Properties

Label 784.5.c.e.97.2
Level $784$
Weight $5$
Character 784.97
Analytic conductor $81.042$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,5,Mod(97,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.97");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 784.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(81.0420510577\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.11337408.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{3}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.2
Root \(-3.17656i\) of defining polynomial
Character \(\chi\) \(=\) 784.97
Dual form 784.5.c.e.97.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.01997i q^{3} -31.0914i q^{5} -0.359775 q^{9} +145.721 q^{11} +209.930i q^{13} -280.444 q^{15} +187.147i q^{17} -177.283i q^{19} -333.685 q^{23} -341.677 q^{25} -727.372i q^{27} -1387.57 q^{29} -1553.93i q^{31} -1314.40i q^{33} -2277.98 q^{37} +1893.56 q^{39} -781.977i q^{41} -837.131 q^{43} +11.1859i q^{45} +1496.91i q^{47} +1688.06 q^{51} -4467.10 q^{53} -4530.67i q^{55} -1599.09 q^{57} -4405.75i q^{59} +2607.02i q^{61} +6527.01 q^{65} -5774.31 q^{67} +3009.82i q^{69} -1149.20 q^{71} +3688.65i q^{73} +3081.91i q^{75} -2698.32 q^{79} -6590.01 q^{81} +2689.70i q^{83} +5818.67 q^{85} +12515.9i q^{87} +5816.93i q^{89} -14016.4 q^{93} -5511.98 q^{95} -7890.42i q^{97} -52.4268 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 180 q^{9} + 270 q^{11} + 486 q^{15} + 486 q^{23} - 3756 q^{25} - 540 q^{29} - 4710 q^{37} + 13176 q^{39} + 948 q^{43} - 1782 q^{51} - 12582 q^{53} - 6894 q^{57} - 15336 q^{65} + 3318 q^{67} - 2268 q^{71}+ \cdots - 8100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 9.01997i − 1.00222i −0.865384 0.501109i \(-0.832925\pi\)
0.865384 0.501109i \(-0.167075\pi\)
\(4\) 0 0
\(5\) − 31.0914i − 1.24366i −0.783153 0.621829i \(-0.786390\pi\)
0.783153 0.621829i \(-0.213610\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.359775 −0.00444167
\(10\) 0 0
\(11\) 145.721 1.20431 0.602153 0.798381i \(-0.294310\pi\)
0.602153 + 0.798381i \(0.294310\pi\)
\(12\) 0 0
\(13\) 209.930i 1.24219i 0.783736 + 0.621094i \(0.213311\pi\)
−0.783736 + 0.621094i \(0.786689\pi\)
\(14\) 0 0
\(15\) −280.444 −1.24642
\(16\) 0 0
\(17\) 187.147i 0.647567i 0.946131 + 0.323784i \(0.104955\pi\)
−0.946131 + 0.323784i \(0.895045\pi\)
\(18\) 0 0
\(19\) − 177.283i − 0.491088i −0.969385 0.245544i \(-0.921033\pi\)
0.969385 0.245544i \(-0.0789666\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −333.685 −0.630784 −0.315392 0.948962i \(-0.602136\pi\)
−0.315392 + 0.948962i \(0.602136\pi\)
\(24\) 0 0
\(25\) −341.677 −0.546683
\(26\) 0 0
\(27\) − 727.372i − 0.997767i
\(28\) 0 0
\(29\) −1387.57 −1.64991 −0.824954 0.565199i \(-0.808799\pi\)
−0.824954 + 0.565199i \(0.808799\pi\)
\(30\) 0 0
\(31\) − 1553.93i − 1.61699i −0.588500 0.808497i \(-0.700281\pi\)
0.588500 0.808497i \(-0.299719\pi\)
\(32\) 0 0
\(33\) − 1314.40i − 1.20698i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2277.98 −1.66397 −0.831985 0.554798i \(-0.812796\pi\)
−0.831985 + 0.554798i \(0.812796\pi\)
\(38\) 0 0
\(39\) 1893.56 1.24494
\(40\) 0 0
\(41\) − 781.977i − 0.465185i −0.972574 0.232593i \(-0.925279\pi\)
0.972574 0.232593i \(-0.0747209\pi\)
\(42\) 0 0
\(43\) −837.131 −0.452748 −0.226374 0.974040i \(-0.572687\pi\)
−0.226374 + 0.974040i \(0.572687\pi\)
\(44\) 0 0
\(45\) 11.1859i 0.00552391i
\(46\) 0 0
\(47\) 1496.91i 0.677641i 0.940851 + 0.338820i \(0.110028\pi\)
−0.940851 + 0.338820i \(0.889972\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1688.06 0.649004
\(52\) 0 0
\(53\) −4467.10 −1.59028 −0.795141 0.606424i \(-0.792603\pi\)
−0.795141 + 0.606424i \(0.792603\pi\)
\(54\) 0 0
\(55\) − 4530.67i − 1.49774i
\(56\) 0 0
\(57\) −1599.09 −0.492178
\(58\) 0 0
\(59\) − 4405.75i − 1.26566i −0.774292 0.632829i \(-0.781894\pi\)
0.774292 0.632829i \(-0.218106\pi\)
\(60\) 0 0
\(61\) 2607.02i 0.700624i 0.936633 + 0.350312i \(0.113924\pi\)
−0.936633 + 0.350312i \(0.886076\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6527.01 1.54485
\(66\) 0 0
\(67\) −5774.31 −1.28632 −0.643162 0.765730i \(-0.722378\pi\)
−0.643162 + 0.765730i \(0.722378\pi\)
\(68\) 0 0
\(69\) 3009.82i 0.632183i
\(70\) 0 0
\(71\) −1149.20 −0.227971 −0.113986 0.993482i \(-0.536362\pi\)
−0.113986 + 0.993482i \(0.536362\pi\)
