Properties

Label 280.4.a.f.1.3
Level $280$
Weight $4$
Character 280.1
Self dual yes
Analytic conductor $16.521$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [280,4,Mod(1,280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("280.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.5205348016\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.11045.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 31x - 54 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(6.76369\) of defining polynomial
Character \(\chi\) \(=\) 280.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.45643 q^{3} -5.00000 q^{5} +7.00000 q^{7} -15.0531 q^{9} -51.8821 q^{11} -5.91120 q^{13} -17.2821 q^{15} -103.850 q^{17} +118.470 q^{19} +24.1950 q^{21} -80.7029 q^{23} +25.0000 q^{25} -145.354 q^{27} -218.344 q^{29} +39.2738 q^{31} -179.327 q^{33} -35.0000 q^{35} +159.803 q^{37} -20.4316 q^{39} +233.322 q^{41} -524.515 q^{43} +75.2655 q^{45} -210.441 q^{47} +49.0000 q^{49} -358.949 q^{51} +348.028 q^{53} +259.411 q^{55} +409.485 q^{57} -85.1752 q^{59} -801.720 q^{61} -105.372 q^{63} +29.5560 q^{65} +716.049 q^{67} -278.944 q^{69} -520.412 q^{71} +230.005 q^{73} +86.4107 q^{75} -363.175 q^{77} -970.534 q^{79} -95.9705 q^{81} -1109.38 q^{83} +519.249 q^{85} -754.689 q^{87} +1127.45 q^{89} -41.3784 q^{91} +135.747 q^{93} -592.352 q^{95} +1136.37 q^{97} +780.987 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{3} - 15 q^{5} + 21 q^{7} + 25 q^{9} - 6 q^{11} + 8 q^{13} + 30 q^{15} - 52 q^{17} - 152 q^{19} - 42 q^{21} - 48 q^{23} + 75 q^{25} - 546 q^{27} - 468 q^{29} - 268 q^{31} - 82 q^{33} - 105 q^{35}+ \cdots - 1272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.45643 0.665190 0.332595 0.943070i \(-0.392076\pi\)
0.332595 + 0.943070i \(0.392076\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) −15.0531 −0.557522
\(10\) 0 0
\(11\) −51.8821 −1.42210 −0.711048 0.703144i \(-0.751779\pi\)
−0.711048 + 0.703144i \(0.751779\pi\)
\(12\) 0 0
\(13\) −5.91120 −0.126113 −0.0630566 0.998010i \(-0.520085\pi\)
−0.0630566 + 0.998010i \(0.520085\pi\)
\(14\) 0 0
\(15\) −17.2821 −0.297482
\(16\) 0 0
\(17\) −103.850 −1.48160 −0.740802 0.671724i \(-0.765554\pi\)
−0.740802 + 0.671724i \(0.765554\pi\)
\(18\) 0 0
\(19\) 118.470 1.43047 0.715236 0.698883i \(-0.246319\pi\)
0.715236 + 0.698883i \(0.246319\pi\)
\(20\) 0 0
\(21\) 24.1950 0.251418
\(22\) 0 0
\(23\) −80.7029 −0.731640 −0.365820 0.930686i \(-0.619211\pi\)
−0.365820 + 0.930686i \(0.619211\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −145.354 −1.03605
\(28\) 0 0
\(29\) −218.344 −1.39812 −0.699058 0.715065i \(-0.746397\pi\)
−0.699058 + 0.715065i \(0.746397\pi\)
\(30\) 0 0
\(31\) 39.2738 0.227541 0.113771 0.993507i \(-0.463707\pi\)
0.113771 + 0.993507i \(0.463707\pi\)
\(32\) 0 0
\(33\) −179.327 −0.945964
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 159.803 0.710040 0.355020 0.934859i \(-0.384474\pi\)
0.355020 + 0.934859i \(0.384474\pi\)
\(38\) 0 0
\(39\) −20.4316 −0.0838892
\(40\) 0 0
\(41\) 233.322 0.888750 0.444375 0.895841i \(-0.353426\pi\)
0.444375 + 0.895841i \(0.353426\pi\)
\(42\) 0 0
\(43\) −524.515 −1.86018 −0.930091 0.367329i \(-0.880272\pi\)
−0.930091 + 0.367329i \(0.880272\pi\)
\(44\) 0 0
\(45\) 75.2655 0.249332
\(46\) 0 0
\(47\) −210.441 −0.653105 −0.326552 0.945179i \(-0.605887\pi\)
−0.326552 + 0.945179i \(0.605887\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −358.949 −0.985548
\(52\) 0 0
\(53\) 348.028 0.901987 0.450994 0.892527i \(-0.351070\pi\)
0.450994 + 0.892527i \(0.351070\pi\)
\(54\) 0 0
\(55\) 259.411 0.635980
\(56\) 0 0
\(57\) 409.485 0.951536
\(58\) 0 0
\(59\) −85.1752 −0.187947 −0.0939735 0.995575i \(-0.529957\pi\)
−0.0939735 + 0.995575i \(0.529957\pi\)
\(60\) 0 0
\(61\) −801.720 −1.68278 −0.841391 0.540427i \(-0.818263\pi\)
−0.841391 + 0.540427i \(0.818263\pi\)
\(62\) 0 0
\(63\) −105.372 −0.210724
\(64\) 0 0
\(65\) 29.5560 0.0563995
\(66\) 0 0
\(67\) 716.049 1.30566 0.652831 0.757504i \(-0.273581\pi\)
0.652831 + 0.757504i \(0.273581\pi\)
\(68\) 0 0
\(69\) −278.944 −0.486679
\(70\) 0 0
\(71\) −520.412 −0.869880 −0.434940 0.900459i \(-0.643230\pi\)
−0.434940 + 0.900459i \(0.643230\pi\)
\(72\) 0 0
