\)
0.349887 + 0.936792i \(0.386220\pi\)
\(620\) 0 0
\(621\) 210195. 121356.i 0.545055 0.314687i
\(622\) 0 0
\(623\) −261652. + 113050.i −0.674137 + 0.291268i
\(624\) 0 0
\(625\) 243715. + 422127.i 0.623910 + 1.08064i
\(626\) 0 0
\(627\) −116510. + 201802.i −0.296366 + 0.513322i
\(628\) 0 0
\(629\) 426316.i 1.07753i
\(630\) 0 0
\(631\) 729341. 1.83177 0.915887 0.401436i \(-0.131489\pi\)
0.915887 + 0.401436i \(0.131489\pi\)
\(632\) 0 0
\(633\) 485571. + 280344.i 1.21184 + 0.699656i
\(634\) 0 0
\(635\) 327097. 188849.i 0.811202 0.468348i
\(636\) 0 0
\(637\) −115659. + 490592.i −0.285036 + 1.20904i
\(638\) 0 0
\(639\) 206.727 + 358.062i 0.000506286 + 0.000876914i
\(640\) 0 0
\(641\) 116758. 202231.i 0.284165 0.492188i −0.688242 0.725482i \(-0.741617\pi\)
0.972406 + 0.233294i \(0.0749504\pi\)
\(642\) 0 0
\(643\) 382516.i 0.925184i 0.886571 + 0.462592i \(0.153080\pi\)
−0.886571 + 0.462592i \(0.846920\pi\)
\(644\) 0 0
\(645\) 234768. 0.564313
\(646\) 0 0
\(647\) −436213. 251848.i −1.04205 0.601631i −0.121640 0.992574i \(-0.538815\pi\)
−0.920415 + 0.390944i \(0.872149\pi\)
\(648\) 0 0
\(649\) −555998. + 321006.i −1.32003 + 0.762120i
\(650\) 0 0
\(651\) −272403. 630474.i −0.642761 1.48766i
\(652\) 0 0
\(653\) −120715. 209084.i −0.283096 0.490337i 0.689049 0.724714i \(-0.258028\pi\)
−0.972146 + 0.234377i \(0.924695\pi\)
\(654\) 0 0
\(655\) −87417.8 + 151412.i −0.203759 + 0.352921i
\(656\) 0 0
\(657\) 1327.09i 0.00307446i
\(658\) 0 0
\(659\) 652340. 1.50211 0.751057 0.660237i \(-0.229544\pi\)
0.751057 + 0.660237i \(0.229544\pi\)
\(660\) 0 0
\(661\) −13430.3 7753.99i −0.0307385 0.0177469i 0.484552 0.874762i \(-0.338983\pi\)
−0.515291 + 0.857016i \(0.672316\pi\)
\(662\) 0 0
\(663\) −306897. + 177187.i −0.698176 + 0.403092i
\(664\) 0 0
\(665\) 161156. 216738.i 0.364422 0.490109i
\(666\) 0 0
\(667\) 231506. + 400980.i 0.520368 + 0.901303i
\(668\) 0 0
\(669\) 31843.8 55155.1i 0.0711496 0.123235i
\(670\) 0 0
\(671\) 379898.i 0.843765i
\(672\) 0 0
\(673\) 62603.2 0.138219 0.0691093 0.997609i \(-0.477984\pi\)
0.0691093 + 0.997609i \(0.477984\pi\)
\(674\) 0 0
\(675\) 215230. + 124263.i 0.472384 + 0.272731i
\(676\) 0 0
\(677\) 340591. 196640.i 0.743115 0.429038i −0.0800858 0.996788i \(-0.525519\pi\)
0.823201 + 0.567750i \(0.192186\pi\)
\(678\) 0 0
\(679\) −44657.6 + 384043.i −0.0968626 + 0.832991i
\(680\) 0 0
\(681\) 176383. + 305504.i 0.380331 + 0.658752i
\(682\) 0 0
\(683\) −220205. + 381407.i −0.472048 + 0.817611i −0.999488 0.0319809i \(-0.989818\pi\)
0.527440 + 0.849592i \(0.323152\pi\)
\(684\) 0 0
\(685\) 926391.i 1.97430i
\(686\) 0 0
