Properties

Label 2800.2.e.b
Level 28002800
Weight 22
Character orbit 2800.e
Analytic conductor 22.35822.358
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2800,2,Mod(2799,2800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2800.2799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2800=24527 2800 = 2^{4} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2800.e (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.358112566022.3581125660
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q3+(β3β1)q7q9β2q11+2β1q132q19+(β24)q212β1q23+2β3q276q298q31+4β1q33++β2q99+O(q100) q + \beta_{3} q^{3} + (\beta_{3} - \beta_1) q^{7} - q^{9} - \beta_{2} q^{11} + 2 \beta_1 q^{13} - 2 q^{19} + ( - \beta_{2} - 4) q^{21} - 2 \beta_1 q^{23} + 2 \beta_{3} q^{27} - 6 q^{29} - 8 q^{31} + 4 \beta_1 q^{33}+ \cdots + \beta_{2} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q98q1916q2124q2932q314q4924q5944q8124q91+O(q100) 4 q - 4 q^{9} - 8 q^{19} - 16 q^{21} - 24 q^{29} - 32 q^{31} - 4 q^{49} - 24 q^{59} - 44 q^{81} - 24 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
β2\beta_{2}== 4ζ1222 4\zeta_{12}^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== 2ζ123 2\zeta_{12}^{3} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+2β1)/4 ( \beta_{3} + 2\beta_1 ) / 4 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+2)/4 ( \beta_{2} + 2 ) / 4 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3)/2 ( \beta_{3} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2800Z)×\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times.

nn 351351 801801 21012101 25772577
χ(n)\chi(n) 1-1 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2799.1
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0 2.00000i 0 0 0 −1.73205 2.00000i 0 −1.00000 0
2799.2 0 2.00000i 0 0 0 1.73205 2.00000i 0 −1.00000 0
2799.3 0 2.00000i 0 0 0 −1.73205 + 2.00000i 0 −1.00000 0
2799.4 0 2.00000i 0 0 0 1.73205 + 2.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
28.d even 2 1 inner
140.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.e.b 4
4.b odd 2 1 2800.2.e.c 4
5.b even 2 1 inner 2800.2.e.b 4
5.c odd 4 1 112.2.f.b yes 2
5.c odd 4 1 2800.2.k.b 2
7.b odd 2 1 2800.2.e.c 4
15.e even 4 1 1008.2.b.b 2
20.d odd 2 1 2800.2.e.c 4
20.e even 4 1 112.2.f.a 2
20.e even 4 1 2800.2.k.e 2
28.d even 2 1 inner 2800.2.e.b 4
35.c odd 2 1 2800.2.e.c 4
35.f even 4 1 112.2.f.a 2
35.f even 4 1 2800.2.k.e 2
35.k even 12 1 784.2.p.e 2
35.k even 12 1 784.2.p.f 2
35.l odd 12 1 784.2.p.a 2
35.l odd 12 1 784.2.p.b 2
40.i odd 4 1 448.2.f.a 2
40.k even 4 1 448.2.f.c 2
60.l odd 4 1 1008.2.b.g 2
80.i odd 4 1 1792.2.e.c 4
80.j even 4 1 1792.2.e.a 4
80.s even 4 1 1792.2.e.a 4
80.t odd 4 1 1792.2.e.c 4
105.k odd 4 1 1008.2.b.g 2
120.q odd 4 1 4032.2.b.h 2
120.w even 4 1 4032.2.b.b 2
140.c even 2 1 inner 2800.2.e.b 4
140.j odd 4 1 112.2.f.b yes 2
140.j odd 4 1 2800.2.k.b 2
140.w even 12 1 784.2.p.e 2
140.w even 12 1 784.2.p.f 2
140.x odd 12 1 784.2.p.a 2
140.x odd 12 1 784.2.p.b 2
280.s even 4 1 448.2.f.c 2
280.y odd 4 1 448.2.f.a 2
420.w even 4 1 1008.2.b.b 2
560.r even 4 1 1792.2.e.a 4
560.u odd 4 1 1792.2.e.c 4
560.bm odd 4 1 1792.2.e.c 4
560.bn even 4 1 1792.2.e.a 4
840.bm even 4 1 4032.2.b.b 2
840.bp odd 4 1 4032.2.b.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.f.a 2 20.e even 4 1
112.2.f.a 2 35.f even 4 1
112.2.f.b yes 2 5.c odd 4 1
112.2.f.b yes 2 140.j odd 4 1
448.2.f.a 2 40.i odd 4 1
448.2.f.a 2 280.y odd 4 1
448.2.f.c 2 40.k even 4 1
448.2.f.c 2 280.s even 4 1
784.2.p.a 2 35.l odd 12 1
784.2.p.a 2 140.x odd 12 1
784.2.p.b 2 35.l odd 12 1
784.2.p.b 2 140.x odd 12 1
784.2.p.e 2 35.k even 12 1
784.2.p.e 2 140.w even 12 1
784.2.p.f 2 35.k even 12 1
784.2.p.f 2 140.w even 12 1
1008.2.b.b 2 15.e even 4 1
1008.2.b.b 2 420.w even 4 1
1008.2.b.g 2 60.l odd 4 1
1008.2.b.g 2 105.k odd 4 1
1792.2.e.a 4 80.j even 4 1
1792.2.e.a 4 80.s even 4 1
1792.2.e.a 4 560.r even 4 1
1792.2.e.a 4 560.bn even 4 1
1792.2.e.c 4 80.i odd 4 1
1792.2.e.c 4 80.t odd 4 1
1792.2.e.c 4 560.u odd 4 1
1792.2.e.c 4 560.bm odd 4 1
2800.2.e.b 4 1.a even 1 1 trivial
2800.2.e.b 4 5.b even 2 1 inner
2800.2.e.b 4 28.d even 2 1 inner
2800.2.e.b 4 140.c even 2 1 inner
2800.2.e.c 4 4.b odd 2 1
2800.2.e.c 4 7.b odd 2 1
2800.2.e.c 4 20.d odd 2 1
2800.2.e.c 4 35.c odd 2 1
2800.2.k.b 2 5.c odd 4 1
2800.2.k.b 2 140.j odd 4 1
2800.2.k.e 2 20.e even 4 1
2800.2.k.e 2 35.f even 4 1
4032.2.b.b 2 120.w even 4 1
4032.2.b.b 2 840.bm even 4 1
4032.2.b.h 2 120.q odd 4 1
4032.2.b.h 2 840.bp odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2800,[χ])S_{2}^{\mathrm{new}}(2800, [\chi]):

T32+4 T_{3}^{2} + 4 Copy content Toggle raw display
T112+12 T_{11}^{2} + 12 Copy content Toggle raw display
T13212 T_{13}^{2} - 12 Copy content Toggle raw display
T19+2 T_{19} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+2T2+49 T^{4} + 2T^{2} + 49 Copy content Toggle raw display
1111 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
1313 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
2323 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
2929 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
3131 (T+8)4 (T + 8)^{4} Copy content Toggle raw display
3737 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
4141 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
4343 (T2108)2 (T^{2} - 108)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
5959 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
6161 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
6767 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
7171 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
7373 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
7979 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
8383 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
8989 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
9797 (T2192)2 (T^{2} - 192)^{2} Copy content Toggle raw display
show more
show less