Properties

Label 2800.1.p.a
Level 28002800
Weight 11
Character orbit 2800.p
Analytic conductor 1.3971.397
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2800,1,Mod(2449,2800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2800.2449"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2800=24527 2800 = 2^{4} \cdot 5^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2800.p (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.397382035371.39738203537
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 175)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.175.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qiq7q9+q11iq23+q29iq37iq43q492iq53+iq63+iq67+q71iq77q79+q81q99+O(q100) q - i q^{7} - q^{9} + q^{11} - i q^{23} + q^{29} - i q^{37} - i q^{43} - q^{49} - 2 i q^{53} + i q^{63} + i q^{67} + q^{71} - i q^{77} - q^{79} + q^{81} - q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q9+2q11+2q292q49+2q712q79+2q812q99+O(q100) 2 q - 2 q^{9} + 2 q^{11} + 2 q^{29} - 2 q^{49} + 2 q^{71} - 2 q^{79} + 2 q^{81} - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2800Z)×\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times.

nn 351351 801801 21012101 25772577
χ(n)\chi(n) 11 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2449.1
1.00000i
1.00000i
0 0 0 0 0 1.00000i 0 −1.00000 0
2449.2 0 0 0 0 0 1.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
5.b even 2 1 inner
35.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.1.p.a 2
4.b odd 2 1 175.1.c.a 2
5.b even 2 1 inner 2800.1.p.a 2
5.c odd 4 1 2800.1.f.a 1
5.c odd 4 1 2800.1.f.b 1
7.b odd 2 1 CM 2800.1.p.a 2
12.b even 2 1 1575.1.e.a 2
20.d odd 2 1 175.1.c.a 2
20.e even 4 1 175.1.d.a 1
20.e even 4 1 175.1.d.b yes 1
28.d even 2 1 175.1.c.a 2
28.f even 6 2 1225.1.j.a 4
28.g odd 6 2 1225.1.j.a 4
35.c odd 2 1 inner 2800.1.p.a 2
35.f even 4 1 2800.1.f.a 1
35.f even 4 1 2800.1.f.b 1
60.h even 2 1 1575.1.e.a 2
60.l odd 4 1 1575.1.h.a 1
60.l odd 4 1 1575.1.h.c 1
84.h odd 2 1 1575.1.e.a 2
140.c even 2 1 175.1.c.a 2
140.j odd 4 1 175.1.d.a 1
140.j odd 4 1 175.1.d.b yes 1
140.p odd 6 2 1225.1.j.a 4
140.s even 6 2 1225.1.j.a 4
140.w even 12 2 1225.1.i.a 2
140.w even 12 2 1225.1.i.b 2
140.x odd 12 2 1225.1.i.a 2
140.x odd 12 2 1225.1.i.b 2
420.o odd 2 1 1575.1.e.a 2
420.w even 4 1 1575.1.h.a 1
420.w even 4 1 1575.1.h.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.1.c.a 2 4.b odd 2 1
175.1.c.a 2 20.d odd 2 1
175.1.c.a 2 28.d even 2 1
175.1.c.a 2 140.c even 2 1
175.1.d.a 1 20.e even 4 1
175.1.d.a 1 140.j odd 4 1
175.1.d.b yes 1 20.e even 4 1
175.1.d.b yes 1 140.j odd 4 1
1225.1.i.a 2 140.w even 12 2
1225.1.i.a 2 140.x odd 12 2
1225.1.i.b 2 140.w even 12 2
1225.1.i.b 2 140.x odd 12 2
1225.1.j.a 4 28.f even 6 2
1225.1.j.a 4 28.g odd 6 2
1225.1.j.a 4 140.p odd 6 2
1225.1.j.a 4 140.s even 6 2
1575.1.e.a 2 12.b even 2 1
1575.1.e.a 2 60.h even 2 1
1575.1.e.a 2 84.h odd 2 1
1575.1.e.a 2 420.o odd 2 1
1575.1.h.a 1 60.l odd 4 1
1575.1.h.a 1 420.w even 4 1
1575.1.h.c 1 60.l odd 4 1
1575.1.h.c 1 420.w even 4 1
2800.1.f.a 1 5.c odd 4 1
2800.1.f.a 1 35.f even 4 1
2800.1.f.b 1 5.c odd 4 1
2800.1.f.b 1 35.f even 4 1
2800.1.p.a 2 1.a even 1 1 trivial
2800.1.p.a 2 5.b even 2 1 inner
2800.1.p.a 2 7.b odd 2 1 CM
2800.1.p.a 2 35.c odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(2800,[χ])S_{1}^{\mathrm{new}}(2800, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+1 T^{2} + 1 Copy content Toggle raw display
2929 (T1)2 (T - 1)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+1 T^{2} + 1 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+1 T^{2} + 1 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+4 T^{2} + 4 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+1 T^{2} + 1 Copy content Toggle raw display
7171 (T1)2 (T - 1)^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less