\(73\) 230.005 0.368768 0.184384 0.982854i \(-0.440971\pi\)
0.184384 + 0.982854i \(0.440971\pi\)
\(74\) 0 0
\(75\) 86.4107 0.133038
\(76\) 0 0
\(77\) −363.175 −0.537502
\(78\) 0 0
\(79\) −970.534 −1.38220 −0.691099 0.722760i \(-0.742873\pi\)
−0.691099 + 0.722760i \(0.742873\pi\)
\(80\) 0 0
\(81\) −95.9705 −0.131647
\(82\) 0 0
\(83\) −1109.38 −1.46711 −0.733555 0.679630i \(-0.762140\pi\)
−0.733555 + 0.679630i \(0.762140\pi\)
\(84\) 0 0
\(85\) 519.249 0.662593
\(86\) 0 0
\(87\) −754.689 −0.930013
\(88\) 0 0
\(89\) 1127.45 1.34280 0.671401 0.741094i \(-0.265693\pi\)
0.671401 + 0.741094i \(0.265693\pi\)
\(90\) 0 0
\(91\) −41.3784 −0.0476663
\(92\) 0 0
\(93\) 135.747 0.151358
\(94\) 0 0
\(95\) −592.352 −0.639727
\(96\) 0 0
\(97\) 1136.37 1.18950 0.594748 0.803912i \(-0.297252\pi\)
0.594748 + 0.803912i \(0.297252\pi\)
\(98\) 0 0
\(99\) 780.987 0.792850
\(100\) 0 0
\(101\) 858.838 0.846115 0.423057 0.906103i \(-0.360957\pi\)
0.423057 + 0.906103i \(0.360957\pi\)
\(102\) 0 0
\(103\) −348.379 −0.333270 −0.166635 0.986019i \(-0.553290\pi\)
−0.166635 + 0.986019i \(0.553290\pi\)
\(104\) 0 0
\(105\) −120.975 −0.112438
\(106\) 0 0
\(107\) 1860.54 1.68098 0.840490 0.541828i \(-0.182267\pi\)
0.840490 + 0.541828i \(0.182267\pi\)
\(108\) 0 0
\(109\) 1213.61 1.06645 0.533224 0.845974i \(-0.320980\pi\)
0.533224 + 0.845974i \(0.320980\pi\)
\(110\) 0 0
\(111\) 552.349 0.472312
\(112\) 0 0
\(113\) −267.531 −0.222718 −0.111359 0.993780i \(-0.535520\pi\)
−0.111359 + 0.993780i \(0.535520\pi\)
\(114\) 0 0
\(115\) 403.514 0.327199
\(116\) 0 0
\(117\) 88.9819 0.0703109
\(118\) 0 0
\(119\) −726.948 −0.559994
\(120\) 0 0
\(121\) 1360.76 1.02236
\(122\) 0 0
\(123\) 806.460 0.591188
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −712.388 −0.497750 −0.248875 0.968536i \(-0.580061\pi\)
−0.248875 + 0.968536i \(0.580061\pi\)
\(128\) 0 0
\(129\) −1812.95 −1.23737
\(130\) 0 0
\(131\) 746.364 0.497787 0.248894 0.968531i \(-0.419933\pi\)
0.248894 + 0.968531i \(0.419933\pi\)
\(132\) 0 0
\(133\) 829.293 0.540668
\(134\) 0 0
\(135\) 726.768 0.463335
\(136\) 0 0
\(137\) 2612.55 1.62924 0.814619 0.579996i \(-0.196946\pi\)
0.814619 + 0.579996i \(0.196946\pi\)
\(138\) 0 0
\(139\) 637.320 0.388898 0.194449 0.980913i \(-0.437708\pi\)
0.194449 + 0.980913i \(0.437708\pi\)
\(140\) 0 0
\(141\) −727.373 −0.434439
\(142\) 0 0
\(143\) 306.686 0.179345
\(144\) 0 0
\(145\) 1091.72 0.625257
\(146\) 0 0
\(147\) 169.365 0.0950271
\(148\) 0 0
\(149\) −2151.92 −1.18317 −0.591585 0.806242i \(-0.701498\pi\)
−0.591585 + 0.806242i \(0.701498\pi\)
\(150\) 0 0
\(151\) 1685.18 0.908201 0.454101 0.890950i \(-0.349961\pi\)
0.454101 + 0.890950i \(0.349961\pi\)
\(152\) 0 0
\(153\) 1563.26 0.826027
\(154\) 0 0
\(155\) −196.369 −0.101760
\(156\) 0 0
\(157\) 1139.31 0.579150 0.289575 0.957155i \(-0.406486\pi\)
0.289575 + 0.957155i \(0.406486\pi\)
\(158\) 0 0
\(159\) 1202.93 0.599993
\(160\) 0 0
\(161\) −564.920 −0.276534
\(162\) 0 0
\(163\) −1758.81 −0.845156 −0.422578 0.906327i \(-0.638875\pi\)
−0.422578 + 0.906327i \(0.638875\pi\)
\(164\) 0 0
\(165\) 896.634 0.423048
\(166\) 0 0
\(167\) 2350.50 1.08915 0.544573 0.838713i \(-0.316692\pi\)
0.544573 + 0.838713i \(0.316692\pi\)
\(168\) 0 0
\(169\) −2162.06 −0.984095
\(170\) 0 0
\(171\) −1783.35 −0.797520
\(172\) 0 0
\(173\) −2403.94 −1.05646 −0.528231 0.849100i \(-0.677145\pi\)
−0.528231 + 0.849100i \(0.677145\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) 0 0
\(177\) −294.402 −0.125020
\(178\) 0 0
\(179\) −3361.51 −1.40364 −0.701819 0.712355i \(-0.747628\pi\)
−0.701819 + 0.712355i \(0.747628\pi\)
\(180\) 0 0
\(181\) −4681.04 −1.92231 −0.961156 0.276004i \(-0.910990\pi\)
−0.961156 + 0.276004i \(0.910990\pi\)
\(182\) 0 0
\(183\) −2771.09 −1.11937
\(184\) 0 0
\(185\) −799.016 −0.317540
\(186\) 0 0
\(187\) 5387.95 2.10698
\(188\) 0 0
\(189\) −1017.47 −0.391589
\(190\) 0 0
\(191\) 2375.90 0.900075 0.450037 0.893010i \(-0.351411\pi\)
0.450037 + 0.893010i \(0.351411\pi\)
\(192\) 0 0
\(193\) 4940.87 1.84275 0.921377 0.388670i \(-0.127065\pi\)
0.921377 + 0.388670i \(0.127065\pi\)
\(194\) 0 0
\(195\) 102.158 0.0375164
\(196\) 0 0
\(197\) 1335.30 0.482926 0.241463 0.970410i \(-0.422373\pi\)
