Properties

Label 784.2.p.e
Level 784784
Weight 22
Character orbit 784.p
Analytic conductor 6.2606.260
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(31,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 784=2472 784 = 2^{4} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 784.p (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.260271518476.26027151847
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ6+2)q3+(2ζ64)q5ζ6q9+(2ζ6+2)q11+(4ζ62)q13+(8ζ64)q15+2ζ6q19+(2ζ6+4)q23++(4ζ6+2)q99+O(q100) q + ( - 2 \zeta_{6} + 2) q^{3} + (2 \zeta_{6} - 4) q^{5} - \zeta_{6} q^{9} + (2 \zeta_{6} + 2) q^{11} + (4 \zeta_{6} - 2) q^{13} + (8 \zeta_{6} - 4) q^{15} + 2 \zeta_{6} q^{19} + ( - 2 \zeta_{6} + 4) q^{23} + \cdots + ( - 4 \zeta_{6} + 2) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q36q5q9+6q11+2q19+6q23+7q25+8q27+12q298q31+12q33+2q37+12q39+6q456q5324q55+8q57+6q59+12q95+O(q100) 2 q + 2 q^{3} - 6 q^{5} - q^{9} + 6 q^{11} + 2 q^{19} + 6 q^{23} + 7 q^{25} + 8 q^{27} + 12 q^{29} - 8 q^{31} + 12 q^{33} + 2 q^{37} + 12 q^{39} + 6 q^{45} - 6 q^{53} - 24 q^{55} + 8 q^{57} + 6 q^{59}+ \cdots - 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/784Z)×\left(\mathbb{Z}/784\mathbb{Z}\right)^\times.

nn 197197 687687 689689
χ(n)\chi(n) 11 1-1 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.00000 1.73205i 0 −3.00000 + 1.73205i 0 0 0 −0.500000 0.866025i 0
607.1 0 1.00000 + 1.73205i 0 −3.00000 1.73205i 0 0 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.2.p.e 2
4.b odd 2 1 784.2.p.a 2
7.b odd 2 1 784.2.p.b 2
7.c even 3 1 112.2.f.a 2
7.c even 3 1 784.2.p.f 2
7.d odd 6 1 112.2.f.b yes 2
7.d odd 6 1 784.2.p.a 2
21.g even 6 1 1008.2.b.b 2
21.h odd 6 1 1008.2.b.g 2
28.d even 2 1 784.2.p.f 2
28.f even 6 1 112.2.f.a 2
28.f even 6 1 inner 784.2.p.e 2
28.g odd 6 1 112.2.f.b yes 2
28.g odd 6 1 784.2.p.b 2
35.i odd 6 1 2800.2.k.b 2
35.j even 6 1 2800.2.k.e 2
35.k even 12 2 2800.2.e.b 4
35.l odd 12 2 2800.2.e.c 4
56.j odd 6 1 448.2.f.a 2
56.k odd 6 1 448.2.f.a 2
56.m even 6 1 448.2.f.c 2
56.p even 6 1 448.2.f.c 2
84.j odd 6 1 1008.2.b.g 2
84.n even 6 1 1008.2.b.b 2
112.u odd 12 2 1792.2.e.c 4
112.v even 12 2 1792.2.e.a 4
112.w even 12 2 1792.2.e.a 4
112.x odd 12 2 1792.2.e.c 4
140.p odd 6 1 2800.2.k.b 2
140.s even 6 1 2800.2.k.e 2
140.w even 12 2 2800.2.e.b 4
140.x odd 12 2 2800.2.e.c 4
168.s odd 6 1 4032.2.b.h 2
168.v even 6 1 4032.2.b.b 2
168.ba even 6 1 4032.2.b.b 2
168.be odd 6 1 4032.2.b.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.f.a 2 7.c even 3 1
112.2.f.a 2 28.f even 6 1
112.2.f.b yes 2 7.d odd 6 1
112.2.f.b yes 2 28.g odd 6 1
448.2.f.a 2 56.j odd 6 1
448.2.f.a 2 56.k odd 6 1
448.2.f.c 2 56.m even 6 1
448.2.f.c 2 56.p even 6 1
784.2.p.a 2 4.b odd 2 1
784.2.p.a 2 7.d odd 6 1
784.2.p.b 2 7.b odd 2 1
784.2.p.b 2 28.g odd 6 1
784.2.p.e 2 1.a even 1 1 trivial
784.2.p.e 2 28.f even 6 1 inner
784.2.p.f 2 7.c even 3 1
784.2.p.f 2 28.d even 2 1
1008.2.b.b 2 21.g even 6 1
1008.2.b.b 2 84.n even 6 1
1008.2.b.g 2 21.h odd 6 1
1008.2.b.g 2 84.j odd 6 1
1792.2.e.a 4 112.v even 12 2
1792.2.e.a 4 112.w even 12 2
1792.2.e.c 4 112.u odd 12 2
1792.2.e.c 4 112.x odd 12 2
2800.2.e.b 4 35.k even 12 2
2800.2.e.b 4 140.w even 12 2
2800.2.e.c 4 35.l odd 12 2
2800.2.e.c 4 140.x odd 12 2
2800.2.k.b 2 35.i odd 6 1
2800.2.k.b 2 140.p odd 6 1
2800.2.k.e 2 35.j even 6 1
2800.2.k.e 2 140.s even 6 1
4032.2.b.b 2 168.v even 6 1
4032.2.b.b 2 168.ba even 6 1
4032.2.b.h 2 168.s odd 6 1
4032.2.b.h 2 168.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(784,[χ])S_{2}^{\mathrm{new}}(784, [\chi]):

T322T3+4 T_{3}^{2} - 2T_{3} + 4 Copy content Toggle raw display
T52+6T5+12 T_{5}^{2} + 6T_{5} + 12 Copy content Toggle raw display
T1126T11+12 T_{11}^{2} - 6T_{11} + 12 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
55 T2+6T+12 T^{2} + 6T + 12 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T26T+12 T^{2} - 6T + 12 Copy content Toggle raw display
1313 T2+12 T^{2} + 12 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
2323 T26T+12 T^{2} - 6T + 12 Copy content Toggle raw display
2929 (T6)2 (T - 6)^{2} Copy content Toggle raw display
3131 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
3737 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
4141 T2+48 T^{2} + 48 Copy content Toggle raw display
4343 T2+108 T^{2} + 108 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5959 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
6161 T26T+12 T^{2} - 6T + 12 Copy content Toggle raw display
6767 T26T+12 T^{2} - 6T + 12 Copy content Toggle raw display
7171 T2+12 T^{2} + 12 Copy content Toggle raw display
7373 T2+12T+48 T^{2} + 12T + 48 Copy content Toggle raw display
7979 T2+6T+12 T^{2} + 6T + 12 Copy content Toggle raw display
8383 (T6)2 (T - 6)^{2} Copy content Toggle raw display
8989 T2+12T+48 T^{2} + 12T + 48 Copy content Toggle raw display
9797 T2+192 T^{2} + 192 Copy content Toggle raw display
show more
show less