\(72\) 0 0
\(73\) 3688.65i 0.692185i 0.938200 + 0.346093i \(0.112492\pi\)
−0.938200 + 0.346093i \(0.887508\pi\)
\(74\) 0 0
\(75\) 3081.91i 0.547896i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2698.32 −0.432353 −0.216177 0.976354i \(-0.569359\pi\)
−0.216177 + 0.976354i \(0.569359\pi\)
\(80\) 0 0
\(81\) −6590.01 −1.00442
\(82\) 0 0
\(83\) 2689.70i 0.390433i 0.980760 + 0.195217i \(0.0625410\pi\)
−0.980760 + 0.195217i \(0.937459\pi\)
\(84\) 0 0
\(85\) 5818.67 0.805352
\(86\) 0 0
\(87\) 12515.9i 1.65357i
\(88\) 0 0
\(89\) 5816.93i 0.734369i 0.930148 + 0.367184i \(0.119678\pi\)
−0.930148 + 0.367184i \(0.880322\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −14016.4 −1.62058
\(94\) 0 0
\(95\) −5511.98 −0.610746
\(96\) 0 0
\(97\) − 7890.42i − 0.838604i −0.907847 0.419302i \(-0.862275\pi\)
0.907847 0.419302i \(-0.137725\pi\)
\(98\) 0 0
\(99\) −52.4268 −0.00534913
\(100\) 0 0
\(101\) − 7921.56i − 0.776548i −0.921544 0.388274i \(-0.873071\pi\)
0.921544 0.388274i \(-0.126929\pi\)
\(102\) 0 0
\(103\) 1708.62i 0.161054i 0.996752 + 0.0805271i \(0.0256603\pi\)
−0.996752 + 0.0805271i \(0.974340\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5349.92 −0.467283 −0.233641 0.972323i \(-0.575064\pi\)
−0.233641 + 0.972323i \(0.575064\pi\)
\(108\) 0 0
\(109\) 21025.8 1.76970 0.884851 0.465875i \(-0.154260\pi\)
0.884851 + 0.465875i \(0.154260\pi\)
\(110\) 0 0
\(111\) 20547.3i 1.66766i
\(112\) 0 0
\(113\) −9886.76 −0.774278 −0.387139 0.922021i \(-0.626537\pi\)
−0.387139 + 0.922021i \(0.626537\pi\)
\(114\) 0 0
\(115\) 10374.7i 0.784478i
\(116\) 0 0
\(117\) − 75.5275i − 0.00551738i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 6593.62 0.450353
\(122\) 0 0
\(123\) −7053.40 −0.466217
\(124\) 0 0
\(125\) − 8808.92i − 0.563771i
\(126\) 0 0
\(127\) 12148.0 0.753178 0.376589 0.926380i \(-0.377097\pi\)
0.376589 + 0.926380i \(0.377097\pi\)
\(128\) 0 0
\(129\) 7550.90i 0.453753i
\(130\) 0 0
\(131\) − 5623.28i − 0.327678i −0.986487 0.163839i \(-0.947612\pi\)
0.986487 0.163839i \(-0.0523877\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −22615.0 −1.24088
\(136\) 0 0
\(137\) 29795.7 1.58750 0.793748 0.608247i \(-0.208127\pi\)
0.793748 + 0.608247i \(0.208127\pi\)
\(138\) 0 0
\(139\) − 15694.4i − 0.812298i −0.913807 0.406149i \(-0.866871\pi\)
0.913807 0.406149i \(-0.133129\pi\)
\(140\) 0 0
\(141\) 13502.1 0.679144
\(142\) 0 0
\(143\) 30591.2i 1.49597i
\(144\) 0 0
\(145\) 43141.6i 2.05192i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −27456.8 −1.23674 −0.618369 0.785888i \(-0.712206\pi\)
−0.618369 + 0.785888i \(0.712206\pi\)
\(150\) 0 0
\(151\) 29942.1 1.31319 0.656596 0.754243i \(-0.271996\pi\)
0.656596 + 0.754243i \(0.271996\pi\)
\(152\) 0 0
\(153\) − 67.3308i − 0.00287628i
\(154\) 0 0
\(155\) −48314.0 −2.01099
\(156\) 0 0
\(157\) 15490.8i 0.628455i 0.949348 + 0.314228i \(0.101746\pi\)
−0.949348 + 0.314228i \(0.898254\pi\)
\(158\) 0 0
\(159\) 40293.1i 1.59381i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −27338.5 −1.02896 −0.514482 0.857501i \(-0.672016\pi\)
−0.514482 + 0.857501i \(0.672016\pi\)
\(164\) 0 0
\(165\) −40866.5 −1.50107
\(166\) 0 0
\(167\) − 19753.9i − 0.708306i −0.935188 0.354153i \(-0.884769\pi\)
0.935188 0.354153i \(-0.115231\pi\)
\(168\) 0 0
\(169\) −15509.5 −0.543029
\(170\) 0 0
\(171\) 63.7820i 0.00218125i
\(172\) 0 0
\(173\) − 22946.9i − 0.766711i −0.923601 0.383355i \(-0.874768\pi\)
0.923601 0.383355i \(-0.125232\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −39739.8 −1.26847
\(178\) 0 0
\(179\) −14079.1 −0.439410 −0.219705 0.975566i \(-0.570509\pi\)
−0.219705 + 0.975566i \(0.570509\pi\)
\(180\) 0 0
\(181\) − 12131.5i − 0.370304i −0.982710 0.185152i \(-0.940722\pi\)
0.982710 0.185152i \(-0.0592778\pi\)
\(182\) 0 0
\(183\) 23515.2 0.702178
\(184\) 0 0
\(185\) 70825.5i 2.06941i
\(186\) 0 0
\(187\) 27271.3i 0.779869i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −30005.3 −0.822490 −0.411245 0.911525i \(-0.634906\pi\)
−0.411245 + 0.911525i \(0.634906\pi\)
\(192\) 0 0
\(193\) −18704.7 −0.502153 −0.251077 0.967967i \(-0.580785\pi\)
−0.251077 + 0.967967i \(0.580785\pi\)
\(194\) 0 0
\(195\) − 58873.4i − 1.54828i
\(196\) 0 0
\(197\) −10271.9 −0.264678 −0.132339 0.991205i \(-0.542249\pi\)
−0.132339 + 0.991205i \(0.542249\pi\)
\(198\) 0 0