\(687\) −3270.17 −0.00692879
\(688\) 0 0
\(689\) 812139. + 468889.i 1.71077 + 0.987714i
\(690\) 0 0
\(691\) 808775. 466947.i 1.69384 0.977938i 0.742470 0.669879i \(-0.233654\pi\)
0.951367 0.308059i \(-0.0996794\pi\)
\(692\) 0 0
\(693\) −2551.72 296.721i −0.00531333 0.000617849i
\(694\) 0 0
\(695\) −243981. 422587.i −0.505110 0.874876i
\(696\) 0 0
\(697\) −73172.3 + 126738.i −0.150619 + 0.260881i
\(698\) 0 0
\(699\) 62024.1i 0.126942i
\(700\) 0 0
\(701\) −903363. −1.83834 −0.919171 0.393860i \(-0.871140\pi\)
−0.919171 + 0.393860i \(0.871140\pi\)
\(702\) 0 0
\(703\) 349741. + 201923.i 0.707678 + 0.408578i
\(704\) 0 0
\(705\) −363556. + 209899.i −0.731464 + 0.422311i
\(706\) 0 0
\(707\) −311487. 231607.i −0.623162 0.463353i
\(708\) 0 0
\(709\) −88591.0 153444.i −0.176237 0.305251i 0.764352 0.644800i \(-0.223059\pi\)
−0.940589 + 0.339548i \(0.889726\pi\)
\(710\) 0 0
\(711\) 485.394 840.727i 0.000960185 0.00166309i
\(712\) 0 0
\(713\) 518523.i 1.01997i
\(714\) 0 0
\(715\) −951123. −1.86048
\(716\) 0 0
\(717\) −703972. 406438.i −1.36936 0.790599i
\(718\) 0 0
\(719\) −580300. + 335036.i −1.12252 + 0.648088i −0.942043 0.335491i \(-0.891098\pi\)
−0.180478 + 0.983579i \(0.557764\pi\)
\(720\) 0 0
\(721\) 76855.7 33206.3i 0.147845 0.0638779i
\(722\) 0 0
\(723\) −195626. 338834.i −0.374239 0.648201i
\(724\) 0 0
\(725\) −237051. + 410584.i −0.450988 + 0.781135i
\(726\) 0 0
\(727\) 465279.i 0.880329i −0.897917 0.440164i \(-0.854920\pi\)
0.897917 0.440164i \(-0.145080\pi\)
\(728\) 0 0
\(729\) −529060. −0.995519
\(730\) 0 0
\(731\) −135677. 78333.3i −0.253906 0.146592i
\(732\) 0 0
\(733\) 162756. 93967.1i 0.302920 0.174891i −0.340834 0.940124i \(-0.610709\pi\)
0.643754 + 0.765232i \(0.277376\pi\)
\(734\) 0 0
\(735\) 655378. + 154508.i 1.21316 + 0.286006i
\(736\) 0 0
\(737\) 420719. + 728707.i 0.774564 + 1.34158i
\(738\) 0 0
\(739\) −108230. + 187460.i −0.198180 + 0.343258i −0.947938 0.318454i \(-0.896836\pi\)
0.749758 + 0.661712i \(0.230170\pi\)
\(740\) 0 0
\(741\) 335696.i 0.611377i
\(742\) 0 0
\(743\) 202338. 0.366521 0.183261 0.983064i \(-0.441335\pi\)
0.183261 + 0.983064i \(0.441335\pi\)
\(744\) 0 0
\(745\) −739302. 426836.i −1.33202 0.769039i
\(746\) 0 0
\(747\) 838.040 483.843i 0.00150184 0.000867088i
\(748\) 0 0
\(749\) 103973. + 240645.i 0.185335 + 0.428957i
\(750\) 0 0
\(751\) −250793. 434385.i −0.444667 0.770185i 0.553362 0.832941i \(-0.313345\pi\)
−0.998029 + 0.0627553i \(0.980011\pi\)
\(752\) 0 0
\(753\) −260318. + 450884.i −0.459108 + 0.795198i
\(754\) 0 0
\(755\) 930942.i 1.63316i
\(756\) 0 0