0.241463 + 0.970410i \(0.422373\pi\)
\(198\) 0 0
\(199\) −2235.61 −0.796374 −0.398187 0.917304i \(-0.630360\pi\)
−0.398187 + 0.917304i \(0.630360\pi\)
\(200\) 0 0
\(201\) 2474.97 0.868513
\(202\) 0 0
\(203\) −1528.40 −0.528438
\(204\) 0 0
\(205\) −1166.61 −0.397461
\(206\) 0 0
\(207\) 1214.83 0.407905
\(208\) 0 0
\(209\) −6146.50 −2.03427
\(210\) 0 0
\(211\) −875.868 −0.285769 −0.142884 0.989739i \(-0.545638\pi\)
−0.142884 + 0.989739i \(0.545638\pi\)
\(212\) 0 0
\(213\) −1798.77 −0.578636
\(214\) 0 0
\(215\) 2622.58 0.831899
\(216\) 0 0
\(217\) 274.917 0.0860025
\(218\) 0 0
\(219\) 794.995 0.245300
\(220\) 0 0
\(221\) 613.877 0.186850
\(222\) 0 0
\(223\) −3950.23 −1.18622 −0.593110 0.805122i \(-0.702100\pi\)
−0.593110 + 0.805122i \(0.702100\pi\)
\(224\) 0 0
\(225\) −376.328 −0.111504
\(226\) 0 0
\(227\) −2254.32 −0.659138 −0.329569 0.944132i \(-0.606903\pi\)
−0.329569 + 0.944132i \(0.606903\pi\)
\(228\) 0 0
\(229\) −3680.17 −1.06198 −0.530988 0.847379i \(-0.678179\pi\)
−0.530988 + 0.847379i \(0.678179\pi\)
\(230\) 0 0
\(231\) −1255.29 −0.357541
\(232\) 0 0
\(233\) −1109.74 −0.312024 −0.156012 0.987755i \(-0.549864\pi\)
−0.156012 + 0.987755i \(0.549864\pi\)
\(234\) 0 0
\(235\) 1052.20 0.292077
\(236\) 0 0
\(237\) −3354.58 −0.919424
\(238\) 0 0
\(239\) 1079.71 0.292220 0.146110 0.989268i \(-0.453325\pi\)
0.146110 + 0.989268i \(0.453325\pi\)
\(240\) 0 0
\(241\) 81.1127 0.0216802 0.0108401 0.999941i \(-0.496549\pi\)
0.0108401 + 0.999941i \(0.496549\pi\)
\(242\) 0 0
\(243\) 3592.83 0.948478
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −700.302 −0.180402
\(248\) 0 0
\(249\) −3834.49 −0.975907
\(250\) 0 0
\(251\) −2193.90 −0.551704 −0.275852 0.961200i \(-0.588960\pi\)
−0.275852 + 0.961200i \(0.588960\pi\)
\(252\) 0 0
\(253\) 4187.04 1.04046
\(254\) 0 0
\(255\) 1794.75 0.440750
\(256\) 0 0
\(257\) −3933.07 −0.954623 −0.477312 0.878734i \(-0.658389\pi\)
−0.477312 + 0.878734i \(0.658389\pi\)
\(258\) 0 0
\(259\) 1118.62 0.268370
\(260\) 0 0
\(261\) 3286.75 0.779481
\(262\) 0 0
\(263\) 497.852 0.116726 0.0583629 0.998295i \(-0.481412\pi\)
0.0583629 + 0.998295i \(0.481412\pi\)
\(264\) 0 0
\(265\) −1740.14 −0.403381
\(266\) 0 0
\(267\) 3896.95 0.893219
\(268\) 0 0
\(269\) −7672.17 −1.73896 −0.869481 0.493967i \(-0.835546\pi\)
−0.869481 + 0.493967i \(0.835546\pi\)
\(270\) 0 0
\(271\) −3392.88 −0.760526 −0.380263 0.924878i \(-0.624167\pi\)
−0.380263 + 0.924878i \(0.624167\pi\)
\(272\) 0 0
\(273\) −143.021 −0.0317072
\(274\) 0 0
\(275\) −1297.05 −0.284419
\(276\) 0 0
\(277\) 2314.21 0.501975 0.250988 0.967990i \(-0.419245\pi\)
0.250988 + 0.967990i \(0.419245\pi\)
\(278\) 0 0
\(279\) −591.192 −0.126859
\(280\) 0 0
\(281\) −3604.79 −0.765280 −0.382640 0.923897i \(-0.624985\pi\)
−0.382640 + 0.923897i \(0.624985\pi\)
\(282\) 0 0
\(283\) −2304.38 −0.484032 −0.242016 0.970272i \(-0.577809\pi\)
−0.242016 + 0.970272i \(0.577809\pi\)
\(284\) 0 0
\(285\) −2047.42 −0.425540
\(286\) 0 0
\(287\) 1633.25 0.335916
\(288\) 0 0
\(289\) 5871.77 1.19515
\(290\) 0 0
\(291\) 3927.79 0.791241
\(292\) 0 0
\(293\) −6680.29 −1.33197 −0.665984 0.745966i \(-0.731988\pi\)
−0.665984 + 0.745966i \(0.731988\pi\)
\(294\) 0 0
\(295\) 425.876 0.0840524
\(296\) 0 0
\(297\) 7541.25 1.47336
\(298\) 0 0
\(299\) 477.051 0.0922694
\(300\) 0 0
\(301\) −3671.61 −0.703083
\(302\) 0 0
\(303\) 2968.51 0.562827
\(304\) 0 0
\(305\) 4008.60 0.752563
\(306\) 0 0
\(307\) −3532.96 −0.656798 −0.328399 0.944539i \(-0.606509\pi\)
−0.328399 + 0.944539i \(0.606509\pi\)
\(308\) 0 0
\(309\) −1204.15 −0.221688
\(310\) 0 0
\(311\) −7713.50 −1.40641 −0.703204 0.710989i \(-0.748248\pi\)
−0.703204 + 0.710989i \(0.748248\pi\)
\(312\) 0 0
\(313\) 5776.97 1.04324 0.521619 0.853178i \(-0.325328\pi\)
0.521619 + 0.853178i \(0.325328\pi\)
\(314\) 0 0
\(315\) 526.859 0.0942385
\(316\) 0 0
\(317\) 2879.80 0.510239 0.255120 0.966910i \(-0.417885\pi\)
0.255120 + 0.966910i \(0.417885\pi\)
\(318\) 0 0
\(319\) 11328.1 1.98826
\(320\) 0 0
\(321\) 6430.81 1.11817
\(322\) 0 0
\(323\) −12303.1 −2.11939
\(324\) 0 0
\(325\) −147.780 −0.0252226
\(326\) 0 0
\(327\) 4194.76 0.709391
\(328\) 0 0
\(329\) −1473.08 −0.246850
\(330\) 0 0
\(331\) −2784.80 −0.462437 −0.231218 0.972902i \(-0.574271\pi\)