\(199\) 7188.50i 0.181523i 0.995873 + 0.0907616i \(0.0289301\pi\)
−0.995873 + 0.0907616i \(0.971070\pi\)
\(200\) 0 0
\(201\) 52084.1i 1.28918i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −24312.8 −0.578531
\(206\) 0 0
\(207\) 120.051 0.00280173
\(208\) 0 0
\(209\) − 25833.8i − 0.591421i
\(210\) 0 0
\(211\) 62160.8 1.39621 0.698107 0.715993i \(-0.254026\pi\)
0.698107 + 0.715993i \(0.254026\pi\)
\(212\) 0 0
\(213\) 10365.8i 0.228477i
\(214\) 0 0
\(215\) 26027.6i 0.563063i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 33271.5 0.693721
\(220\) 0 0
\(221\) −39287.7 −0.804400
\(222\) 0 0
\(223\) − 7060.74i − 0.141984i −0.997477 0.0709921i \(-0.977383\pi\)
0.997477 0.0709921i \(-0.0226165\pi\)
\(224\) 0 0
\(225\) 122.927 0.00242818
\(226\) 0 0
\(227\) − 39109.4i − 0.758978i −0.925196 0.379489i \(-0.876100\pi\)
0.925196 0.379489i \(-0.123900\pi\)
\(228\) 0 0
\(229\) 362.549i 0.00691346i 0.999994 + 0.00345673i \(0.00110031\pi\)
−0.999994 + 0.00345673i \(0.998900\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6876.32 0.126661 0.0633307 0.997993i \(-0.479828\pi\)
0.0633307 + 0.997993i \(0.479828\pi\)
\(234\) 0 0
\(235\) 46541.0 0.842752
\(236\) 0 0
\(237\) 24338.7i 0.433313i
\(238\) 0 0
\(239\) −90119.7 −1.57770 −0.788849 0.614587i \(-0.789323\pi\)
−0.788849 + 0.614587i \(0.789323\pi\)
\(240\) 0 0
\(241\) − 43376.1i − 0.746822i −0.927666 0.373411i \(-0.878188\pi\)
0.927666 0.373411i \(-0.121812\pi\)
\(242\) 0 0
\(243\) 524.548i 0.00888327i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 37216.9 0.610024
\(248\) 0 0
\(249\) 24261.0 0.391300
\(250\) 0 0
\(251\) 57720.4i 0.916183i 0.888905 + 0.458091i \(0.151467\pi\)
−0.888905 + 0.458091i \(0.848533\pi\)
\(252\) 0 0
\(253\) −48624.9 −0.759657
\(254\) 0 0
\(255\) − 52484.2i − 0.807138i
\(256\) 0 0
\(257\) − 67795.2i − 1.02644i −0.858258 0.513219i \(-0.828453\pi\)
0.858258 0.513219i \(-0.171547\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 499.214 0.00732835
\(262\) 0 0
\(263\) 6767.47 0.0978397 0.0489198 0.998803i \(-0.484422\pi\)
0.0489198 + 0.998803i \(0.484422\pi\)
\(264\) 0 0
\(265\) 138889.i 1.97777i
\(266\) 0 0
\(267\) 52468.5 0.735998
\(268\) 0 0
\(269\) 84044.2i 1.16146i 0.814097 + 0.580728i \(0.197232\pi\)
−0.814097 + 0.580728i \(0.802768\pi\)
\(270\) 0 0
\(271\) 38957.2i 0.530455i 0.964186 + 0.265228i \(0.0854471\pi\)
−0.964186 + 0.265228i \(0.914553\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −49789.5 −0.658373
\(276\) 0 0
\(277\) −71382.3 −0.930317 −0.465158 0.885227i \(-0.654003\pi\)
−0.465158 + 0.885227i \(0.654003\pi\)
\(278\) 0 0
\(279\) 559.066i 0.00718216i
\(280\) 0 0
\(281\) 57835.9 0.732462 0.366231 0.930524i \(-0.380648\pi\)
0.366231 + 0.930524i \(0.380648\pi\)
\(282\) 0 0
\(283\) 100996.i 1.26105i 0.776168 + 0.630526i \(0.217161\pi\)
−0.776168 + 0.630526i \(0.782839\pi\)
\(284\) 0 0
\(285\) 49717.9i 0.612100i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 48497.0 0.580656
\(290\) 0 0
\(291\) −71171.4 −0.840464
\(292\) 0 0
\(293\) − 133132.i − 1.55077i −0.631487 0.775387i \(-0.717555\pi\)
0.631487 0.775387i \(-0.282445\pi\)
\(294\) 0 0
\(295\) −136981. −1.57404
\(296\) 0 0
\(297\) − 105993.i − 1.20162i
\(298\) 0 0
\(299\) − 70050.3i − 0.783551i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −71452.2 −0.778271
\(304\) 0 0
\(305\) 81056.0 0.871335
\(306\) 0 0
\(307\) − 7667.32i − 0.0813517i −0.999172 0.0406758i \(-0.987049\pi\)
0.999172 0.0406758i \(-0.0129511\pi\)
\(308\) 0 0
\(309\) 15411.7 0.161411
\(310\) 0 0
\(311\) − 1645.22i − 0.0170099i −0.999964 0.00850497i \(-0.997293\pi\)
0.999964 0.00850497i \(-0.00270725\pi\)
\(312\) 0 0
\(313\) 112092.i 1.14416i 0.820198 + 0.572079i \(0.193863\pi\)
−0.820198 + 0.572079i \(0.806137\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3362.44 0.0334607 0.0167304 0.999860i \(-0.494674\pi\)
0.0167304 + 0.999860i \(0.494674\pi\)
\(318\) 0 0
\(319\) −202199. −1.98700
\(320\) 0 0
\(321\) 48256.1i 0.468319i
\(322\) 0 0
\(323\) 33178.0 0.318013
\(324\) 0 0
\(325\) − 71728.1i − 0.679082i
\(326\) 0 0
\(327\) − 189652.i − 1.77363i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 86969.9 0.793803 0.396902 0.917861i \(-0.370085\pi\)
0.396902 + 0.917861i \(0.370085\pi\)
\(332\) 0 0
\(333\) 819.559 0.00739081
\(334\) 0 0
\(335\) 179531.i 1.59975i
\(336\) 0 0
