Properties

Label 2800.2.g.c.449.2
Level $2800$
Weight $2$
Character 2800.449
Analytic conductor $22.358$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(449,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2800.449
Dual form 2800.2.g.c.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +1.00000i q^{7} -6.00000 q^{9} +O(q^{10})\) \(q+3.00000i q^{3} +1.00000i q^{7} -6.00000 q^{9} +5.00000 q^{11} +3.00000i q^{13} -1.00000i q^{17} +6.00000 q^{19} -3.00000 q^{21} +6.00000i q^{23} -9.00000i q^{27} +9.00000 q^{29} +4.00000 q^{31} +15.0000i q^{33} +2.00000i q^{37} -9.00000 q^{39} -4.00000 q^{41} +10.0000i q^{43} +1.00000i q^{47} -1.00000 q^{49} +3.00000 q^{51} -4.00000i q^{53} +18.0000i q^{57} -8.00000 q^{59} -8.00000 q^{61} -6.00000i q^{63} -12.0000i q^{67} -18.0000 q^{69} -8.00000 q^{71} -2.00000i q^{73} +5.00000i q^{77} +13.0000 q^{79} +9.00000 q^{81} -4.00000i q^{83} +27.0000i q^{87} -4.00000 q^{89} -3.00000 q^{91} +12.0000i q^{93} -13.0000i q^{97} -30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 12 q^{9} + 10 q^{11} + 12 q^{19} - 6 q^{21} + 18 q^{29} + 8 q^{31} - 18 q^{39} - 8 q^{41} - 2 q^{49} + 6 q^{51} - 16 q^{59} - 16 q^{61} - 36 q^{69} - 16 q^{71} + 26 q^{79} + 18 q^{81} - 8 q^{89} - 6 q^{91} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −6.00000 −2.00000
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 3.00000i 0.832050i 0.909353 + 0.416025i \(0.136577\pi\)
−0.909353 + 0.416025i \(0.863423\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.00000i − 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 9.00000i − 1.73205i
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 15.0000i 2.61116i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −9.00000 −1.44115
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i 0.646997 + 0.762493i \(0.276025\pi\)
−0.646997 + 0.762493i \(0.723975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.00000i 0.145865i 0.997337 + 0.0729325i \(0.0232358\pi\)
−0.997337 + 0.0729325i \(0.976764\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) − 4.00000i − 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 18.0000i 2.38416i
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) − 6.00000i − 0.755929i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) −18.0000 −2.16695
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) − 2.00000i − 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.00000i 0.569803i
\(78\) 0 0
\(79\) 13.0000 1.46261 0.731307 0.682048i \(-0.238911\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 27.0000i 2.89470i
\(88\) 0 0
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) −3.00000 −0.314485
\(92\) 0 0
\(93\) 12.0000i 1.24434i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 13.0000i − 1.31995i −0.751288 0.659975i \(-0.770567\pi\)
0.751288 0.659975i \(-0.229433\pi\)
\(98\) 0 0
\(99\) −30.0000 −3.01511
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 19.0000i 1.87213i 0.351833 + 0.936063i \(0.385559\pi\)
−0.351833 + 0.936063i \(0.614441\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000i 0.580042i 0.957020 + 0.290021i \(0.0936623\pi\)
−0.957020 + 0.290021i \(0.906338\pi\)
\(108\) 0 0
\(109\) 3.00000 0.287348 0.143674 0.989625i \(-0.454108\pi\)
0.143674 + 0.989625i \(0.454108\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) − 14.0000i − 1.31701i −0.752577 0.658505i \(-0.771189\pi\)
0.752577 0.658505i \(-0.228811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 18.0000i − 1.66410i
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) − 12.0000i − 1.08200i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 0 0
\(129\) −30.0000 −2.64135
\(130\) 0 0
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) 0 0