−0.231218 + 0.972902i \(0.574271\pi\)
\(332\) 0 0
\(333\) −2405.53 −0.395863
\(334\) 0 0
\(335\) −3580.25 −0.583910
\(336\) 0 0
\(337\) 2009.52 0.324824 0.162412 0.986723i \(-0.448073\pi\)
0.162412 + 0.986723i \(0.448073\pi\)
\(338\) 0 0
\(339\) −924.701 −0.148150
\(340\) 0 0
\(341\) −2037.61 −0.323586
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 1394.72 0.217650
\(346\) 0 0
\(347\) 5117.20 0.791659 0.395829 0.918324i \(-0.370457\pi\)
0.395829 + 0.918324i \(0.370457\pi\)
\(348\) 0 0
\(349\) −9330.98 −1.43116 −0.715581 0.698530i \(-0.753838\pi\)
−0.715581 + 0.698530i \(0.753838\pi\)
\(350\) 0 0
\(351\) 859.214 0.130659
\(352\) 0 0
\(353\) −1549.68 −0.233657 −0.116829 0.993152i \(-0.537273\pi\)
−0.116829 + 0.993152i \(0.537273\pi\)
\(354\) 0 0
\(355\) 2602.06 0.389022
\(356\) 0 0
\(357\) −2512.64 −0.372502
\(358\) 0 0
\(359\) 9513.09 1.39856 0.699278 0.714850i \(-0.253505\pi\)
0.699278 + 0.714850i \(0.253505\pi\)
\(360\) 0 0
\(361\) 7176.25 1.04625
\(362\) 0 0
\(363\) 4703.35 0.680061
\(364\) 0 0
\(365\) −1150.02 −0.164918
\(366\) 0 0
\(367\) −6441.14 −0.916144 −0.458072 0.888915i \(-0.651460\pi\)
−0.458072 + 0.888915i \(0.651460\pi\)
\(368\) 0 0
\(369\) −3512.22 −0.495498
\(370\) 0 0
\(371\) 2436.20 0.340919
\(372\) 0 0
\(373\) −7428.14 −1.03114 −0.515569 0.856848i \(-0.672419\pi\)
−0.515569 + 0.856848i \(0.672419\pi\)
\(374\) 0 0
\(375\) −432.054 −0.0594964
\(376\) 0 0
\(377\) 1290.67 0.176321
\(378\) 0 0
\(379\) −10369.5 −1.40539 −0.702696 0.711491i \(-0.748020\pi\)
−0.702696 + 0.711491i \(0.748020\pi\)
\(380\) 0 0
\(381\) −2462.32 −0.331098
\(382\) 0 0
\(383\) 5924.21 0.790374 0.395187 0.918601i \(-0.370680\pi\)
0.395187 + 0.918601i \(0.370680\pi\)
\(384\) 0 0
\(385\) 1815.87 0.240378
\(386\) 0 0
\(387\) 7895.58 1.03709
\(388\) 0 0
\(389\) 1330.48 0.173413 0.0867067 0.996234i \(-0.472366\pi\)
0.0867067 + 0.996234i \(0.472366\pi\)
\(390\) 0 0
\(391\) 8380.97 1.08400
\(392\) 0 0
\(393\) 2579.75 0.331123
\(394\) 0 0
\(395\) 4852.67 0.618137
\(396\) 0 0
\(397\) 10355.1 1.30909 0.654544 0.756023i \(-0.272860\pi\)
0.654544 + 0.756023i \(0.272860\pi\)
\(398\) 0 0
\(399\) 2866.39 0.359647
\(400\) 0 0
\(401\) 3844.38 0.478751 0.239376 0.970927i \(-0.423057\pi\)
0.239376 + 0.970927i \(0.423057\pi\)
\(402\) 0 0
\(403\) −232.155 −0.0286960
\(404\) 0 0
\(405\) 479.852 0.0588742
\(406\) 0 0
\(407\) −8290.93 −1.00975
\(408\) 0 0
\(409\) 8351.01 1.00961 0.504805 0.863233i \(-0.331564\pi\)
0.504805 + 0.863233i \(0.331564\pi\)
\(410\) 0 0
\(411\) 9030.11 1.08375
\(412\) 0 0
\(413\) −596.227 −0.0710373
\(414\) 0 0
\(415\) 5546.89 0.656112
\(416\) 0 0
\(417\) 2202.85 0.258691
\(418\) 0 0
\(419\) −1966.13 −0.229240 −0.114620 0.993409i \(-0.536565\pi\)
−0.114620 + 0.993409i \(0.536565\pi\)
\(420\) 0 0
\(421\) 12154.0 1.40700 0.703501 0.710694i \(-0.251619\pi\)
0.703501 + 0.710694i \(0.251619\pi\)
\(422\) 0 0
\(423\) 3167.78 0.364120
\(424\) 0 0
\(425\) −2596.24 −0.296321
\(426\) 0 0
\(427\) −5612.04 −0.636032
\(428\) 0 0
\(429\) 1060.04 0.119299
\(430\) 0 0
\(431\) −15045.0 −1.68143 −0.840713 0.541481i \(-0.817864\pi\)
−0.840713 + 0.541481i \(0.817864\pi\)
\(432\) 0 0
\(433\) 1945.75 0.215950 0.107975 0.994154i \(-0.465563\pi\)
0.107975 + 0.994154i \(0.465563\pi\)
\(434\) 0 0
\(435\) 3773.44 0.415915
\(436\) 0 0
\(437\) −9560.91 −1.04659
\(438\) 0 0
\(439\) 8484.35 0.922405 0.461203 0.887295i \(-0.347418\pi\)
0.461203 + 0.887295i \(0.347418\pi\)
\(440\) 0 0
\(441\) −737.602 −0.0796460
\(442\) 0 0
\(443\) −14875.3 −1.59537 −0.797683 0.603078i \(-0.793941\pi\)
−0.797683 + 0.603078i \(0.793941\pi\)
\(444\) 0 0
\(445\) −5637.25 −0.600519
\(446\) 0 0
\(447\) −7437.97 −0.787033
\(448\) 0 0
\(449\) 17995.8 1.89148 0.945742 0.324918i \(-0.105337\pi\)
0.945742 + 0.324918i \(0.105337\pi\)
\(450\) 0 0
\(451\) −12105.2 −1.26389
\(452\) 0 0
\(453\) 5824.72 0.604126
\(454\) 0 0
\(455\) 206.892 0.0213170
\(456\) 0 0
\(457\) 4243.31 0.434340 0.217170 0.976134i \(-0.430317\pi\)
0.217170 + 0.976134i \(0.430317\pi\)
\(458\) 0 0
\(459\) 15094.9 1.53501
\(460\) 0 0
\(461\) −11234.8 −1.13504 −0.567522 0.823358i \(-0.692098\pi\)
−0.567522 + 0.823358i \(0.692098\pi\)
\(462\) 0 0