\(337\) −112228. −0.988195 −0.494098 0.869406i \(-0.664502\pi\)
−0.494098 + 0.869406i \(0.664502\pi\)
\(338\) 0 0
\(339\) 89178.2i 0.775996i
\(340\) 0 0
\(341\) − 226441.i − 1.94736i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 93579.7 0.786219
\(346\) 0 0
\(347\) 34291.4 0.284791 0.142396 0.989810i \(-0.454519\pi\)
0.142396 + 0.989810i \(0.454519\pi\)
\(348\) 0 0
\(349\) − 133358.i − 1.09488i −0.836844 0.547441i \(-0.815602\pi\)
0.836844 0.547441i \(-0.184398\pi\)
\(350\) 0 0
\(351\) 152697. 1.23941
\(352\) 0 0
\(353\) − 152024.i − 1.22001i −0.792398 0.610005i \(-0.791167\pi\)
0.792398 0.610005i \(-0.208833\pi\)
\(354\) 0 0
\(355\) 35730.4i 0.283518i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 81320.9 0.630977 0.315488 0.948929i \(-0.397832\pi\)
0.315488 + 0.948929i \(0.397832\pi\)
\(360\) 0 0
\(361\) 98891.8 0.758832
\(362\) 0 0
\(363\) − 59474.2i − 0.451352i
\(364\) 0 0
\(365\) 114686. 0.860841
\(366\) 0 0
\(367\) − 202671.i − 1.50474i −0.658743 0.752368i \(-0.728912\pi\)
0.658743 0.752368i \(-0.271088\pi\)
\(368\) 0 0
\(369\) 281.336i 0.00206620i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −76742.3 −0.551591 −0.275795 0.961216i \(-0.588941\pi\)
−0.275795 + 0.961216i \(0.588941\pi\)
\(374\) 0 0
\(375\) −79456.2 −0.565022
\(376\) 0 0
\(377\) − 291293.i − 2.04950i
\(378\) 0 0
\(379\) −13185.2 −0.0917926 −0.0458963 0.998946i \(-0.514614\pi\)
−0.0458963 + 0.998946i \(0.514614\pi\)
\(380\) 0 0
\(381\) − 109575.i − 0.754849i
\(382\) 0 0
\(383\) 263893.i 1.79900i 0.436922 + 0.899499i \(0.356068\pi\)
−0.436922 + 0.899499i \(0.643932\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 301.179 0.00201096
\(388\) 0 0
\(389\) 101541. 0.671030 0.335515 0.942035i \(-0.391090\pi\)
0.335515 + 0.942035i \(0.391090\pi\)
\(390\) 0 0
\(391\) − 62448.1i − 0.408475i
\(392\) 0 0
\(393\) −50721.7 −0.328405
\(394\) 0 0
\(395\) 83894.5i 0.537699i
\(396\) 0 0
\(397\) 215443.i 1.36695i 0.729976 + 0.683473i \(0.239531\pi\)
−0.729976 + 0.683473i \(0.760469\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3251.28 0.0202193 0.0101096 0.999949i \(-0.496782\pi\)
0.0101096 + 0.999949i \(0.496782\pi\)
\(402\) 0 0
\(403\) 326216. 2.00861
\(404\) 0 0
\(405\) 204893.i 1.24916i
\(406\) 0 0
\(407\) −331949. −2.00393
\(408\) 0 0
\(409\) 148944.i 0.890383i 0.895435 + 0.445191i \(0.146864\pi\)
−0.895435 + 0.445191i \(0.853136\pi\)
\(410\) 0 0
\(411\) − 268756.i − 1.59102i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 83626.5 0.485565
\(416\) 0 0
\(417\) −141563. −0.814100
\(418\) 0 0
\(419\) − 286696.i − 1.63303i −0.577324 0.816515i \(-0.695903\pi\)
0.577324 0.816515i \(-0.304097\pi\)
\(420\) 0 0
\(421\) −5357.63 −0.0302280 −0.0151140 0.999886i \(-0.504811\pi\)
−0.0151140 + 0.999886i \(0.504811\pi\)
\(422\) 0 0
\(423\) − 538.550i − 0.00300985i
\(424\) 0 0
\(425\) − 63943.8i − 0.354014i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 275931. 1.49929
\(430\) 0 0
\(431\) 54289.1 0.292253 0.146126 0.989266i \(-0.453319\pi\)
0.146126 + 0.989266i \(0.453319\pi\)
\(432\) 0 0
\(433\) 206336.i 1.10052i 0.834992 + 0.550262i \(0.185472\pi\)
−0.834992 + 0.550262i \(0.814528\pi\)
\(434\) 0 0
\(435\) 389136. 2.05647
\(436\) 0 0
\(437\) 59156.6i 0.309771i
\(438\) 0 0
\(439\) − 73627.5i − 0.382042i −0.981586 0.191021i \(-0.938820\pi\)
0.981586 0.191021i \(-0.0611799\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −144633. −0.736987 −0.368493 0.929630i \(-0.620126\pi\)
−0.368493 + 0.929630i \(0.620126\pi\)
\(444\) 0 0
\(445\) 180857. 0.913303
\(446\) 0 0
\(447\) 247660.i 1.23948i
\(448\) 0 0
\(449\) 305112. 1.51345 0.756723 0.653735i \(-0.226799\pi\)
0.756723 + 0.653735i \(0.226799\pi\)
\(450\) 0 0
\(451\) − 113950.i − 0.560226i
\(452\) 0 0
\(453\) − 270076.i − 1.31610i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 35774.6 0.171294 0.0856470 0.996326i \(-0.472704\pi\)
0.0856470 + 0.996326i \(0.472704\pi\)
\(458\) 0 0
\(459\) 136125. 0.646121
\(460\) 0 0
\(461\) 332913.i 1.56649i 0.621710 + 0.783247i \(0.286438\pi\)
−0.621710 + 0.783247i \(0.713562\pi\)
\(462\) 0 0
\(463\) 45033.5 0.210075 0.105037 0.994468i \(-0.466504\pi\)
0.105037 + 0.994468i \(0.466504\pi\)
\(464\) 0 0
\(465\) 435790.i 2.01545i
\(466\) 0 0
\(467\) − 108830.i − 0.499015i −0.968373 0.249508i \(-0.919731\pi\)