\(133\) 6.00000i 0.520266i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 12.0000i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) 15.0000i 1.25436i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3.00000i − 0.247436i
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 2.00000i − 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) − 10.0000i − 0.783260i −0.920123 0.391630i \(-0.871911\pi\)
0.920123 0.391630i \(-0.128089\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.00000i − 0.232147i −0.993241 0.116073i \(-0.962969\pi\)
0.993241 0.116073i \(-0.0370308\pi\)
\(168\) 0 0
\(169\) 4.00000 0.307692
\(170\) 0 0
\(171\) −36.0000 −2.75299
\(172\) 0 0
\(173\) 1.00000i 0.0760286i 0.999277 + 0.0380143i \(0.0121032\pi\)
−0.999277 + 0.0380143i \(0.987897\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 24.0000i − 1.80395i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) − 24.0000i − 1.77413i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 5.00000i − 0.365636i
\(188\) 0 0
\(189\) 9.00000 0.654654
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 36.0000 2.53924
\(202\) 0 0
\(203\) 9.00000i 0.631676i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 36.0000i − 2.50217i
\(208\) 0 0
\(209\) 30.0000 2.07514
\(210\) 0 0
\(211\) 11.0000 0.757271 0.378636 0.925546i \(-0.376393\pi\)
0.378636 + 0.925546i \(0.376393\pi\)
\(212\) 0 0
\(213\) − 24.0000i − 1.64445i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000i 0.271538i
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) − 5.00000i − 0.334825i −0.985887 0.167412i \(-0.946459\pi\)
0.985887 0.167412i \(-0.0535411\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.00000i 0.0663723i 0.999449 + 0.0331862i \(0.0105654\pi\)
−0.999449 + 0.0331862i \(0.989435\pi\)
\(228\) 0 0
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 0 0
\(231\) −15.0000 −0.986928
\(232\) 0 0
\(233\) − 24.0000i − 1.57229i −0.618041 0.786146i \(-0.712073\pi\)
0.618041 0.786146i \(-0.287927\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 39.0000i 2.53332i
\(238\) 0 0
\(239\) 1.00000 0.0646846 0.0323423 0.999477i \(-0.489703\pi\)
0.0323423 + 0.999477i \(0.489703\pi\)
\(240\) 0 0
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 18.0000i 1.14531i
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) 30.0000i 1.88608i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.0000i 0.873296i 0.899632 + 0.436648i \(0.143834\pi\)
−0.899632 + 0.436648i \(0.856166\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) −54.0000 −3.34252
\(262\) 0 0
\(263\) 2.00000i 0.123325i 0.998097 + 0.0616626i \(0.0196403\pi\)
−0.998097 + 0.0616626i \(0.980360\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 12.0000i − 0.734388i
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) − 9.00000i − 0.544705i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.00000i 0.360505i 0.983620 + 0.180253i \(0.0576915\pi\)
−0.983620 + 0.180253i \(0.942309\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 11.0000 0.656205 0.328102 0.944642i \(-0.393591\pi\)
0.328102 + 0.944642i \(0.393591\pi\)
\(282\) 0 0
\(283\) − 31.0000i − 1.84276i −0.388664 0.921379i \(-0.627063\pi\)
0.388664 0.921379i \(-0.372937\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4.00000i − 0.236113i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) 0 0
\(291\) 39.0000 2.28622
\(292\) 0 0
\(293\) 5.00000i 0.292103i 0.989277 + 0.146052i \(0.0466565\pi\)
−0.989277 + 0.146052i \(0.953343\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 45.0000i − 2.61116i
\(298\) 0 0
\(299\) −18.0000 −1.04097
\(300\) 0 0
\(301\) −10.0000 −0.576390
\(302\) 0 0
\(303\) 18.0000i 1.03407i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.0000i 1.31268i 0.754466 + 0.656340i \(0.227896\pi\)