\(463\) −226.775 −0.0227627 −0.0113814 0.999935i \(-0.503623\pi\)
−0.0113814 + 0.999935i \(0.503623\pi\)
\(464\) 0 0
\(465\) −678.735 −0.0676895
\(466\) 0 0
\(467\) −11886.0 −1.17777 −0.588885 0.808217i \(-0.700433\pi\)
−0.588885 + 0.808217i \(0.700433\pi\)
\(468\) 0 0
\(469\) 5012.35 0.493494
\(470\) 0 0
\(471\) 3937.93 0.385245
\(472\) 0 0
\(473\) 27213.0 2.64536
\(474\) 0 0
\(475\) 2961.76 0.286095
\(476\) 0 0
\(477\) −5238.90 −0.502878
\(478\) 0 0
\(479\) 5052.68 0.481969 0.240984 0.970529i \(-0.422530\pi\)
0.240984 + 0.970529i \(0.422530\pi\)
\(480\) 0 0
\(481\) −944.629 −0.0895455
\(482\) 0 0
\(483\) −1952.61 −0.183948
\(484\) 0 0
\(485\) −5681.86 −0.531959
\(486\) 0 0
\(487\) 3987.21 0.371001 0.185501 0.982644i \(-0.440609\pi\)
0.185501 + 0.982644i \(0.440609\pi\)
\(488\) 0 0
\(489\) −6079.19 −0.562189
\(490\) 0 0
\(491\) −4969.66 −0.456777 −0.228389 0.973570i \(-0.573346\pi\)
−0.228389 + 0.973570i \(0.573346\pi\)
\(492\) 0 0
\(493\) 22674.9 2.07145
\(494\) 0 0
\(495\) −3904.93 −0.354573
\(496\) 0 0
\(497\) −3642.88 −0.328784
\(498\) 0 0
\(499\) 11651.2 1.04525 0.522625 0.852562i \(-0.324953\pi\)
0.522625 + 0.852562i \(0.324953\pi\)
\(500\) 0 0
\(501\) 8124.35 0.724490
\(502\) 0 0
\(503\) 1024.77 0.0908398 0.0454199 0.998968i \(-0.485537\pi\)
0.0454199 + 0.998968i \(0.485537\pi\)
\(504\) 0 0
\(505\) −4294.19 −0.378394
\(506\) 0 0
\(507\) −7473.00 −0.654610
\(508\) 0 0
\(509\) −6350.40 −0.552999 −0.276500 0.961014i \(-0.589174\pi\)
−0.276500 + 0.961014i \(0.589174\pi\)
\(510\) 0 0
\(511\) 1610.03 0.139381
\(512\) 0 0
\(513\) −17220.1 −1.48204
\(514\) 0 0
\(515\) 1741.89 0.149043
\(516\) 0 0
\(517\) 10918.1 0.928778
\(518\) 0 0
\(519\) −8309.04 −0.702749
\(520\) 0 0
\(521\) 11664.5 0.980864 0.490432 0.871479i \(-0.336839\pi\)
0.490432 + 0.871479i \(0.336839\pi\)
\(522\) 0 0
\(523\) 2475.61 0.206980 0.103490 0.994630i \(-0.466999\pi\)
0.103490 + 0.994630i \(0.466999\pi\)
\(524\) 0 0
\(525\) 604.875 0.0502836
\(526\) 0 0
\(527\) −4078.57 −0.337126
\(528\) 0 0
\(529\) −5654.05 −0.464703
\(530\) 0 0
\(531\) 1282.15 0.104785
\(532\) 0 0
\(533\) −1379.21 −0.112083
\(534\) 0 0
\(535\) −9302.68 −0.751757
\(536\) 0 0
\(537\) −11618.8 −0.933686
\(538\) 0 0
\(539\) −2542.22 −0.203157
\(540\) 0 0
\(541\) −5689.60 −0.452153 −0.226077 0.974110i \(-0.572590\pi\)
−0.226077 + 0.974110i \(0.572590\pi\)
\(542\) 0 0
\(543\) −16179.7 −1.27870
\(544\) 0 0
\(545\) −6068.06 −0.476930
\(546\) 0 0
\(547\) −13796.6 −1.07843 −0.539213 0.842169i \(-0.681278\pi\)
−0.539213 + 0.842169i \(0.681278\pi\)
\(548\) 0 0
\(549\) 12068.4 0.938188
\(550\) 0 0
\(551\) −25867.3 −1.99997
\(552\) 0 0
\(553\) −6793.74 −0.522422
\(554\) 0 0
\(555\) −2761.74 −0.211224
\(556\) 0 0
\(557\) −14995.2 −1.14069 −0.570347 0.821404i \(-0.693191\pi\)
−0.570347 + 0.821404i \(0.693191\pi\)
\(558\) 0 0
\(559\) 3100.51 0.234593
\(560\) 0 0
\(561\) 18623.1 1.40154
\(562\) 0 0
\(563\) −7110.77 −0.532297 −0.266149 0.963932i \(-0.585751\pi\)
−0.266149 + 0.963932i \(0.585751\pi\)
\(564\) 0 0
\(565\) 1337.65 0.0996027
\(566\) 0 0
\(567\) −671.793 −0.0497578
\(568\) 0 0
\(569\) −19858.3 −1.46310 −0.731549 0.681789i \(-0.761202\pi\)
−0.731549 + 0.681789i \(0.761202\pi\)
\(570\) 0 0
\(571\) −8680.50 −0.636196 −0.318098 0.948058i \(-0.603044\pi\)
−0.318098 + 0.948058i \(0.603044\pi\)
\(572\) 0 0
\(573\) 8212.14 0.598721
\(574\) 0 0
\(575\) −2017.57 −0.146328
\(576\) 0 0
\(577\) −4639.54 −0.334743 −0.167372 0.985894i \(-0.553528\pi\)
−0.167372 + 0.985894i \(0.553528\pi\)
\(578\) 0 0
\(579\) 17077.8 1.22578
\(580\) 0 0
\(581\) −7765.65 −0.554516
\(582\) 0 0
\(583\) −18056.4 −1.28271
\(584\) 0 0
\(585\) −444.909 −0.0314440
\(586\) 0 0
\(587\) 11286.4 0.793597 0.396799 0.917906i \(-0.370121\pi\)
0.396799 + 0.917906i \(0.370121\pi\)
\(588\) 0 0
\(589\) 4652.78 0.325492
\(590\) 0 0
\(591\) 4615.38 0.321237
\(592\) 0 0
\(593\) −2434.90 −0.168616 −0.0843082 0.996440i \(-0.526868\pi\)
−0.0843082 + 0.996440i \(0.526868\pi\)
\(594\) 0 0
\(595\) 3634.74 0.250437
\(596\) 0 0
\(597\) −7727.24 −0.529740
\(598\) 0 0
\(599\) −5668.75 −0.386676 −0.193338 0.981132i \(-0.561931\pi\)
−0.193338 + 0.981132i \(0.561931\pi\)
\(600\) 0 0