0.968373 0.249508i \(-0.0802688\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 139726. 0.629849
\(472\) 0 0
\(473\) −121988. −0.545247
\(474\) 0 0
\(475\) 60573.4i 0.268470i
\(476\) 0 0
\(477\) 1607.15 0.00706351
\(478\) 0 0
\(479\) − 381929.i − 1.66461i −0.554320 0.832304i \(-0.687022\pi\)
0.554320 0.832304i \(-0.312978\pi\)
\(480\) 0 0
\(481\) − 478215.i − 2.06696i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −245325. −1.04294
\(486\) 0 0
\(487\) 270257. 1.13951 0.569756 0.821814i \(-0.307038\pi\)
0.569756 + 0.821814i \(0.307038\pi\)
\(488\) 0 0
\(489\) 246593.i 1.03125i
\(490\) 0 0
\(491\) 240609. 0.998040 0.499020 0.866590i \(-0.333693\pi\)
0.499020 + 0.866590i \(0.333693\pi\)
\(492\) 0 0
\(493\) − 259680.i − 1.06843i
\(494\) 0 0
\(495\) 1630.02i 0.00665248i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 186629. 0.749511 0.374756 0.927124i \(-0.377727\pi\)
0.374756 + 0.927124i \(0.377727\pi\)
\(500\) 0 0
\(501\) −178180. −0.709877
\(502\) 0 0
\(503\) 349740.i 1.38232i 0.722700 + 0.691162i \(0.242901\pi\)
−0.722700 + 0.691162i \(0.757099\pi\)
\(504\) 0 0
\(505\) −246293. −0.965759
\(506\) 0 0
\(507\) 139895.i 0.544234i
\(508\) 0 0
\(509\) − 126445.i − 0.488051i −0.969769 0.244025i \(-0.921532\pi\)
0.969769 0.244025i \(-0.0784681\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −128951. −0.489992
\(514\) 0 0
\(515\) 53123.5 0.200296
\(516\) 0 0
\(517\) 218131.i 0.816087i
\(518\) 0 0
\(519\) −206980. −0.768411
\(520\) 0 0
\(521\) − 147502.i − 0.543403i −0.962382 0.271702i \(-0.912414\pi\)
0.962382 0.271702i \(-0.0875864\pi\)
\(522\) 0 0
\(523\) − 256600.i − 0.938109i −0.883169 0.469054i \(-0.844595\pi\)
0.883169 0.469054i \(-0.155405\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 290814. 1.04711
\(528\) 0 0
\(529\) −168496. −0.602112
\(530\) 0 0
\(531\) 1585.08i 0.00562163i
\(532\) 0 0
\(533\) 164160. 0.577847
\(534\) 0 0
\(535\) 166337.i 0.581139i
\(536\) 0 0
\(537\) 126993.i 0.440385i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 396687. 1.35536 0.677678 0.735359i \(-0.262986\pi\)
0.677678 + 0.735359i \(0.262986\pi\)
\(542\) 0 0
\(543\) −109426. −0.371126
\(544\) 0 0
\(545\) − 653723.i − 2.20090i
\(546\) 0 0
\(547\) 266914. 0.892065 0.446032 0.895017i \(-0.352837\pi\)
0.446032 + 0.895017i \(0.352837\pi\)
\(548\) 0 0
\(549\) − 937.941i − 0.00311194i
\(550\) 0 0
\(551\) 245993.i 0.810251i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 638844. 2.07400
\(556\) 0 0
\(557\) 411278. 1.32564 0.662819 0.748779i \(-0.269360\pi\)
0.662819 + 0.748779i \(0.269360\pi\)
\(558\) 0 0
\(559\) − 175739.i − 0.562398i
\(560\) 0 0
\(561\) 245986. 0.781599
\(562\) 0 0
\(563\) − 566949.i − 1.78866i −0.447410 0.894329i \(-0.647654\pi\)
0.447410 0.894329i \(-0.352346\pi\)
\(564\) 0 0
\(565\) 307394.i 0.962937i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 597313. 1.84492 0.922459 0.386094i \(-0.126176\pi\)
0.922459 + 0.386094i \(0.126176\pi\)
\(570\) 0 0
\(571\) −248212. −0.761290 −0.380645 0.924721i \(-0.624298\pi\)
−0.380645 + 0.924721i \(0.624298\pi\)
\(572\) 0 0
\(573\) 270647.i 0.824315i
\(574\) 0 0
\(575\) 114012. 0.344839
\(576\) 0 0
\(577\) − 61117.3i − 0.183575i −0.995779 0.0917873i \(-0.970742\pi\)
0.995779 0.0917873i \(-0.0292580\pi\)
\(578\) 0 0
\(579\) 168716.i 0.503267i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −650951. −1.91519
\(584\) 0 0
\(585\) −2348.26 −0.00686173
\(586\) 0 0
\(587\) − 199552.i − 0.579136i −0.957157 0.289568i \(-0.906488\pi\)
0.957157 0.289568i \(-0.0935117\pi\)
\(588\) 0 0
\(589\) −275486. −0.794087
\(590\) 0 0
\(591\) 92652.1i 0.265265i
\(592\) 0 0
\(593\) 156539.i 0.445156i 0.974915 + 0.222578i \(0.0714473\pi\)
−0.974915 + 0.222578i \(0.928553\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 64840.0 0.181926
\(598\) 0 0
\(599\) −292624. −0.815561 −0.407781 0.913080i \(-0.633697\pi\)
−0.407781 + 0.913080i \(0.633697\pi\)
\(600\) 0 0
\(601\) − 71047.1i − 0.196697i −0.995152 0.0983485i \(-0.968644\pi\)
0.995152 0.0983485i \(-0.0313560\pi\)
\(602\) 0 0
\(603\) 2077.45 0.00571342
\(604\) 0 0
\(605\) − 205005.i − 0.560085i
\(606\) 0 0
\(607\) − 160393.i − 0.435318i −0.976025 0.217659i \(-0.930158\pi\)
0.976025 0.217659i \(-0.0698421\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −314245. −0.841756
\(612\) 0 0
\(613\) −67527.0 −0.179703 −0.0898517 0.995955i \(-0.528639\pi\)
