gp: [N,k,chi] = [2800,2,Mod(2799,2800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2800.2799");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,-8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
− ζ 12 3 + 2 ζ 12 -\zeta_{12}^{3} + 2\zeta_{12} − ζ 1 2 3 + 2 ζ 1 2
-v^3 + 2*v
β 2 \beta_{2} β 2 = = =
4 ζ 12 2 − 2 4\zeta_{12}^{2} - 2 4 ζ 1 2 2 − 2
4*v^2 - 2
β 3 \beta_{3} β 3 = = =
2 ζ 12 3 2\zeta_{12}^{3} 2 ζ 1 2 3
2*v^3
ζ 12 \zeta_{12} ζ 1 2 = = =
( β 3 + 2 β 1 ) / 4 ( \beta_{3} + 2\beta_1 ) / 4 ( β 3 + 2 β 1 ) / 4
(b3 + 2*b1) / 4
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2 = = =
( β 2 + 2 ) / 4 ( \beta_{2} + 2 ) / 4 ( β 2 + 2 ) / 4
(b2 + 2) / 4
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3 = = =
( β 3 ) / 2 ( \beta_{3} ) / 2 ( β 3 ) / 2
(b3) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 2800 Z ) × \left(\mathbb{Z}/2800\mathbb{Z}\right)^\times ( Z / 2 8 0 0 Z ) × .
n n n
351 351 3 5 1
801 801 8 0 1
2101 2101 2 1 0 1
2577 2577 2 5 7 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 2800 , [ χ ] ) S_{2}^{\mathrm{new}}(2800, [\chi]) S 2 n e w ( 2 8 0 0 , [ χ ] ) :
T 3 2 + 4 T_{3}^{2} + 4 T 3 2 + 4
T3^2 + 4
T 11 2 + 12 T_{11}^{2} + 12 T 1 1 2 + 1 2
T11^2 + 12
T 13 2 − 12 T_{13}^{2} - 12 T 1 3 2 − 1 2
T13^2 - 12
T 19 + 2 T_{19} + 2 T 1 9 + 2
T19 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 2 T 2 + 49 T^{4} + 2T^{2} + 49 T 4 + 2 T 2 + 4 9
T^4 + 2*T^2 + 49
11 11 1 1
( T 2 + 12 ) 2 (T^{2} + 12)^{2} ( T 2 + 1 2 ) 2
(T^2 + 12)^2
13 13 1 3
( T 2 − 12 ) 2 (T^{2} - 12)^{2} ( T 2 − 1 2 ) 2
(T^2 - 12)^2
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
( T + 2 ) 4 (T + 2)^{4} ( T + 2 ) 4
(T + 2)^4
23 23 2 3
( T 2 − 12 ) 2 (T^{2} - 12)^{2} ( T 2 − 1 2 ) 2
(T^2 - 12)^2
29 29 2 9
( T + 6 ) 4 (T + 6)^{4} ( T + 6 ) 4
(T + 6)^4
31 31 3 1
( T + 8 ) 4 (T + 8)^{4} ( T + 8 ) 4
(T + 8)^4
37 37 3 7
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
41 41 4 1
( T 2 + 48 ) 2 (T^{2} + 48)^{2} ( T 2 + 4 8 ) 2
(T^2 + 48)^2
43 43 4 3
( T 2 − 108 ) 2 (T^{2} - 108)^{2} ( T 2 − 1 0 8 ) 2
(T^2 - 108)^2
47 47 4 7
T 4 T^{4} T 4
T^4
53 53 5 3
( T 2 + 36 ) 2 (T^{2} + 36)^{2} ( T 2 + 3 6 ) 2
(T^2 + 36)^2
59 59 5 9
( T + 6 ) 4 (T + 6)^{4} ( T + 6 ) 4
(T + 6)^4
61 61 6 1
( T 2 + 12 ) 2 (T^{2} + 12)^{2} ( T 2 + 1 2 ) 2
(T^2 + 12)^2
67 67 6 7
( T 2 − 12 ) 2 (T^{2} - 12)^{2} ( T 2 − 1 2 ) 2
(T^2 - 12)^2
71 71 7 1
( T 2 + 12 ) 2 (T^{2} + 12)^{2} ( T 2 + 1 2 ) 2
(T^2 + 12)^2
73 73 7 3
( T 2 − 48 ) 2 (T^{2} - 48)^{2} ( T 2 − 4 8 ) 2
(T^2 - 48)^2
79 79 7 9
( T 2 + 12 ) 2 (T^{2} + 12)^{2} ( T 2 + 1 2 ) 2
(T^2 + 12)^2
83 83 8 3
( T 2 + 36 ) 2 (T^{2} + 36)^{2} ( T 2 + 3 6 ) 2
(T^2 + 36)^2
89 89 8 9
( T 2 + 48 ) 2 (T^{2} + 48)^{2} ( T 2 + 4 8 ) 2
(T^2 + 48)^2
97 97 9 7
( T 2 − 192 ) 2 (T^{2} - 192)^{2} ( T 2 − 1 9 2 ) 2
(T^2 - 192)^2
show more
show less