Properties

Label 2800.1.f.b
Level $2800$
Weight $1$
Character orbit 2800.f
Self dual yes
Analytic conductor $1.397$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,1,Mod(2001,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.2001");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.175.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.9800000.1
Stark unit: Root of $x^{6} - 47766x^{5} + 13800415x^{4} - 2254085460x^{3} + 13800415x^{2} - 47766x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{7} + q^{9} + q^{11} - q^{23} - q^{29} + q^{37} - q^{43} + q^{49} - 2 q^{53} + q^{63} - q^{67} + q^{71} + q^{77} + q^{79} + q^{81} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(0\) \(1\) \(0\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2001.1
0
0 0 0 0 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.1.f.b 1
4.b odd 2 1 175.1.d.b yes 1
5.b even 2 1 2800.1.f.a 1
5.c odd 4 2 2800.1.p.a 2
7.b odd 2 1 CM 2800.1.f.b 1
12.b even 2 1 1575.1.h.a 1
20.d odd 2 1 175.1.d.a 1
20.e even 4 2 175.1.c.a 2
28.d even 2 1 175.1.d.b yes 1
28.f even 6 2 1225.1.i.a 2
28.g odd 6 2 1225.1.i.a 2
35.c odd 2 1 2800.1.f.a 1
35.f even 4 2 2800.1.p.a 2
60.h even 2 1 1575.1.h.c 1
60.l odd 4 2 1575.1.e.a 2
84.h odd 2 1 1575.1.h.a 1
140.c even 2 1 175.1.d.a 1
140.j odd 4 2 175.1.c.a 2
140.p odd 6 2 1225.1.i.b 2
140.s even 6 2 1225.1.i.b 2
140.w even 12 4 1225.1.j.a 4
140.x odd 12 4 1225.1.j.a 4
420.o odd 2 1 1575.1.h.c 1
420.w even 4 2 1575.1.e.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.1.c.a 2 20.e even 4 2
175.1.c.a 2 140.j odd 4 2
175.1.d.a 1 20.d odd 2 1
175.1.d.a 1 140.c even 2 1
175.1.d.b yes 1 4.b odd 2 1
175.1.d.b yes 1 28.d even 2 1
1225.1.i.a 2 28.f even 6 2
1225.1.i.a 2 28.g odd 6 2
1225.1.i.b 2 140.p odd 6 2
1225.1.i.b 2 140.s even 6 2
1225.1.j.a 4 140.w even 12 4
1225.1.j.a 4 140.x odd 12 4
1575.1.e.a 2 60.l odd 4 2
1575.1.e.a 2 420.w even 4 2
1575.1.h.a 1 12.b even 2 1
1575.1.h.a 1 84.h odd 2 1
1575.1.h.c 1 60.h even 2 1
1575.1.h.c 1 420.o odd 2 1
2800.1.f.a 1 5.b even 2 1
2800.1.f.a 1 35.c odd 2 1
2800.1.f.b 1 1.a even 1 1 trivial
2800.1.f.b 1 7.b odd 2 1 CM
2800.1.p.a 2 5.c odd 4 2
2800.1.p.a 2 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2800, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{23} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 1 \) Copy content Toggle raw display
$71$ \( T - 1 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T - 1 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less