\(601\) 22312.6 1.51439 0.757195 0.653189i \(-0.226569\pi\)
0.757195 + 0.653189i \(0.226569\pi\)
\(602\) 0 0
\(603\) −10778.8 −0.727936
\(604\) 0 0
\(605\) −6803.78 −0.457211
\(606\) 0 0
\(607\) −13583.7 −0.908314 −0.454157 0.890922i \(-0.650059\pi\)
−0.454157 + 0.890922i \(0.650059\pi\)
\(608\) 0 0
\(609\) −5282.82 −0.351512
\(610\) 0 0
\(611\) 1243.96 0.0823651
\(612\) 0 0
\(613\) 6448.94 0.424911 0.212455 0.977171i \(-0.431854\pi\)
0.212455 + 0.977171i \(0.431854\pi\)
\(614\) 0 0
\(615\) −4032.30 −0.264387
\(616\) 0 0
\(617\) 4075.91 0.265948 0.132974 0.991120i \(-0.457547\pi\)
0.132974 + 0.991120i \(0.457547\pi\)
\(618\) 0 0
\(619\) −17730.9 −1.15131 −0.575657 0.817691i \(-0.695254\pi\)
−0.575657 + 0.817691i \(0.695254\pi\)
\(620\) 0 0
\(621\) 11730.4 0.758014
\(622\) 0 0
\(623\) 7892.14 0.507531
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −21244.9 −1.35318
\(628\) 0 0
\(629\) −16595.5 −1.05200
\(630\) 0 0
\(631\) −24687.2 −1.55750 −0.778748 0.627337i \(-0.784145\pi\)
−0.778748 + 0.627337i \(0.784145\pi\)
\(632\) 0 0
\(633\) −3027.38 −0.190091
\(634\) 0 0
\(635\) 3561.94 0.222600
\(636\) 0 0
\(637\) −289.649 −0.0180162
\(638\) 0 0
\(639\) 7833.81 0.484977
\(640\) 0 0
\(641\) −3640.27 −0.224309 −0.112154 0.993691i \(-0.535775\pi\)
−0.112154 + 0.993691i \(0.535775\pi\)
\(642\) 0 0
\(643\) 18809.9 1.15364 0.576821 0.816871i \(-0.304293\pi\)
0.576821 + 0.816871i \(0.304293\pi\)
\(644\) 0 0
\(645\) 9064.75 0.553371
\(646\) 0 0
\(647\) 7914.91 0.480939 0.240469 0.970657i \(-0.422699\pi\)
0.240469 + 0.970657i \(0.422699\pi\)
\(648\) 0 0
\(649\) 4419.07 0.267279
\(650\) 0 0
\(651\) 950.229 0.0572080
\(652\) 0 0
\(653\) 20629.9 1.23631 0.618155 0.786056i \(-0.287880\pi\)
0.618155 + 0.786056i \(0.287880\pi\)
\(654\) 0 0
\(655\) −3731.82 −0.222617
\(656\) 0 0
\(657\) −3462.29 −0.205596
\(658\) 0 0
\(659\) 20033.4 1.18420 0.592101 0.805864i \(-0.298299\pi\)
0.592101 + 0.805864i \(0.298299\pi\)
\(660\) 0 0
\(661\) −33181.9 −1.95254 −0.976268 0.216565i \(-0.930515\pi\)
−0.976268 + 0.216565i \(0.930515\pi\)
\(662\) 0 0
\(663\) 2121.82 0.124291
\(664\) 0 0
\(665\) −4146.47 −0.241794
\(666\) 0 0
\(667\) 17621.0 1.02292
\(668\) 0 0
\(669\) −13653.7 −0.789061
\(670\) 0 0
\(671\) 41594.9 2.39308
\(672\) 0 0
\(673\) 9881.92 0.566003 0.283001 0.959119i \(-0.408670\pi\)
0.283001 + 0.959119i \(0.408670\pi\)
\(674\) 0 0
\(675\) −3633.84 −0.207210
\(676\) 0 0
\(677\) −2059.42 −0.116913 −0.0584563 0.998290i \(-0.518618\pi\)
−0.0584563 + 0.998290i \(0.518618\pi\)
\(678\) 0 0
\(679\) 7954.61 0.449587
\(680\) 0 0
\(681\) −7791.89 −0.438452
\(682\) 0 0
\(683\) 29350.2 1.64429 0.822147 0.569275i \(-0.192776\pi\)
0.822147 + 0.569275i \(0.192776\pi\)
\(684\) 0 0
\(685\) −13062.8 −0.728617
\(686\) 0 0
\(687\) −12720.3 −0.706416
\(688\) 0 0
\(689\) −2057.26 −0.113753
\(690\) 0 0
\(691\) −11343.4 −0.624491 −0.312246 0.950001i \(-0.601081\pi\)
−0.312246 + 0.950001i \(0.601081\pi\)
\(692\) 0 0
\(693\) 5466.91 0.299669
\(694\) 0 0
\(695\) −3186.60 −0.173920
\(696\) 0 0
\(697\) −24230.4 −1.31678
\(698\) 0 0
\(699\) −3835.74 −0.207555
\(700\) 0 0
\(701\) −16939.1 −0.912667 −0.456334 0.889809i \(-0.650838\pi\)
−0.456334 + 0.889809i \(0.650838\pi\)
\(702\) 0 0
\(703\) 18932.0 1.01569
\(704\) 0 0
\(705\) 3636.87 0.194287
\(706\) 0 0
\(707\) 6011.87 0.319801
\(708\) 0 0
\(709\) 20813.0 1.10247 0.551233 0.834351i \(-0.314157\pi\)
0.551233 + 0.834351i \(0.314157\pi\)
\(710\) 0 0
\(711\) 14609.5 0.770606
\(712\) 0 0
\(713\) −3169.51 −0.166478
\(714\) 0 0
\(715\) −1533.43 −0.0802055
\(716\) 0 0
\(717\) 3731.94 0.194382
\(718\) 0 0
\(719\) 15526.6 0.805348 0.402674 0.915344i \(-0.368081\pi\)
0.402674 + 0.915344i \(0.368081\pi\)
\(720\) 0 0
\(721\) −2438.65 −0.125964
\(722\) 0 0
\(723\) 280.360 0.0144214
\(724\) 0 0
\(725\) −5458.59 −0.279623
\(726\) 0 0
\(727\) −18301.0 −0.933628 −0.466814 0.884356i \(-0.654598\pi\)
−0.466814 + 0.884356i \(0.654598\pi\)
\(728\) 0 0
\(729\) 15009.6 0.762565
\(730\) 0 0
\(731\) 54470.8 2.75605
\(732\) 0 0
\(733\) −31175.7 −1.57094 −0.785472 0.618897i \(-0.787580\pi\)
−0.785472 + 0.618897i \(0.787580\pi\)
\(734\) 0 0
\(735\) −846.825 −0.0424974
\(736\) 0 0
\(737\) −37150.2 −1.85678
\(738\) 0 0