\(757\) −21535.3 −0.0375802 −0.0187901 0.999823i \(-0.505981\pi\)
−0.0187901 + 0.999823i \(0.505981\pi\)
\(758\) 0 0
\(759\) 379834. + 219297.i 0.659341 + 0.380671i
\(760\) 0 0
\(761\) 700732. 404568.i 1.20999 0.698589i 0.247235 0.968956i \(-0.420478\pi\)
0.962758 + 0.270366i \(0.0871448\pi\)
\(762\) 0 0
\(763\) 614742. 826764.i 1.05595 1.42014i
\(764\) 0 0
\(765\) 1046.71 + 1812.95i 0.00178855 + 0.00309786i
\(766\) 0 0
\(767\) 462449. 800986.i 0.786092 1.36155i
\(768\) 0 0
\(769\) 356884.i 0.603496i 0.953388 + 0.301748i \(0.0975702\pi\)
−0.953388 + 0.301748i \(0.902430\pi\)
\(770\) 0 0
\(771\) 611510. 1.02871
\(772\) 0 0
\(773\) −169520. 97872.5i −0.283702 0.163795i 0.351396 0.936227i \(-0.385707\pi\)
−0.635098 + 0.772431i \(0.719040\pi\)
\(774\) 0 0
\(775\) −459810. + 265471.i −0.765552 + 0.441992i
\(776\) 0 0
\(777\) −116292. + 1.00008e6i −0.192623 + 1.65650i
\(778\) 0 0
\(779\) −69315.6 120058.i −0.114224 0.197841i
\(780\) 0 0
\(781\) 83731.5 145027.i 0.137274 0.237765i
\(782\) 0 0
\(783\) 1.00928e6i 1.64622i
\(784\) 0 0
\(785\) 481631. 0.781583
\(786\) 0 0
\(787\) −388287. 224177.i −0.626907 0.361945i 0.152646 0.988281i \(-0.451220\pi\)
−0.779553 + 0.626336i \(0.784554\pi\)
\(788\) 0 0
\(789\) −52864.3 + 30521.2i −0.0849196 + 0.0490284i
\(790\) 0 0
\(791\) 481209. + 55956.3i 0.769096 + 0.0894327i
\(792\) 0 0
\(793\) 273645. + 473968.i 0.435153 + 0.753707i
\(794\) 0 0
\(795\) 626385. 1.08493e6i 0.991077 1.71660i
\(796\) 0 0
\(797\) 536814.i 0.845099i 0.906340 + 0.422549i \(0.138865\pi\)
−0.906340 + 0.422549i \(0.861135\pi\)
\(798\) 0 0
\(799\) 280142. 0.438818
\(800\) 0 0
\(801\) 1812.41 + 1046.39i 0.00282482 + 0.00163091i
\(802\) 0 0
\(803\) −465501. + 268757.i −0.721921 + 0.416801i
\(804\) 0 0
\(805\) −407948. 303331.i −0.629526 0.468085i
\(806\) 0 0
\(807\) 379038. + 656513.i 0.582017 + 1.00808i
\(808\) 0 0
\(809\) 186264. 322619.i 0.284598 0.492938i −0.687914 0.725793i \(-0.741473\pi\)
0.972512 + 0.232854i \(0.0748066\pi\)
\(810\) 0 0
\(811\) 559118.i 0.850084i 0.905174 + 0.425042i \(0.139741\pi\)
−0.905174 + 0.425042i \(0.860259\pi\)
\(812\) 0 0
\(813\) 351392. 0.531632
\(814\) 0 0
\(815\) 736116. + 424997.i 1.10823 + 0.639839i
\(816\) 0 0
\(817\) 128526. 74204.5i 0.192552 0.111170i
\(818\) 0 0
\(819\) 3397.31 1467.84i 0.00506486 0.00218832i
\(820\) 0 0
\(821\) 171900. + 297739.i 0.255029 + 0.441722i 0.964903 0.262606i \(-0.0845818\pi\)
−0.709875 + 0.704328i \(0.751248\pi\)
\(822\) 0 0
\(823\) −25861.2 + 44793.0i −0.0381812 + 0.0661318i −0.884485 0.466570i \(-0.845490\pi\)
0.846303 + 0.532701i \(0.178823\pi\)
\(824\) 0 0
\(825\) 449099.i 0.659834i
