Properties

Label 2800.2.k.p.2351.8
Level $2800$
Weight $2$
Character 2800.2351
Analytic conductor $22.358$
Analytic rank $0$
Dimension $8$
CM discriminant -35
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(2351,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.2351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.31116960000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 560)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 2351.8
Root \(1.62968 + 0.586627i\) of defining polynomial
Character \(\chi\) \(=\) 2800.2351
Dual form 2800.2.k.p.2351.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.25937 q^{3} -2.64575 q^{7} +7.62348 q^{9} +0.359964i q^{11} +5.64539i q^{13} +7.99190i q^{17} -8.62348 q^{21} +15.0696 q^{27} +0.623475 q^{29} +1.17325i q^{33} +18.4004i q^{39} -5.71383 q^{47} +7.00000 q^{49} +26.0485i q^{51} -20.1698 q^{63} -11.8322i q^{71} -13.4164i q^{73} -0.952374i q^{77} +8.00809i q^{79} +26.2470 q^{81} +15.8745 q^{83} +2.03214 q^{87} -14.9363i q^{91} +12.6849i q^{97} +2.74417i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 20 q^{9} - 28 q^{21} - 36 q^{29} + 56 q^{49} + 128 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.25937 1.88180 0.940898 0.338689i \(-0.109984\pi\)
0.940898 + 0.338689i \(0.109984\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.64575 −1.00000
\(8\) 0 0
\(9\) 7.62348 2.54116
\(10\) 0 0
\(11\) 0.359964i 0.108533i 0.998526 + 0.0542666i \(0.0172821\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) 5.64539i 1.56575i 0.622179 + 0.782875i \(0.286247\pi\)
−0.622179 + 0.782875i \(0.713753\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.99190i 1.93832i 0.246433 + 0.969160i \(0.420742\pi\)
−0.246433 + 0.969160i \(0.579258\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −8.62348 −1.88180
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 15.0696 2.90015
\(28\) 0 0
\(29\) 0.623475 0.115776 0.0578882 0.998323i \(-0.481563\pi\)
0.0578882 + 0.998323i \(0.481563\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 1.17325i 0.204237i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 18.4004i 2.94642i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.71383 −0.833448 −0.416724 0.909033i \(-0.636822\pi\)
−0.416724 + 0.909033i \(0.636822\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 26.0485i 3.64752i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −20.1698 −2.54116
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 11.8322i − 1.40422i −0.712069 0.702109i \(-0.752242\pi\)
0.712069 0.702109i \(-0.247758\pi\)
\(72\) 0 0
\(73\) − 13.4164i − 1.57027i −0.619324 0.785136i \(-0.712593\pi\)
0.619324 0.785136i \(-0.287407\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.952374i − 0.108533i
\(78\) 0 0
\(79\) 8.00809i 0.900981i 0.892781 + 0.450490i \(0.148751\pi\)
−0.892781 + 0.450490i \(0.851249\pi\)
\(80\) 0 0
\(81\) 26.2470 2.91633
\(82\) 0 0
\(83\) 15.8745 1.74245 0.871227 0.490881i \(-0.163325\pi\)
0.871227 + 0.490881i \(0.163325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.03214 0.217868
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 14.9363i − 1.56575i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.6849i 1.28796i 0.765043 + 0.643979i \(0.222718\pi\)
−0.765043 + 0.643979i \(0.777282\pi\)
\(98\) 0 0
\(99\) 2.74417i 0.275800i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 18.7513 1.84762 0.923810 0.382851i \(-0.125058\pi\)
0.923810 + 0.382851i \(0.125058\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −9.87043 −0.945415 −0.472708 0.881219i \(-0.656723\pi\)
−0.472708 + 0.881219i \(0.656723\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 43.0375i 3.97882i
\(118\) 0 0
\(119\) − 21.1446i − 1.93832i
\(120\) 0 0
\(121\) 10.8704 0.988221
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −18.6235 −1.56838
\(142\) 0 0
\(143\) −2.03214 −0.169936
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 22.8156 1.88180
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 5.84831i 0.475929i 0.971274 + 0.237964i \(0.0764802\pi\)
−0.971274 + 0.237964i \(0.923520\pi\)
\(152\) 0 0
\(153\) 60.9260i 4.92558i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 13.4164i − 1.07075i −0.844616 0.535373i \(-0.820171\pi\)
0.844616 0.535373i \(-0.179829\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.2700 1.95545 0.977727 0.209881i \(-0.0673075\pi\)
0.977727 + 0.209881i \(0.0673075\pi\)
\(168\) 0 0
\(169\) −18.8704 −1.45157
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.0314i 1.14282i 0.820666 + 0.571409i \(0.193603\pi\)
−0.820666 + 0.571409i \(0.806397\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 11.8322i − 0.884377i −0.896922 0.442189i \(-0.854202\pi\)
0.896922 0.442189i \(-0.145798\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.87679 −0.210372
\(188\) 0 0
\(189\) −39.8704 −2.90015
\(190\) 0 0
\(191\) − 20.4246i − 1.47788i −0.673774 0.738938i \(-0.735328\pi\)
0.673774 0.738938i \(-0.264672\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.64956 −0.115776
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 28.7927i − 1.98217i −0.133226 0.991086i \(-0.542533\pi\)
0.133226 0.991086i \(-0.457467\pi\)
\(212\) 0 0