−0.754466 + 0.656340i \(0.772104\pi\)
\(308\) 0 0
\(309\) −57.0000 −3.24262
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 7.00000i 0.395663i 0.980236 + 0.197832i \(0.0633900\pi\)
−0.980236 + 0.197832i \(0.936610\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 26.0000i − 1.46031i −0.683284 0.730153i \(-0.739449\pi\)
0.683284 0.730153i \(-0.260551\pi\)
\(318\) 0 0
\(319\) 45.0000 2.51952
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) − 6.00000i − 0.333849i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9.00000i 0.497701i
\(328\) 0 0
\(329\) −1.00000 −0.0551318
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) − 12.0000i − 0.657596i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 0 0
\(339\) 42.0000 2.28113
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 10.0000i − 0.536828i −0.963304 0.268414i \(-0.913500\pi\)
0.963304 0.268414i \(-0.0864995\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 27.0000 1.44115
\(352\) 0 0
\(353\) − 3.00000i − 0.159674i −0.996808 0.0798369i \(-0.974560\pi\)
0.996808 0.0798369i \(-0.0254400\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.00000i 0.158777i
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 42.0000i 2.20443i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.0000i 0.887393i 0.896177 + 0.443696i \(0.146333\pi\)
−0.896177 + 0.443696i \(0.853667\pi\)
\(368\) 0 0
\(369\) 24.0000 1.24939
\(370\) 0 0
\(371\) 4.00000 0.207670
\(372\) 0 0
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 27.0000i 1.39057i
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) −24.0000 −1.22956
\(382\) 0 0
\(383\) 36.0000i 1.83951i 0.392488 + 0.919757i \(0.371614\pi\)
−0.392488 + 0.919757i \(0.628386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 60.0000i − 3.04997i
\(388\) 0 0
\(389\) 31.0000 1.57176 0.785881 0.618378i \(-0.212210\pi\)
0.785881 + 0.618378i \(0.212210\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 0 0
\(393\) 30.0000i 1.51330i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.00000i 0.351320i 0.984451 + 0.175660i \(0.0562059\pi\)
−0.984451 + 0.175660i \(0.943794\pi\)
\(398\) 0 0
\(399\) −18.0000 −0.901127
\(400\) 0 0
\(401\) 25.0000 1.24844 0.624220 0.781248i \(-0.285417\pi\)
0.624220 + 0.781248i \(0.285417\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.0000i 0.495682i
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 36.0000 1.77575
\(412\) 0 0
\(413\) − 8.00000i − 0.393654i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 42.0000i − 2.05675i
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) − 6.00000i − 0.291730i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 8.00000i − 0.387147i
\(428\) 0 0
\(429\) −45.0000 −2.17262
\(430\) 0 0
\(431\) 9.00000 0.433515 0.216757 0.976226i \(-0.430452\pi\)
0.216757 + 0.976226i \(0.430452\pi\)
\(432\) 0 0
\(433\) − 2.00000i − 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 36.0000i 1.72211i
\(438\) 0 0
\(439\) −2.00000 −0.0954548 −0.0477274 0.998860i \(-0.515198\pi\)
−0.0477274 + 0.998860i \(0.515198\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) − 14.0000i − 0.665160i −0.943075 0.332580i \(-0.892081\pi\)
0.943075 0.332580i \(-0.107919\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18.0000i 0.851371i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) −20.0000 −0.941763
\(452\) 0 0
\(453\) − 15.0000i − 0.704761i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.0000i 0.748448i 0.927338 + 0.374224i \(0.122091\pi\)
−0.927338 + 0.374224i \(0.877909\pi\)
\(458\) 0 0
\(459\) −9.00000 −0.420084
\(460\) 0 0
\(461\) 40.0000 1.86299 0.931493 0.363760i \(-0.118507\pi\)
0.931493 + 0.363760i \(0.118507\pi\)
\(462\) 0 0
\(463\) − 16.0000i − 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 5.00000i − 0.231372i −0.993286 0.115686i \(-0.963093\pi\)