\(739\) −38874.4 −1.93507 −0.967537 0.252730i \(-0.918672\pi\)
−0.967537 + 0.252730i \(0.918672\pi\)
\(740\) 0 0
\(741\) −2420.55 −0.120001
\(742\) 0 0
\(743\) −15899.8 −0.785071 −0.392536 0.919737i \(-0.628402\pi\)
−0.392536 + 0.919737i \(0.628402\pi\)
\(744\) 0 0
\(745\) 10759.6 0.529130
\(746\) 0 0
\(747\) 16699.6 0.817947
\(748\) 0 0
\(749\) 13023.7 0.635350
\(750\) 0 0
\(751\) 20419.5 0.992168 0.496084 0.868275i \(-0.334771\pi\)
0.496084 + 0.868275i \(0.334771\pi\)
\(752\) 0 0
\(753\) −7583.05 −0.366988
\(754\) 0 0
\(755\) −8425.92 −0.406160
\(756\) 0 0
\(757\) 33358.9 1.60165 0.800826 0.598897i \(-0.204394\pi\)
0.800826 + 0.598897i \(0.204394\pi\)
\(758\) 0 0
\(759\) 14472.2 0.692105
\(760\) 0 0
\(761\) −7773.61 −0.370293 −0.185147 0.982711i \(-0.559276\pi\)
−0.185147 + 0.982711i \(0.559276\pi\)
\(762\) 0 0
\(763\) 8495.28 0.403080
\(764\) 0 0
\(765\) −7816.30 −0.369411
\(766\) 0 0
\(767\) 503.488 0.0237026
\(768\) 0 0
\(769\) 30704.0 1.43981 0.719906 0.694072i \(-0.244185\pi\)
0.719906 + 0.694072i \(0.244185\pi\)
\(770\) 0 0
\(771\) −13594.4 −0.635006
\(772\) 0 0
\(773\) 31749.5 1.47730 0.738648 0.674091i \(-0.235464\pi\)
0.738648 + 0.674091i \(0.235464\pi\)
\(774\) 0 0
\(775\) 981.845 0.0455083
\(776\) 0 0
\(777\) 3866.44 0.178517
\(778\) 0 0
\(779\) 27641.7 1.27133
\(780\) 0 0
\(781\) 27000.1 1.23705
\(782\) 0 0
\(783\) 31737.0 1.44852
\(784\) 0 0
\(785\) −5696.54 −0.259004
\(786\) 0 0
\(787\) 4536.07 0.205455 0.102728 0.994710i \(-0.467243\pi\)
0.102728 + 0.994710i \(0.467243\pi\)
\(788\) 0 0
\(789\) 1720.79 0.0776448
\(790\) 0 0
\(791\) −1872.71 −0.0841796
\(792\) 0 0
\(793\) 4739.13 0.212221
\(794\) 0 0
\(795\) −6014.67 −0.268325
\(796\) 0 0
\(797\) −237.980 −0.0105768 −0.00528840 0.999986i \(-0.501683\pi\)
−0.00528840 + 0.999986i \(0.501683\pi\)
\(798\) 0 0
\(799\) 21854.2 0.967643
\(800\) 0 0
\(801\) −16971.6 −0.748642
\(802\) 0 0
\(803\) −11933.1 −0.524423
\(804\) 0 0
\(805\) 2824.60 0.123670
\(806\) 0 0
\(807\) −26518.3 −1.15674
\(808\) 0 0
\(809\) −33008.4 −1.43450 −0.717251 0.696815i \(-0.754600\pi\)
−0.717251 + 0.696815i \(0.754600\pi\)
\(810\) 0 0
\(811\) −16028.1 −0.693988 −0.346994 0.937867i \(-0.612798\pi\)
−0.346994 + 0.937867i \(0.612798\pi\)
\(812\) 0 0
\(813\) −11727.2 −0.505894
\(814\) 0 0
\(815\) 8794.04 0.377965
\(816\) 0 0
\(817\) −62139.6 −2.66094
\(818\) 0 0
\(819\) 622.873 0.0265750
\(820\) 0 0
\(821\) 6121.99 0.260242 0.130121 0.991498i \(-0.458463\pi\)
0.130121 + 0.991498i \(0.458463\pi\)
\(822\) 0 0
\(823\) 10372.7 0.439331 0.219666 0.975575i \(-0.429503\pi\)
0.219666 + 0.975575i \(0.429503\pi\)
\(824\) 0 0
\(825\) −4483.17 −0.189193
\(826\) 0 0
\(827\) −5018.82 −0.211030 −0.105515 0.994418i \(-0.533649\pi\)
−0.105515 + 0.994418i \(0.533649\pi\)
\(828\) 0 0
\(829\) −13231.4 −0.554336 −0.277168 0.960822i \(-0.589396\pi\)
−0.277168 + 0.960822i \(0.589396\pi\)
\(830\) 0 0
\(831\) 7998.89 0.333909
\(832\) 0 0
\(833\) −5088.64 −0.211658
\(834\) 0 0
\(835\) −11752.5 −0.487081
\(836\) 0 0
\(837\) −5708.59 −0.235744
\(838\) 0 0
\(839\) −9522.56 −0.391842 −0.195921 0.980620i \(-0.562770\pi\)
−0.195921 + 0.980620i \(0.562770\pi\)
\(840\) 0 0
\(841\) 23284.9 0.954730
\(842\) 0 0
\(843\) −12459.7 −0.509057
\(844\) 0 0
\(845\) 10810.3 0.440101
\(846\) 0 0
\(847\) 9525.29 0.386414
\(848\) 0 0
\(849\) −7964.92 −0.321973
\(850\) 0 0
\(851\) −12896.6 −0.519494
\(852\) 0 0
\(853\) 43594.1 1.74986 0.874932 0.484245i \(-0.160906\pi\)
0.874932 + 0.484245i \(0.160906\pi\)
\(854\) 0 0
\(855\) 8916.74 0.356662
\(856\) 0 0
\(857\) 31892.6 1.27122 0.635608 0.772012i \(-0.280749\pi\)
0.635608 + 0.772012i \(0.280749\pi\)
\(858\) 0 0
\(859\) 13058.6 0.518689 0.259345 0.965785i \(-0.416493\pi\)
0.259345 + 0.965785i \(0.416493\pi\)
\(860\) 0 0
\(861\) 5645.22 0.223448
\(862\) 0 0
\(863\) −21487.2 −0.847548 −0.423774 0.905768i \(-0.639295\pi\)
−0.423774 + 0.905768i \(0.639295\pi\)
\(864\) 0 0
\(865\) 12019.7 0.472465
\(866\) 0 0
\(867\) 20295.4 0.795002
\(868\) 0 0
\(869\) 50353.4 1.96562
\(870\) 0 0
\(871\) −4232.71 −0.164661
\(872\) 0 0
\(873\) −17105.9 −0.663171
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −2743.60 −0.105638 −0.0528192 0.998604i \(-0.516821\pi\)