\(826\) 0 0
\(827\) −1.27662e6 −1.86659 −0.933297 0.359105i \(-0.883082\pi\)
−0.933297 + 0.359105i \(0.883082\pi\)
\(828\) 0 0
\(829\) −453405. 261774.i −0.659747 0.380905i 0.132434 0.991192i \(-0.457721\pi\)
−0.792181 + 0.610287i \(0.791054\pi\)
\(830\) 0 0
\(831\) −557604. + 321933.i −0.807465 + 0.466190i
\(832\) 0 0
\(833\) −327203. 307968.i −0.471550 0.443829i
\(834\) 0 0
\(835\) −307089. 531894.i −0.440445 0.762873i
\(836\) 0 0
\(837\) 565143. 978857.i 0.806692 1.39723i
\(838\) 0 0
\(839\) 1.14150e6i 1.62163i 0.585303 + 0.810815i \(0.300976\pi\)
−0.585303 + 0.810815i \(0.699024\pi\)
\(840\) 0 0
\(841\) 1.21808e6 1.72220
\(842\) 0 0
\(843\) −451787. 260839.i −0.635738 0.367044i
\(844\) 0 0
\(845\) 417607. 241106.i 0.584864 0.337671i
\(846\) 0 0
\(847\) 128144. + 296588.i 0.178621 + 0.413416i
\(848\) 0 0
\(849\) −455492. 788935.i −0.631924 1.09453i
\(850\) 0 0
\(851\) 380063. 658288.i 0.524803 0.908985i
\(852\) 0 0
\(853\) 587560.i 0.807521i 0.914865 + 0.403761i \(0.132297\pi\)
−0.914865 + 0.403761i \(0.867703\pi\)
\(854\) 0 0
\(855\) −1983.07 −0.00271273
\(856\) 0 0
\(857\) −1.05627e6 609838.i −1.43818 0.830334i −0.440457 0.897774i \(-0.645184\pi\)
−0.997723 + 0.0674398i \(0.978517\pi\)
\(858\) 0 0
\(859\) −724073. + 418044.i −0.981287 + 0.566546i −0.902658 0.430358i \(-0.858387\pi\)
−0.0786283 + 0.996904i \(0.525054\pi\)
\(860\) 0 0
\(861\) 206224. 277349.i 0.278184 0.374129i
\(862\) 0 0
\(863\) 383588. + 664393.i 0.515042 + 0.892079i 0.999848 + 0.0174573i \(0.00555712\pi\)
−0.484805 + 0.874622i \(0.661110\pi\)
\(864\) 0 0
\(865\) 356726. 617867.i 0.476762 0.825777i
\(866\) 0 0
\(867\) 437441.i 0.581945i
\(868\) 0 0
\(869\) −393202. −0.520686
\(870\) 0 0
\(871\) −1.04979e6 606099.i −1.38378 0.798928i
\(872\) 0 0
\(873\) 2458.45 1419.39i 0.00322577 0.00186240i
\(874\) 0 0
\(875\) −49856.1 + 428748.i −0.0651181 + 0.559998i
\(876\) 0 0
\(877\) 246604. + 427131.i 0.320628 + 0.555343i 0.980618 0.195931i \(-0.0627729\pi\)
−0.659990 + 0.751274i \(0.729440\pi\)
\(878\) 0 0
\(879\) −600425. + 1.03997e6i −0.777107 + 1.34599i
\(880\) 0 0
\(881\) 549789.i 0.708344i −0.935180 0.354172i \(-0.884763\pi\)
0.935180 0.354172i \(-0.115237\pi\)
\(882\) 0 0
\(883\) 177926. 0.228202 0.114101 0.993469i \(-0.463601\pi\)
0.114101 + 0.993469i \(0.463601\pi\)
\(884\) 0 0
\(885\) −1.07003e6 617783.i −1.36619 0.788768i
\(886\) 0 0
\(887\) −23246.4 + 13421.3i −0.0295467 + 0.0170588i −0.514701 0.857370i \(-0.672097\pi\)
0.485154 + 0.874429i \(0.338764\pi\)
\(888\) 0 0
\(889\) 591268. + 68754.4i 0.748137 + 0.0869955i
\(890\) 0 0