−0.0898517 + 0.995955i \(0.528639\pi\)
\(614\) 0 0
\(615\) 219300.i 0.579815i
\(616\) 0 0
\(617\) −18373.7 −0.0482644 −0.0241322 0.999709i \(-0.507682\pi\)
−0.0241322 + 0.999709i \(0.507682\pi\)
\(618\) 0 0
\(619\) 591146.i 1.54281i 0.636342 + 0.771407i \(0.280447\pi\)
−0.636342 + 0.771407i \(0.719553\pi\)
\(620\) 0 0
\(621\) 242713.i 0.629375i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −487430. −1.24782
\(626\) 0 0
\(627\) −233020. −0.592733
\(628\) 0 0
\(629\) − 426316.i − 1.07753i
\(630\) 0 0
\(631\) −729341. −1.83177 −0.915887 0.401436i \(-0.868511\pi\)
−0.915887 + 0.401436i \(0.868511\pi\)
\(632\) 0 0
\(633\) − 560689.i − 1.39931i
\(634\) 0 0
\(635\) − 377699.i − 0.936695i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 413.455 0.00101257
\(640\) 0 0
\(641\) −233516. −0.568329 −0.284165 0.958775i \(-0.591716\pi\)
−0.284165 + 0.958775i \(0.591716\pi\)
\(642\) 0 0
\(643\) − 382516.i − 0.925184i −0.886571 0.462592i \(-0.846920\pi\)
0.886571 0.462592i \(-0.153080\pi\)
\(644\) 0 0
\(645\) 234768. 0.564313
\(646\) 0 0
\(647\) − 503696.i − 1.20326i −0.798775 0.601631i \(-0.794518\pi\)
0.798775 0.601631i \(-0.205482\pi\)
\(648\) 0 0
\(649\) − 642011.i − 1.52424i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 241430. 0.566193 0.283096 0.959091i \(-0.408638\pi\)
0.283096 + 0.959091i \(0.408638\pi\)
\(654\) 0 0
\(655\) −174836. −0.407519
\(656\) 0 0
\(657\) − 1327.09i − 0.00307446i
\(658\) 0 0
\(659\) −652340. −1.50211 −0.751057 0.660237i \(-0.770456\pi\)
−0.751057 + 0.660237i \(0.770456\pi\)
\(660\) 0 0
\(661\) 15508.0i 0.0354938i 0.999843 + 0.0177469i \(0.00564931\pi\)
−0.999843 + 0.0177469i \(0.994351\pi\)
\(662\) 0 0
\(663\) 354374.i 0.806184i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 463012. 1.04074
\(668\) 0 0
\(669\) −63687.6 −0.142299
\(670\) 0 0
\(671\) 379898.i 0.843765i
\(672\) 0 0
\(673\) 62603.2 0.138219 0.0691093 0.997609i \(-0.477984\pi\)
0.0691093 + 0.997609i \(0.477984\pi\)
\(674\) 0 0
\(675\) 248526.i 0.545462i
\(676\) 0 0
\(677\) 393281.i 0.858075i 0.903287 + 0.429038i \(0.141147\pi\)
−0.903287 + 0.429038i \(0.858853\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −352765. −0.760662
\(682\) 0 0
\(683\) −440410. −0.944096 −0.472048 0.881573i \(-0.656485\pi\)
−0.472048 + 0.881573i \(0.656485\pi\)
\(684\) 0 0
\(685\) − 926391.i − 1.97430i
\(686\) 0 0
\(687\) 3270.17 0.00692879
\(688\) 0 0
\(689\) − 937778.i − 1.97543i
\(690\) 0 0
\(691\) − 933893.i − 1.95588i −0.208897 0.977938i \(-0.566987\pi\)
0.208897 0.977938i \(-0.433013\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −487961. −1.01022
\(696\) 0 0
\(697\) 146345. 0.301239
\(698\) 0 0
\(699\) − 62024.1i − 0.126942i
\(700\) 0 0
\(701\) −903363. −1.83834 −0.919171 0.393860i \(-0.871140\pi\)
−0.919171 + 0.393860i \(0.871140\pi\)
\(702\) 0 0
\(703\) 403846.i 0.817157i
\(704\) 0 0
\(705\) − 419798.i − 0.844622i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 177182. 0.352474 0.176237 0.984348i \(-0.443607\pi\)
0.176237 + 0.984348i \(0.443607\pi\)
\(710\) 0 0
\(711\) 970.788 0.00192037
\(712\) 0 0
\(713\) 518523.i 1.01997i
\(714\) 0 0
\(715\) 951123. 1.86048
\(716\) 0 0
\(717\) 812876.i 1.58120i
\(718\) 0 0
\(719\) 670072.i 1.29618i 0.761565 + 0.648088i \(0.224431\pi\)
−0.761565 + 0.648088i \(0.775569\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −391251. −0.748478
\(724\) 0 0
\(725\) 474101. 0.901977
\(726\) 0 0
\(727\) 465279.i 0.880329i 0.897917 + 0.440164i \(0.145080\pi\)
−0.897917 + 0.440164i \(0.854920\pi\)
\(728\) 0 0
\(729\) −529060. −0.995519
\(730\) 0 0
\(731\) − 156667.i − 0.293185i
\(732\) 0 0
\(733\) 187934.i 0.349782i 0.984588 + 0.174891i \(0.0559574\pi\)
−0.984588 + 0.174891i \(0.944043\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −841438. −1.54913
\(738\) 0 0
\(739\) −216461. −0.396360 −0.198180 0.980166i \(-0.563503\pi\)
−0.198180 + 0.980166i \(0.563503\pi\)
\(740\) 0 0
\(741\) − 335696.i − 0.611377i
\(742\) 0 0
\(743\) −202338. −0.366521 −0.183261 0.983064i \(-0.558665\pi\)
−0.183261 + 0.983064i \(0.558665\pi\)
\(744\) 0 0
\(745\) 853672.i 1.53808i
\(746\) 0 0
\(747\) − 967.686i − 0.00173418i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −501585. −0.889334 −0.444667 0.895696i \(-0.646678\pi\)
−0.444667 + 0.895696i \(0.646678\pi\)
\(752\) 0 0