0.993286 0.115686i \(-0.0369067\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 6.00000 0.276465
\(472\) 0 0
\(473\) 50.0000i 2.29900i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 24.0000i 1.09888i
\(478\) 0 0
\(479\) 6.00000 0.274147 0.137073 0.990561i \(-0.456230\pi\)
0.137073 + 0.990561i \(0.456230\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) − 18.0000i − 0.819028i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 26.0000i − 1.17817i −0.808070 0.589086i \(-0.799488\pi\)
0.808070 0.589086i \(-0.200512\pi\)
\(488\) 0 0
\(489\) 30.0000 1.35665
\(490\) 0 0
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) 0 0
\(493\) − 9.00000i − 0.405340i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 8.00000i − 0.358849i
\(498\) 0 0
\(499\) −9.00000 −0.402895 −0.201448 0.979499i \(-0.564565\pi\)
−0.201448 + 0.979499i \(0.564565\pi\)
\(500\) 0 0
\(501\) 9.00000 0.402090
\(502\) 0 0
\(503\) − 3.00000i − 0.133763i −0.997761 0.0668817i \(-0.978695\pi\)
0.997761 0.0668817i \(-0.0213050\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000i 0.532939i
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 0 0
\(513\) − 54.0000i − 2.38416i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.00000i 0.219900i
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.00000i − 0.174243i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 48.0000 2.08302
\(532\) 0 0
\(533\) − 12.0000i − 0.519778i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 36.0000i − 1.55351i
\(538\) 0 0
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) 39.0000 1.67674 0.838370 0.545101i \(-0.183509\pi\)
0.838370 + 0.545101i \(0.183509\pi\)
\(542\) 0 0
\(543\) − 60.0000i − 2.57485i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24.0000i 1.02617i 0.858339 + 0.513083i \(0.171497\pi\)
−0.858339 + 0.513083i \(0.828503\pi\)
\(548\) 0 0
\(549\) 48.0000 2.04859
\(550\) 0 0
\(551\) 54.0000 2.30048
\(552\) 0 0
\(553\) 13.0000i 0.552816i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 40.0000i 1.69485i 0.530912 + 0.847427i \(0.321850\pi\)
−0.530912 + 0.847427i \(0.678150\pi\)
\(558\) 0 0
\(559\) −30.0000 −1.26886
\(560\) 0 0
\(561\) 15.0000 0.633300
\(562\) 0 0
\(563\) − 28.0000i − 1.18006i −0.807382 0.590030i \(-0.799116\pi\)
0.807382 0.590030i \(-0.200884\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.00000i 0.377964i
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) − 9.00000i − 0.375980i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13.0000i 0.541197i 0.962692 + 0.270599i \(0.0872216\pi\)
−0.962692 + 0.270599i \(0.912778\pi\)
\(578\) 0 0
\(579\) −12.0000 −0.498703
\(580\) 0 0
\(581\) 4.00000 0.165948
\(582\) 0 0
\(583\) − 20.0000i − 0.828315i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.0000i 0.660391i 0.943913 + 0.330195i \(0.107115\pi\)
−0.943913 + 0.330195i \(0.892885\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) −24.0000 −0.987228
\(592\) 0 0
\(593\) 27.0000i 1.10876i 0.832265 + 0.554379i \(0.187044\pi\)
−0.832265 + 0.554379i \(0.812956\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.0000i 0.982255i
\(598\) 0 0
\(599\) 15.0000 0.612883 0.306442 0.951889i \(-0.400862\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 72.0000i 2.93207i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 13.0000i − 0.527654i −0.964570 0.263827i \(-0.915015\pi\)
0.964570 0.263827i \(-0.0849848\pi\)
\(608\) 0 0
\(609\) −27.0000 −1.09410
\(610\) 0 0
\(611\) −3.00000 −0.121367
\(612\) 0 0
\(613\) − 42.0000i − 1.69636i −0.529705 0.848182i \(-0.677697\pi\)
0.529705 0.848182i \(-0.322303\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 46.0000i − 1.85189i −0.377658 0.925945i \(-0.623271\pi\)