\(891\) −480152. 831647.i −0.604816 1.04757i
\(892\) 0 0
\(893\) −132688. + 229823.i −0.166391 + 0.288197i
\(894\) 0 0
\(895\) 437740.i 0.546475i
\(896\) 0 0
\(897\) −631851. −0.785290
\(898\) 0 0
\(899\) 1.86732e6 + 1.07810e6i 2.31046 + 1.33395i
\(900\) 0 0
\(901\) −724002. + 418002.i −0.891846 + 0.514908i
\(902\) 0 0
\(903\) 296912. + 220769.i 0.364126 + 0.270747i
\(904\) 0 0
\(905\) 188594. + 326654.i 0.230266 + 0.398832i
\(906\) 0 0
\(907\) −614619. + 1.06455e6i −0.747122 + 1.29405i 0.202074 + 0.979370i \(0.435232\pi\)
−0.949197 + 0.314684i \(0.898102\pi\)
\(908\) 0 0
\(909\) 2849.98i 0.00344917i
\(910\) 0 0
\(911\) −701772. −0.845589 −0.422794 0.906226i \(-0.638951\pi\)
−0.422794 + 0.906226i \(0.638951\pi\)
\(912\) 0 0
\(913\) −339435. 195973.i −0.407206 0.235101i
\(914\) 0 0
\(915\) 633170. 365561.i 0.756273 0.436634i
\(916\) 0 0
\(917\) −252941. + 109286.i −0.300802 + 0.129965i
\(918\) 0 0
\(919\) −755117. 1.30790e6i −0.894094 1.54862i −0.834922 0.550369i \(-0.814487\pi\)
−0.0591725 0.998248i \(-0.518846\pi\)
\(920\) 0 0
\(921\) 34579.5 59893.4i 0.0407661 0.0706089i
\(922\) 0 0
\(923\) 241252.i 0.283183i
\(924\) 0 0
\(925\) 778331. 0.909664
\(926\) 0 0
\(927\) −532.363 307.360i −0.000619510 0.000357675i
\(928\) 0 0
\(929\) 803655. 463990.i 0.931190 0.537623i 0.0440021 0.999031i \(-0.485989\pi\)
0.887188 + 0.461409i \(0.152656\pi\)
\(930\) 0 0
\(931\) 407629. 122563.i 0.470290 0.141403i
\(932\) 0 0
\(933\) 7419.91 + 12851.7i 0.00852384 + 0.0147637i
\(934\) 0 0
\(935\) 423951. 734305.i 0.484945 0.839949i
\(936\) 0 0
\(937\) 902133.i 1.02752i −0.857933 0.513761i \(-0.828252\pi\)
0.857933 0.513761i \(-0.171748\pi\)
\(938\) 0 0
\(939\) −1.01107e6 −1.14670
\(940\) 0 0
\(941\) 760903. + 439308.i 0.859310 + 0.496123i 0.863781 0.503867i \(-0.168090\pi\)
−0.00447086 + 0.999990i \(0.501423\pi\)
\(942\) 0 0
\(943\) −225975. + 130467.i −0.254119 + 0.146716i
\(944\) 0 0
\(945\) 439513. + 1.01725e6i 0.492162 + 1.13910i
\(946\) 0 0
\(947\) 721180. + 1.24912e6i 0.804162 + 1.39285i 0.916855 + 0.399220i \(0.130719\pi\)
−0.112693 + 0.993630i \(0.535948\pi\)
\(948\) 0 0
\(949\) 387179. 670614.i 0.429912 0.744629i
\(950\) 0 0
\(951\) 30329.1i 0.0335350i
\(952\) 0 0
\(953\) −524371. −0.577368 −0.288684 0.957424i \(-0.593218\pi\)
−0.288684 + 0.957424i \(0.593218\pi\)
\(954\) 0 0
\(955\) 807921. + 466453.i 0.885854 + 0.511448i
\(956\) 0 0
\(957\) 1.57948e6 911912.i 1.72461 0.995702i
\(958\) 0 0
\(959\) 871151. 1.17161e6i 0.947232 1.27393i
\(960\) 0 0
\(961\) 745592. + 1.29140e6i 0.807336 + 1.39835i
\(962\) 0 0
\(963\) 962.384 1666.90i 0.00103776 0.00179745i