\(753\) 520636. 0.918215
\(754\) 0 0
\(755\) − 930942.i − 1.63316i
\(756\) 0 0
\(757\) −21535.3 −0.0375802 −0.0187901 0.999823i \(-0.505981\pi\)
−0.0187901 + 0.999823i \(0.505981\pi\)
\(758\) 0 0
\(759\) 438595.i 0.761342i
\(760\) 0 0
\(761\) 809136.i 1.39718i 0.715523 + 0.698589i \(0.246189\pi\)
−0.715523 + 0.698589i \(0.753811\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2093.41 −0.00357711
\(766\) 0 0
\(767\) 924899. 1.57218
\(768\) 0 0
\(769\) 356884.i 0.603496i 0.953388 + 0.301748i \(0.0975702\pi\)
−0.953388 + 0.301748i \(0.902430\pi\)
\(770\) 0 0
\(771\) −611510. −1.02871
\(772\) 0 0
\(773\) 195745.i 0.327591i 0.986494 + 0.163795i \(0.0523737\pi\)
−0.986494 + 0.163795i \(0.947626\pi\)
\(774\) 0 0
\(775\) 530942.i 0.883983i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −138631. −0.228447
\(780\) 0 0
\(781\) −167463. −0.274547
\(782\) 0 0
\(783\) 1.00928e6i 1.64622i
\(784\) 0 0
\(785\) 481631. 0.781583
\(786\) 0 0
\(787\) − 448355.i − 0.723890i −0.932199 0.361945i \(-0.882113\pi\)
0.932199 0.361945i \(-0.117887\pi\)
\(788\) 0 0
\(789\) − 61042.4i − 0.0980567i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −547291. −0.870306
\(794\) 0 0
\(795\) 1.25277e6 1.98215
\(796\) 0 0
\(797\) 536814.i 0.845099i 0.906340 + 0.422549i \(0.138865\pi\)
−0.906340 + 0.422549i \(0.861135\pi\)
\(798\) 0 0
\(799\) −280142. −0.438818
\(800\) 0 0
\(801\) − 2092.79i − 0.00326182i
\(802\) 0 0
\(803\) 537515.i 0.833603i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 758075. 1.16403
\(808\) 0 0
\(809\) −372528. −0.569196 −0.284598 0.958647i \(-0.591860\pi\)
−0.284598 + 0.958647i \(0.591860\pi\)
\(810\) 0 0
\(811\) − 559118.i − 0.850084i −0.905174 0.425042i \(-0.860259\pi\)
0.905174 0.425042i \(-0.139741\pi\)
\(812\) 0 0
\(813\) 351392. 0.531632
\(814\) 0 0
\(815\) 849994.i 1.27968i
\(816\) 0 0
\(817\) 148409.i 0.222339i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −343799. −0.510057 −0.255029 0.966934i \(-0.582085\pi\)
−0.255029 + 0.966934i \(0.582085\pi\)
\(822\) 0 0
\(823\) −51722.5 −0.0763624 −0.0381812 0.999271i \(-0.512156\pi\)
−0.0381812 + 0.999271i \(0.512156\pi\)
\(824\) 0 0
\(825\) 449099.i 0.659834i
\(826\) 0 0
\(827\) 1.27662e6 1.86659 0.933297 0.359105i \(-0.116918\pi\)
0.933297 + 0.359105i \(0.116918\pi\)
\(828\) 0 0
\(829\) 523547.i 0.761810i 0.924614 + 0.380905i \(0.124388\pi\)
−0.924614 + 0.380905i \(0.875612\pi\)
\(830\) 0 0
\(831\) 643866.i 0.932381i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −614178. −0.880889
\(836\) 0 0
\(837\) −1.13029e6 −1.61338
\(838\) 0 0
\(839\) − 1.14150e6i − 1.62163i −0.585303 0.810815i \(-0.699024\pi\)
0.585303 0.810815i \(-0.300976\pi\)
\(840\) 0 0
\(841\) 1.21808e6 1.72220
\(842\) 0 0
\(843\) − 521678.i − 0.734087i
\(844\) 0 0
\(845\) 482211.i 0.675342i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 910984. 1.26385
\(850\) 0 0
\(851\) 760125. 1.04961
\(852\) 0 0
\(853\) 587560.i 0.807521i 0.914865 + 0.403761i \(0.132297\pi\)
−0.914865 + 0.403761i \(0.867703\pi\)
\(854\) 0 0
\(855\) 1983.07 0.00271273
\(856\) 0 0
\(857\) 1.21968e6i 1.66067i 0.557266 + 0.830334i \(0.311850\pi\)
−0.557266 + 0.830334i \(0.688150\pi\)
\(858\) 0 0
\(859\) 836087.i 1.13309i 0.824030 + 0.566546i \(0.191721\pi\)
−0.824030 + 0.566546i \(0.808279\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 767175. 1.03008 0.515042 0.857165i \(-0.327776\pi\)
0.515042 + 0.857165i \(0.327776\pi\)
\(864\) 0 0
\(865\) −713451. −0.953525
\(866\) 0 0
\(867\) − 437441.i − 0.581945i
\(868\) 0 0
\(869\) −393202. −0.520686
\(870\) 0 0
\(871\) − 1.21220e6i − 1.59786i
\(872\) 0 0
\(873\) 2838.78i 0.00372480i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −493208. −0.641255 −0.320628 0.947205i \(-0.603894\pi\)
−0.320628 + 0.947205i \(0.603894\pi\)
\(878\) 0 0
\(879\) −1.20085e6 −1.55421
\(880\) 0 0
\(881\) − 549789.i − 0.708344i −0.935180 0.354172i \(-0.884763\pi\)
0.935180 0.354172i \(-0.115237\pi\)
\(882\) 0 0
\(883\) −177926. −0.228202 −0.114101 0.993469i \(-0.536399\pi\)
−0.114101 + 0.993469i \(0.536399\pi\)
\(884\) 0 0
\(885\) 1.23557e6i 1.57754i
\(886\) 0 0
\(887\) 26842.7i 0.0341176i 0.999854 + 0.0170588i \(0.00543025\pi\)
−0.999854 + 0.0170588i \(0.994570\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −960303. −1.20963
\(892\) 0 0
\(893\) 265376. 0.332781