−0.0528192 + 0.998604i \(0.516821\pi\)
\(878\) 0 0
\(879\) −23089.9 −0.886012
\(880\) 0 0
\(881\) −12554.8 −0.480115 −0.240057 0.970759i \(-0.577166\pi\)
−0.240057 + 0.970759i \(0.577166\pi\)
\(882\) 0 0
\(883\) 26353.2 1.00437 0.502184 0.864761i \(-0.332530\pi\)
0.502184 + 0.864761i \(0.332530\pi\)
\(884\) 0 0
\(885\) 1472.01 0.0559109
\(886\) 0 0
\(887\) 14016.6 0.530587 0.265293 0.964168i \(-0.414531\pi\)
0.265293 + 0.964168i \(0.414531\pi\)
\(888\) 0 0
\(889\) −4986.72 −0.188132
\(890\) 0 0
\(891\) 4979.15 0.187214
\(892\) 0 0
\(893\) −24931.0 −0.934249
\(894\) 0 0
\(895\) 16807.6 0.627726
\(896\) 0 0
\(897\) 1648.89 0.0613767
\(898\) 0 0
\(899\) −8575.18 −0.318129
\(900\) 0 0
\(901\) −36142.6 −1.33639
\(902\) 0 0
\(903\) −12690.6 −0.467684
\(904\) 0 0
\(905\) 23405.2 0.859684
\(906\) 0 0
\(907\) 30710.0 1.12427 0.562134 0.827047i \(-0.309981\pi\)
0.562134 + 0.827047i \(0.309981\pi\)
\(908\) 0 0
\(909\) −12928.2 −0.471728
\(910\) 0 0
\(911\) 47099.3 1.71292 0.856459 0.516215i \(-0.172659\pi\)
0.856459 + 0.516215i \(0.172659\pi\)
\(912\) 0 0
\(913\) 57556.9 2.08637
\(914\) 0 0
\(915\) 13855.4 0.500597
\(916\) 0 0
\(917\) 5224.55 0.188146
\(918\) 0 0
\(919\) 7922.89 0.284387 0.142194 0.989839i \(-0.454584\pi\)
0.142194 + 0.989839i \(0.454584\pi\)
\(920\) 0 0
\(921\) −12211.4 −0.436895
\(922\) 0 0
\(923\) 3076.26 0.109703
\(924\) 0 0
\(925\) 3995.08 0.142008
\(926\) 0 0
\(927\) 5244.18 0.185805
\(928\) 0 0
\(929\) 22388.1 0.790668 0.395334 0.918537i \(-0.370629\pi\)
0.395334 + 0.918537i \(0.370629\pi\)
\(930\) 0 0
\(931\) 5805.05 0.204353
\(932\) 0 0
\(933\) −26661.2 −0.935528
\(934\) 0 0
\(935\) −26939.7 −0.942271
\(936\) 0 0
\(937\) −15161.4 −0.528603 −0.264302 0.964440i \(-0.585141\pi\)
−0.264302 + 0.964440i \(0.585141\pi\)
\(938\) 0 0
\(939\) 19967.7 0.693952
\(940\) 0 0
\(941\) 32547.3 1.12754 0.563768 0.825933i \(-0.309351\pi\)
0.563768 + 0.825933i \(0.309351\pi\)
\(942\) 0 0
\(943\) −18829.7 −0.650245
\(944\) 0 0
\(945\) 5087.37 0.175124
\(946\) 0 0
\(947\) 16496.7 0.566072 0.283036 0.959109i \(-0.408658\pi\)
0.283036 + 0.959109i \(0.408658\pi\)
\(948\) 0 0
\(949\) −1359.60 −0.0465065
\(950\) 0 0
\(951\) 9953.83 0.339406
\(952\) 0 0
\(953\) −42608.4 −1.44829 −0.724146 0.689647i \(-0.757766\pi\)
−0.724146 + 0.689647i \(0.757766\pi\)
\(954\) 0 0
\(955\) −11879.5 −0.402526
\(956\) 0 0
\(957\) 39154.9 1.32257
\(958\) 0 0
\(959\) 18287.9 0.615794
\(960\) 0 0
\(961\) −28248.6 −0.948225
\(962\) 0 0
\(963\) −28006.8 −0.937183
\(964\) 0 0
\(965\) −24704.3 −0.824105
\(966\) 0 0
\(967\) −25980.4 −0.863983 −0.431992 0.901878i \(-0.642189\pi\)
−0.431992 + 0.901878i \(0.642189\pi\)
\(968\) 0 0
\(969\) −42524.9 −1.40980
\(970\) 0 0
\(971\) 475.566 0.0157174 0.00785872 0.999969i \(-0.497498\pi\)
0.00785872 + 0.999969i \(0.497498\pi\)
\(972\) 0 0
\(973\) 4461.24 0.146990
\(974\) 0 0
\(975\) −510.791 −0.0167778
\(976\) 0 0
\(977\) 17562.9 0.575115 0.287557 0.957763i \(-0.407157\pi\)
0.287557 + 0.957763i \(0.407157\pi\)
\(978\) 0 0
\(979\) −58494.5 −1.90959
\(980\) 0 0
\(981\) −18268.6 −0.594569
\(982\) 0 0
\(983\) −20943.8 −0.679557 −0.339779 0.940505i \(-0.610352\pi\)
−0.339779 + 0.940505i \(0.610352\pi\)
\(984\) 0 0
\(985\) −6676.51 −0.215971
\(986\) 0 0
\(987\) −5091.61 −0.164202
\(988\) 0 0
\(989\) 42329.9 1.36098
\(990\) 0 0
\(991\) −55297.8 −1.77254 −0.886272 0.463164i \(-0.846714\pi\)
−0.886272 + 0.463164i \(0.846714\pi\)
\(992\) 0 0
\(993\) −9625.47 −0.307608
\(994\) 0 0
\(995\) 11178.1 0.356149
\(996\) 0 0
\(997\) −1485.25 −0.0471800 −0.0235900 0.999722i \(-0.507510\pi\)
−0.0235900 + 0.999722i \(0.507510\pi\)
\(998\) 0 0
\(999\) −23228.0 −0.735636
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 280.4.a.f.1.3 3
4.3 odd 2 560.4.a.w.1.1 3
5.2 odd 4 1400.4.g.l.449.2 6
5.3 odd 4 1400.4.g.l.449.5 6
5.4 even 2 1400.4.a.m.1.1 3
7.6 odd 2 1960.4.a.r.1.1 3
8.3 odd 2 2240.4.a.br.1.3 3
8.5 even 2 2240.4.a.bz.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.4.a.f.1.3 3 1.1 even 1 trivial
560.4.a.w.1.1 3 4.3 odd 2
1400.4.a.m.1.1 3 5.4 even 2
1400.4.g.l.449.2 6 5.2 odd 4
1400.4.g.l.449.5 6 5.3 odd 4
1960.4.a.r.1.1 3 7.6 odd 2
2240.4.a.br.1.3 3 8.3 odd 2
2240.4.a.bz.1.1 3 8.5 even 2