\(964\) 0 0
\(965\) 581556.i 0.624507i
\(966\) 0 0
\(967\) 1.40754e6 1.50525 0.752624 0.658450i \(-0.228788\pi\)
0.752624 + 0.658450i \(0.228788\pi\)
\(968\) 0 0
\(969\) 259170. + 149632.i 0.276018 + 0.159359i
\(970\) 0 0
\(971\) −324836. + 187544.i −0.344529 + 0.198914i −0.662273 0.749262i \(-0.730408\pi\)
0.317744 + 0.948177i \(0.397075\pi\)
\(972\) 0 0
\(973\) 88826.0 763879.i 0.0938241 0.806861i
\(974\) 0 0
\(975\) −323492. 560305.i −0.340294 0.589407i
\(976\) 0 0
\(977\) −649690. + 1.12530e6i −0.680640 + 1.17890i 0.294146 + 0.955760i \(0.404965\pi\)
−0.974786 + 0.223142i \(0.928369\pi\)
\(978\) 0 0
\(979\) 847650.i 0.884405i
\(980\) 0 0
\(981\) −7564.57 −0.00786043
\(982\) 0 0
\(983\) −693008. 400108.i −0.717185 0.414067i 0.0965310 0.995330i \(-0.469225\pi\)
−0.813716 + 0.581263i \(0.802559\pi\)
\(984\) 0 0
\(985\) 276581. 159684.i 0.285068 0.164584i
\(986\) 0 0
\(987\) −657173. 76417.9i −0.674598 0.0784442i
\(988\) 0 0
\(989\) −139669. 241914.i −0.142793 0.247325i
\(990\) 0 0
\(991\) −461620. + 799550.i −0.470043 + 0.814138i −0.999413 0.0342525i \(-0.989095\pi\)
0.529370 + 0.848391i \(0.322428\pi\)
\(992\) 0 0
\(993\) 784465.i 0.795564i
\(994\) 0 0
\(995\) −223501. −0.225752
\(996\) 0 0
\(997\) 610224. + 352313.i 0.613902 + 0.354436i 0.774491 0.632585i \(-0.218006\pi\)
−0.160589 + 0.987021i \(0.551339\pi\)
\(998\) 0 0
\(999\) −1.43495e6 + 828468.i −1.43782 + 0.830127i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.5.h.a.17.1 yes 6
3.2 odd 2 252.5.z.f.73.3 6
4.3 odd 2 112.5.s.c.17.3 6
5.2 odd 4 700.5.o.a.549.2 12
5.3 odd 4 700.5.o.a.549.5 12
5.4 even 2 700.5.s.a.101.3 6
7.2 even 3 196.5.h.c.117.3 6
7.3 odd 6 196.5.b.a.97.2 6
7.4 even 3 196.5.b.a.97.5 6
7.5 odd 6 inner 28.5.h.a.5.1 6
7.6 odd 2 196.5.h.c.129.3 6
21.5 even 6 252.5.z.f.145.3 6
28.3 even 6 784.5.c.e.97.5 6
28.11 odd 6 784.5.c.e.97.2 6
28.19 even 6 112.5.s.c.33.3 6
35.12 even 12 700.5.o.a.649.5 12
35.19 odd 6 700.5.s.a.201.3 6
35.33 even 12 700.5.o.a.649.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.5.h.a.5.1 6 7.5 odd 6 inner
28.5.h.a.17.1 yes 6 1.1 even 1 trivial
112.5.s.c.17.3 6 4.3 odd 2
112.5.s.c.33.3 6 28.19 even 6
196.5.b.a.97.2 6 7.3 odd 6
196.5.b.a.97.5 6 7.4 even 3
196.5.h.c.117.3 6 7.2 even 3
196.5.h.c.129.3 6 7.6 odd 2
252.5.z.f.73.3 6 3.2 odd 2
252.5.z.f.145.3 6 21.5 even 6
700.5.o.a.549.2 12 5.2 odd 4
700.5.o.a.549.5 12 5.3 odd 4
700.5.o.a.649.2 12 35.33 even 12
700.5.o.a.649.5 12 35.12 even 12
700.5.s.a.101.3 6 5.4 even 2
700.5.s.a.201.3 6 35.19 odd 6
784.5.c.e.97.2 6 28.11 odd 6
784.5.c.e.97.5 6 28.3 even 6