0.377658 0.925945i \(-0.376729\pi\)
\(618\) 0 0
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) 54.0000 2.16695
\(622\) 0 0
\(623\) − 4.00000i − 0.160257i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 90.0000i 3.59425i
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −47.0000 −1.87104 −0.935520 0.353273i \(-0.885069\pi\)
−0.935520 + 0.353273i \(0.885069\pi\)
\(632\) 0 0
\(633\) 33.0000i 1.31163i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.00000i − 0.118864i
\(638\) 0 0
\(639\) 48.0000 1.89885
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) 19.0000i 0.749287i 0.927169 + 0.374643i \(0.122235\pi\)
−0.927169 + 0.374643i \(0.877765\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000i 0.314512i 0.987558 + 0.157256i \(0.0502649\pi\)
−0.987558 + 0.157256i \(0.949735\pi\)
\(648\) 0 0
\(649\) −40.0000 −1.57014
\(650\) 0 0
\(651\) −12.0000 −0.470317
\(652\) 0 0
\(653\) − 2.00000i − 0.0782660i −0.999234 0.0391330i \(-0.987540\pi\)
0.999234 0.0391330i \(-0.0124596\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 12.0000i 0.468165i
\(658\) 0 0
\(659\) 31.0000 1.20759 0.603794 0.797140i \(-0.293655\pi\)
0.603794 + 0.797140i \(0.293655\pi\)
\(660\) 0 0
\(661\) −32.0000 −1.24466 −0.622328 0.782757i \(-0.713813\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) 0 0
\(663\) 9.00000i 0.349531i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 54.0000i 2.09089i
\(668\) 0 0
\(669\) 15.0000 0.579934
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) − 4.00000i − 0.154189i −0.997024 0.0770943i \(-0.975436\pi\)
0.997024 0.0770943i \(-0.0245643\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 27.0000i − 1.03769i −0.854867 0.518847i \(-0.826361\pi\)
0.854867 0.518847i \(-0.173639\pi\)
\(678\) 0 0
\(679\) 13.0000 0.498894
\(680\) 0 0
\(681\) −3.00000 −0.114960
\(682\) 0 0
\(683\) 8.00000i 0.306111i 0.988218 + 0.153056i \(0.0489114\pi\)
−0.988218 + 0.153056i \(0.951089\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 12.0000i − 0.457829i
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 0 0
\(693\) − 30.0000i − 1.13961i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 0 0
\(699\) 72.0000 2.72329
\(700\) 0 0
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.00000i 0.225653i
\(708\) 0 0
\(709\) −31.0000 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 0 0
\(711\) −78.0000 −2.92523
\(712\) 0 0
\(713\) 24.0000i 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.00000i 0.112037i
\(718\) 0 0
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) −19.0000 −0.707597
\(722\) 0 0
\(723\) − 78.0000i − 2.90085i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 24.0000i − 0.890111i −0.895503 0.445055i \(-0.853184\pi\)
0.895503 0.445055i \(-0.146816\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 10.0000 0.369863
\(732\) 0 0
\(733\) 47.0000i 1.73598i 0.496578 + 0.867992i \(0.334590\pi\)
−0.496578 + 0.867992i \(0.665410\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 60.0000i − 2.21013i
\(738\) 0 0
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) −54.0000 −1.98374
\(742\) 0 0
\(743\) 36.0000i 1.32071i 0.750953 + 0.660356i \(0.229595\pi\)
−0.750953 + 0.660356i \(0.770405\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 24.0000i 0.878114i
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 19.0000 0.693320 0.346660 0.937991i \(-0.387316\pi\)
0.346660 + 0.937991i \(0.387316\pi\)
\(752\) 0 0
\(753\) − 90.0000i − 3.27978i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 32.0000i − 1.16306i −0.813525 0.581530i \(-0.802454\pi\)
0.813525 0.581530i \(-0.197546\pi\)
\(758\) 0 0
\(759\) −90.0000 −3.26679
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 3.00000i 0.108607i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 24.0000i − 0.866590i