\(894\) 0 0
\(895\) 437740.i 0.546475i
\(896\) 0 0
\(897\) −631851. −0.785290
\(898\) 0 0
\(899\) 2.15619e6i 2.66789i
\(900\) 0 0
\(901\) − 836005.i − 1.02982i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −377187. −0.460532
\(906\) 0 0
\(907\) −1.22924e6 −1.49424 −0.747122 0.664687i \(-0.768565\pi\)
−0.747122 + 0.664687i \(0.768565\pi\)
\(908\) 0 0
\(909\) 2849.98i 0.00344917i
\(910\) 0 0
\(911\) 701772. 0.845589 0.422794 0.906226i \(-0.361049\pi\)
0.422794 + 0.906226i \(0.361049\pi\)
\(912\) 0 0
\(913\) 391945.i 0.470201i
\(914\) 0 0
\(915\) − 731122.i − 0.873268i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.51023e6 −1.78819 −0.894094 0.447879i \(-0.852180\pi\)
−0.894094 + 0.447879i \(0.852180\pi\)
\(920\) 0 0
\(921\) −69158.9 −0.0815322
\(922\) 0 0
\(923\) − 241252.i − 0.283183i
\(924\) 0 0
\(925\) 778331. 0.909664
\(926\) 0 0
\(927\) − 614.720i 0 0.000715349i
\(928\) 0 0
\(929\) 927981.i 1.07525i 0.843186 + 0.537623i \(0.180677\pi\)
−0.843186 + 0.537623i \(0.819323\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −14839.8 −0.0170477
\(934\) 0 0
\(935\) 847902. 0.969890
\(936\) 0 0
\(937\) − 902133.i − 1.02752i −0.857933 0.513761i \(-0.828252\pi\)
0.857933 0.513761i \(-0.171748\pi\)
\(938\) 0 0
\(939\) 1.01107e6 1.14670
\(940\) 0 0
\(941\) − 878615.i − 0.992246i −0.868252 0.496123i \(-0.834756\pi\)
0.868252 0.496123i \(-0.165244\pi\)
\(942\) 0 0
\(943\) 260934.i 0.293431i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.44236e6 1.60832 0.804162 0.594410i \(-0.202614\pi\)
0.804162 + 0.594410i \(0.202614\pi\)
\(948\) 0 0
\(949\) −774358. −0.859824
\(950\) 0 0
\(951\) − 30329.1i − 0.0335350i
\(952\) 0 0
\(953\) −524371. −0.577368 −0.288684 0.957424i \(-0.593218\pi\)
−0.288684 + 0.957424i \(0.593218\pi\)
\(954\) 0 0
\(955\) 932907.i 1.02290i
\(956\) 0 0
\(957\) 1.82382e6i 1.99140i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.49118e6 −1.61467
\(962\) 0 0
\(963\) 1924.77 0.00207551
\(964\) 0 0
\(965\) 581556.i 0.624507i
\(966\) 0 0
\(967\) −1.40754e6 −1.50525 −0.752624 0.658450i \(-0.771212\pi\)
−0.752624 + 0.658450i \(0.771212\pi\)
\(968\) 0 0
\(969\) − 299264.i − 0.318718i
\(970\) 0 0
\(971\) 375089.i 0.397828i 0.980017 + 0.198914i \(0.0637415\pi\)
−0.980017 + 0.198914i \(0.936259\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −646985. −0.680589
\(976\) 0 0
\(977\) 1.29938e6 1.36128 0.680640 0.732618i \(-0.261702\pi\)
0.680640 + 0.732618i \(0.261702\pi\)
\(978\) 0 0
\(979\) 847650.i 0.884405i
\(980\) 0 0
\(981\) −7564.57 −0.00786043
\(982\) 0 0
\(983\) − 800216.i − 0.828133i −0.910247 0.414067i \(-0.864108\pi\)
0.910247 0.414067i \(-0.135892\pi\)
\(984\) 0 0
\(985\) 319368.i 0.329169i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 279338. 0.285586
\(990\) 0 0
\(991\) −923241. −0.940086 −0.470043 0.882643i \(-0.655762\pi\)
−0.470043 + 0.882643i \(0.655762\pi\)
\(992\) 0 0
\(993\) − 784465.i − 0.795564i
\(994\) 0 0
\(995\) 223501. 0.225752
\(996\) 0 0
\(997\) − 704626.i − 0.708872i −0.935080 0.354436i \(-0.884673\pi\)
0.935080 0.354436i \(-0.115327\pi\)
\(998\) 0 0
\(999\) 1.65694e6i 1.66025i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.5.c.e.97.2 6
4.3 odd 2 196.5.b.a.97.5 6
7.2 even 3 112.5.s.c.17.3 6
7.3 odd 6 112.5.s.c.33.3 6
7.6 odd 2 inner 784.5.c.e.97.5 6
28.3 even 6 28.5.h.a.5.1 6
28.11 odd 6 196.5.h.c.117.3 6
28.19 even 6 196.5.h.c.129.3 6
28.23 odd 6 28.5.h.a.17.1 yes 6
28.27 even 2 196.5.b.a.97.2 6
84.23 even 6 252.5.z.f.73.3 6
84.59 odd 6 252.5.z.f.145.3 6
140.3 odd 12 700.5.o.a.649.2 12
140.23 even 12 700.5.o.a.549.5 12
140.59 even 6 700.5.s.a.201.3 6
140.79 odd 6 700.5.s.a.101.3 6
140.87 odd 12 700.5.o.a.649.5 12
140.107 even 12 700.5.o.a.549.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.5.h.a.5.1 6 28.3 even 6
28.5.h.a.17.1 yes 6 28.23 odd 6
112.5.s.c.17.3 6 7.2 even 3
112.5.s.c.33.3 6 7.3 odd 6
196.5.b.a.97.2 6 28.27 even 2
196.5.b.a.97.5 6 4.3 odd 2
196.5.h.c.117.3 6 28.11 odd 6
196.5.h.c.129.3 6 28.19 even 6
252.5.z.f.73.3 6 84.23 even 6
252.5.z.f.145.3 6 84.59 odd 6
700.5.o.a.549.2 12 140.107 even 12
700.5.o.a.549.5 12 140.23 even 12
700.5.o.a.649.2 12 140.3 odd 12
700.5.o.a.649.5 12 140.87 odd 12
700.5.s.a.101.3 6 140.79 odd 6
700.5.s.a.201.3 6 140.59 even 6
784.5.c.e.97.2 6 1.1 even 1 trivial
784.5.c.e.97.5 6 7.6 odd 2 inner