Properties

Label 2800.2.e.b
Level $2800$
Weight $2$
Character orbit 2800.e
Analytic conductor $22.358$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(2799,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.2799");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + (\beta_{3} - \beta_1) q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{3} + (\beta_{3} - \beta_1) q^{7} - q^{9} - \beta_{2} q^{11} + 2 \beta_1 q^{13} - 2 q^{19} + ( - \beta_{2} - 4) q^{21} - 2 \beta_1 q^{23} + 2 \beta_{3} q^{27} - 6 q^{29} - 8 q^{31} + 4 \beta_1 q^{33} + \beta_{3} q^{37} + 2 \beta_{2} q^{39} + 2 \beta_{2} q^{41} - 6 \beta_1 q^{43} + ( - 2 \beta_{2} - 1) q^{49} + 3 \beta_{3} q^{53} - 2 \beta_{3} q^{57} - 6 q^{59} - \beta_{2} q^{61} + ( - \beta_{3} + \beta_1) q^{63} - 2 \beta_1 q^{67} - 2 \beta_{2} q^{69} - \beta_{2} q^{71} + 4 \beta_1 q^{73} + (3 \beta_{3} + 4 \beta_1) q^{77} + \beta_{2} q^{79} - 11 q^{81} - 3 \beta_{3} q^{83} - 6 \beta_{3} q^{87} - 2 \beta_{2} q^{89} + (2 \beta_{2} - 6) q^{91} - 8 \beta_{3} q^{93} - 8 \beta_1 q^{97} + \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{9} - 8 q^{19} - 16 q^{21} - 24 q^{29} - 32 q^{31} - 4 q^{49} - 24 q^{59} - 44 q^{81} - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 4\zeta_{12}^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\zeta_{12}^{3} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( \beta_{3} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2799.1
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0 2.00000i 0 0 0 −1.73205 2.00000i 0 −1.00000 0
2799.2 0 2.00000i 0 0 0 1.73205 2.00000i 0 −1.00000 0
2799.3 0 2.00000i 0 0 0 −1.73205 + 2.00000i 0 −1.00000 0
2799.4 0 2.00000i 0 0 0 1.73205 + 2.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
28.d even 2 1 inner
140.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.e.b 4
4.b odd 2 1 2800.2.e.c 4
5.b even 2 1 inner 2800.2.e.b 4
5.c odd 4 1 112.2.f.b yes 2
5.c odd 4 1 2800.2.k.b 2
7.b odd 2 1 2800.2.e.c 4
15.e even 4 1 1008.2.b.b 2
20.d odd 2 1 2800.2.e.c 4
20.e even 4 1 112.2.f.a 2
20.e even 4 1 2800.2.k.e 2
28.d even 2 1 inner 2800.2.e.b 4
35.c odd 2 1 2800.2.e.c 4
35.f even 4 1 112.2.f.a 2
35.f even 4 1 2800.2.k.e 2
35.k even 12 1 784.2.p.e 2
35.k even 12 1 784.2.p.f 2
35.l odd 12 1 784.2.p.a 2
35.l odd 12 1 784.2.p.b 2
40.i odd 4 1 448.2.f.a 2
40.k even 4 1 448.2.f.c 2
60.l odd 4 1 1008.2.b.g 2
80.i odd 4 1 1792.2.e.c 4
80.j even 4 1 1792.2.e.a 4
80.s even 4 1 1792.2.e.a 4
80.t odd 4 1 1792.2.e.c 4
105.k odd 4 1 1008.2.b.g 2
120.q odd 4 1 4032.2.b.h 2
120.w even 4 1 4032.2.b.b 2
140.c even 2 1 inner 2800.2.e.b 4
140.j odd 4 1 112.2.f.b yes 2
140.j odd 4 1 2800.2.k.b 2
140.w even 12 1 784.2.p.e 2
140.w even 12 1 784.2.p.f 2
140.x odd 12 1 784.2.p.a 2
140.x odd 12 1 784.2.p.b 2
280.s even 4 1 448.2.f.c 2
280.y odd 4 1 448.2.f.a 2
420.w even 4 1 1008.2.b.b 2
560.r even 4 1 1792.2.e.a 4
560.u odd 4 1 1792.2.e.c 4
560.bm odd 4 1 1792.2.e.c 4
560.bn even 4 1 1792.2.e.a 4
840.bm even 4 1 4032.2.b.b 2
840.bp odd 4 1 4032.2.b.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.f.a 2 20.e even 4 1
112.2.f.a 2 35.f even 4 1
112.2.f.b yes 2 5.c odd 4 1
112.2.f.b yes 2 140.j odd 4 1
448.2.f.a 2 40.i odd 4 1
448.2.f.a 2 280.y odd 4 1
448.2.f.c 2 40.k even 4 1
448.2.f.c 2 280.s even 4 1
784.2.p.a 2 35.l odd 12 1
784.2.p.a 2 140.x odd 12 1
784.2.p.b 2 35.l odd 12 1
784.2.p.b 2 140.x odd 12 1
784.2.p.e 2 35.k even 12 1
784.2.p.e 2 140.w even 12 1
784.2.p.f 2 35.k even 12 1
784.2.p.f 2 140.w even 12 1
1008.2.b.b 2 15.e even 4 1
1008.2.b.b 2 420.w even 4 1
1008.2.b.g 2 60.l odd 4 1
1008.2.b.g 2 105.k odd 4 1
1792.2.e.a 4 80.j even 4 1
1792.2.e.a 4 80.s even 4 1
1792.2.e.a 4 560.r even 4 1
1792.2.e.a 4 560.bn even 4 1
1792.2.e.c 4 80.i odd 4 1
1792.2.e.c 4 80.t odd 4 1
1792.2.e.c 4 560.u odd 4 1
1792.2.e.c 4 560.bm odd 4 1
2800.2.e.b 4 1.a even 1 1 trivial
2800.2.e.b 4 5.b even 2 1 inner
2800.2.e.b 4 28.d even 2 1 inner
2800.2.e.b 4 140.c even 2 1 inner
2800.2.e.c 4 4.b odd 2 1
2800.2.e.c 4 7.b odd 2 1
2800.2.e.c 4 20.d odd 2 1
2800.2.e.c 4 35.c odd 2 1
2800.2.k.b 2 5.c odd 4 1
2800.2.k.b 2 140.j odd 4 1
2800.2.k.e 2 20.e even 4 1
2800.2.k.e 2 35.f even 4 1
4032.2.b.b 2 120.w even 4 1
4032.2.b.b 2 840.bm even 4 1
4032.2.b.h 2 120.q odd 4 1
4032.2.b.h 2 840.bp odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2800, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} + 12 \) Copy content Toggle raw display
\( T_{13}^{2} - 12 \) Copy content Toggle raw display
\( T_{19} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 2T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T + 2)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{4} \) Copy content Toggle raw display
$31$ \( (T + 8)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( (T + 6)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
show more
show less