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) −42.0000 −1.51259
\(772\) 0 0
\(773\) − 45.0000i − 1.61854i −0.587439 0.809269i \(-0.699864\pi\)
0.587439 0.809269i \(-0.300136\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 6.00000i − 0.215249i
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) −40.0000 −1.43131
\(782\) 0 0
\(783\) − 81.0000i − 2.89470i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 31.0000i − 1.10503i −0.833503 0.552515i \(-0.813668\pi\)
0.833503 0.552515i \(-0.186332\pi\)
\(788\) 0 0
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) 14.0000 0.497783
\(792\) 0 0
\(793\) − 24.0000i − 0.852265i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 33.0000i − 1.16892i −0.811423 0.584460i \(-0.801306\pi\)
0.811423 0.584460i \(-0.198694\pi\)
\(798\) 0 0
\(799\) 1.00000 0.0353775
\(800\) 0 0
\(801\) 24.0000 0.847998
\(802\) 0 0
\(803\) − 10.0000i − 0.352892i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 54.0000i − 1.90089i
\(808\) 0 0
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) −14.0000 −0.491606 −0.245803 0.969320i \(-0.579052\pi\)
−0.245803 + 0.969320i \(0.579052\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 60.0000i 2.09913i
\(818\) 0 0
\(819\) 18.0000 0.628971
\(820\) 0 0
\(821\) −39.0000 −1.36111 −0.680555 0.732697i \(-0.738261\pi\)
−0.680555 + 0.732697i \(0.738261\pi\)
\(822\) 0 0
\(823\) 28.0000i 0.976019i 0.872838 + 0.488009i \(0.162277\pi\)
−0.872838 + 0.488009i \(0.837723\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 50.0000i − 1.73867i −0.494223 0.869335i \(-0.664547\pi\)
0.494223 0.869335i \(-0.335453\pi\)
\(828\) 0 0
\(829\) 28.0000 0.972480 0.486240 0.873825i \(-0.338368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(830\) 0 0
\(831\) −18.0000 −0.624413
\(832\) 0 0
\(833\) 1.00000i 0.0346479i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 36.0000i − 1.24434i
\(838\) 0 0
\(839\) 2.00000 0.0690477 0.0345238 0.999404i \(-0.489009\pi\)
0.0345238 + 0.999404i \(0.489009\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 33.0000i 1.13658i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14.0000i 0.481046i
\(848\) 0 0
\(849\) 93.0000 3.19175
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.0000i 0.614868i 0.951569 + 0.307434i \(0.0994704\pi\)
−0.951569 + 0.307434i \(0.900530\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) 12.0000 0.408959
\(862\) 0 0
\(863\) 16.0000i 0.544646i 0.962206 + 0.272323i \(0.0877920\pi\)
−0.962206 + 0.272323i \(0.912208\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 48.0000i 1.63017i
\(868\) 0 0
\(869\) 65.0000 2.20497
\(870\) 0 0
\(871\) 36.0000 1.21981
\(872\) 0 0
\(873\) 78.0000i 2.63990i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 26.0000i 0.877958i 0.898497 + 0.438979i \(0.144660\pi\)
−0.898497 + 0.438979i \(0.855340\pi\)
\(878\) 0 0
\(879\) −15.0000 −0.505937
\(880\) 0 0
\(881\) 32.0000 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(882\) 0 0
\(883\) − 36.0000i − 1.21150i −0.795656 0.605748i \(-0.792874\pi\)
0.795656 0.605748i \(-0.207126\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 8.00000i − 0.268614i −0.990940 0.134307i \(-0.957119\pi\)
0.990940 0.134307i \(-0.0428808\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 45.0000 1.50756
\(892\) 0 0
\(893\) 6.00000i 0.200782i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 54.0000i − 1.80301i
\(898\) 0 0
\(899\) 36.0000 1.20067
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) − 30.0000i − 0.998337i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 14.0000i − 0.464862i −0.972613 0.232431i \(-0.925332\pi\)
0.972613 0.232431i \(-0.0746680\pi\)
\(908\) 0 0
\(909\) −36.0000 −1.19404
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) − 20.0000i − 0.661903i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.0000i 0.330229i
\(918\) 0 0
\(919\) −31.0000 −1.02260 −0.511298 0.859404i \(-0.670835\pi\)
−0.511298 + 0.859404i \(0.670835\pi\)
\(920\) 0 0
\(921\) −69.0000 −2.27363
\(922\) 0 0
\(923\) − 24.0000i − 0.789970i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 114.000i − 3.74425i
\(928\) 0 0
\(929\) −28.0000 −0.918650 −0.459325 0.888268i \(-0.651909\pi\)
−0.459325 + 0.888268i \(0.651909\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 0 0
\(933\) 54.0000i 1.76788i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 37.0000i − 1.20874i −0.796705 0.604369i \(-0.793425\pi\)
0.796705 0.604369i \(-0.206575\pi\)
\(938\) 0 0
\(939\) −21.0000 −0.685309
\(940\) 0 0
\(941\) 32.0000 1.04317 0.521585 0.853199i \(-0.325341\pi\)
0.521585 + 0.853199i \(0.325341\pi\)
\(942\) 0 0
\(943\) − 24.0000i − 0.781548i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.00000i − 0.259965i −0.991516 0.129983i \(-0.958508\pi\)
0.991516 0.129983i \(-0.0414921\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 78.0000 2.52932
\(952\) 0 0
\(953\) − 24.0000i − 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 135.000i 4.36393i
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) − 36.0000i − 1.16008i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000i 0.0643157i 0.999483 + 0.0321578i \(0.0102379\pi\)
−0.999483 + 0.0321578i \(0.989762\pi\)
\(968\) 0 0
\(969\) 18.0000 0.578243
\(970\) 0 0
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) − 14.0000i − 0.448819i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) −18.0000 −0.574696
\(982\) 0 0
\(983\) − 43.0000i − 1.37149i −0.727843 0.685744i \(-0.759477\pi\)
0.727843 0.685744i \(-0.240523\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 3.00000i − 0.0954911i
\(988\) 0 0
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) − 84.0000i − 2.66566i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 11.0000i 0.348373i 0.984713 + 0.174187i \(0.0557296\pi\)
−0.984713 + 0.174187i \(0.944270\pi\)
\(998\) 0 0
\(999\) 18.0000 0.569495
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2800.2.g.c.449.2 2
4.3 odd 2 700.2.e.a.449.1 2
5.2 odd 4 2800.2.a.be.1.1 1
5.3 odd 4 560.2.a.a.1.1 1
5.4 even 2 inner 2800.2.g.c.449.1 2
12.11 even 2 6300.2.k.p.6049.1 2
15.8 even 4 5040.2.a.bd.1.1 1
20.3 even 4 140.2.a.b.1.1 1
20.7 even 4 700.2.a.b.1.1 1
20.19 odd 2 700.2.e.a.449.2 2
28.27 even 2 4900.2.e.a.2549.2 2
35.13 even 4 3920.2.a.bl.1.1 1
40.3 even 4 2240.2.a.c.1.1 1
40.13 odd 4 2240.2.a.bb.1.1 1
60.23 odd 4 1260.2.a.h.1.1 1
60.47 odd 4 6300.2.a.bf.1.1 1
60.59 even 2 6300.2.k.p.6049.2 2
140.3 odd 12 980.2.i.j.961.1 2
140.23 even 12 980.2.i.b.361.1 2
140.27 odd 4 4900.2.a.u.1.1 1
140.83 odd 4 980.2.a.b.1.1 1
140.103 odd 12 980.2.i.j.361.1 2
140.123 even 12 980.2.i.b.961.1 2
140.139 even 2 4900.2.e.a.2549.1 2
420.83 even 4 8820.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.a.b.1.1 1 20.3 even 4
560.2.a.a.1.1 1 5.3 odd 4
700.2.a.b.1.1 1 20.7 even 4
700.2.e.a.449.1 2 4.3 odd 2
700.2.e.a.449.2 2 20.19 odd 2
980.2.a.b.1.1 1 140.83 odd 4
980.2.i.b.361.1 2 140.23 even 12
980.2.i.b.961.1 2 140.123 even 12
980.2.i.j.361.1 2 140.103 odd 12
980.2.i.j.961.1 2 140.3 odd 12
1260.2.a.h.1.1 1 60.23 odd 4
2240.2.a.c.1.1 1 40.3 even 4
2240.2.a.bb.1.1 1 40.13 odd 4
2800.2.a.be.1.1 1 5.2 odd 4
2800.2.g.c.449.1 2 5.4 even 2 inner
2800.2.g.c.449.2 2 1.1 even 1 trivial
3920.2.a.bl.1.1 1 35.13 even 4
4900.2.a.u.1.1 1 140.27 odd 4
4900.2.e.a.2549.1 2 140.139 even 2
4900.2.e.a.2549.2 2 28.27 even 2
5040.2.a.bd.1.1 1 15.8 even 4
6300.2.a.bf.1.1 1 60.47 odd 4
6300.2.k.p.6049.1 2 12.11 even 2
6300.2.k.p.6049.2 2 60.59 even 2
8820.2.a.n.1.1 1 420.83 even 4