\(213\) − 38.5654i − 2.64245i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 43.7290i − 2.95493i
\(220\) 0 0
\(221\) −45.1174 −3.03492
\(222\) 0 0
\(223\) −20.3611 −1.36348 −0.681740 0.731594i \(-0.738777\pi\)
−0.681740 + 0.731594i \(0.738777\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.2058 −1.40748 −0.703738 0.710460i \(-0.748487\pi\)
−0.703738 + 0.710460i \(0.748487\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) − 3.10414i − 0.204237i
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 26.1013i 1.69546i
\(238\) 0 0
\(239\) − 22.5844i − 1.46087i −0.682985 0.730433i \(-0.739318\pi\)
0.682985 0.730433i \(-0.260682\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 40.3396 2.58779
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 51.7409 3.27894
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4.47214i − 0.278964i −0.990225 0.139482i \(-0.955456\pi\)
0.990225 0.139482i \(-0.0445438\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.75305 0.294206
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) − 48.6829i − 2.94642i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.3765 0.678667 0.339333 0.940666i \(-0.389799\pi\)
0.339333 + 0.940666i \(0.389799\pi\)
\(282\) 0 0
\(283\) −27.7245 −1.64805 −0.824025 0.566553i \(-0.808277\pi\)
−0.824025 + 0.566553i \(0.808277\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −46.8704 −2.75708
\(290\) 0 0
\(291\) 41.3448i 2.42367i
\(292\) 0 0
\(293\) 32.9200i 1.92320i 0.274446 + 0.961602i \(0.411505\pi\)
−0.274446 + 0.961602i \(0.588495\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.42451i 0.314762i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −11.3879 −0.649942 −0.324971 0.945724i \(-0.605355\pi\)
−0.324971 + 0.945724i \(0.605355\pi\)
\(308\) 0 0
\(309\) 61.1174 3.47685
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) − 35.2665i − 1.99338i −0.0813030 0.996689i \(-0.525908\pi\)
0.0813030 0.996689i \(-0.474092\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0.224428i 0.0125656i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −32.1713 −1.77908
\(328\) 0 0
\(329\) 15.1174 0.833448
\(330\) 0 0
\(331\) − 35.4965i − 1.95106i −0.219860 0.975531i \(-0.570560\pi\)
0.219860 0.975531i \(-0.429440\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 85.0738i 4.54090i
\(352\) 0 0
\(353\) 6.08715i 0.323986i 0.986792 + 0.161993i \(0.0517922\pi\)
−0.986792 + 0.161993i \(0.948208\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 68.9179i − 3.64752i
\(358\) 0 0
\(359\) 11.8322i 0.624477i 0.950004 + 0.312239i \(0.101079\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 35.4307 1.85963
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 38.3075 1.99964 0.999818 0.0190919i \(-0.00607750\pi\)
0.999818 + 0.0190919i \(0.00607750\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.51976i 0.181277i
\(378\) 0 0
\(379\) 35.4965i 1.82333i 0.410932 + 0.911666i \(0.365203\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.8745 −0.811149 −0.405575 0.914062i \(-0.632929\pi\)
−0.405575 + 0.914062i \(0.632929\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.6235 1.24846 0.624230 0.781241i \(-0.285413\pi\)
0.624230 + 0.781241i \(0.285413\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 19.7244i − 0.989941i −0.868910 0.494971i \(-0.835179\pi\)
0.868910 0.494971i \(-0.164821\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −39.1174 −1.95343 −0.976714 0.214544i \(-0.931173\pi\)
−0.976714 + 0.214544i \(0.931173\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 33.8704 1.65074 0.825372 0.564590i \(-0.190966\pi\)
0.825372 + 0.564590i \(0.190966\pi\)
\(422\) 0 0
\(423\) −43.5593 −2.11792
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.62348 −0.319784
\(430\) 0 0
\(431\) − 23.3044i − 1.12253i −0.827636 0.561266i \(-0.810315\pi\)
0.827636 0.561266i \(-0.189685\pi\)
\(432\) 0 0
\(433\) 40.2492i 1.93425i 0.254293 + 0.967127i \(0.418157\pi\)
−0.254293 + 0.967127i \(0.581843\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 53.3643 2.54116
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −19.5562 −0.924977
\(448\) 0 0
\(449\) −40.3643 −1.90491 −0.952455 0.304679i \(-0.901451\pi\)
−0.952455 + 0.304679i \(0.901451\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 19.0618i 0.895601i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 120.435i 5.62141i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 40.7620 1.88624 0.943119 0.332454i \(-0.107877\pi\)
0.943119 + 0.332454i \(0.107877\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) − 43.7290i − 2.01493i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 43.3690i 1.95722i 0.205731 + 0.978609i \(0.434043\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(492\) 0 0
\(493\) 4.98275i 0.224412i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 31.3050i 1.40422i
\(498\) 0 0
\(499\) − 26.6329i − 1.19225i −0.802890 0.596127i \(-0.796706\pi\)
0.802890 0.596127i \(-0.203294\pi\)
\(500\) 0 0
\(501\) 82.3643 3.67977
\(502\) 0 0
\(503\) 44.8262 1.99870 0.999352 0.0360049i \(-0.0114632\pi\)
0.999352 + 0.0360049i \(0.0114632\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −61.5057 −2.73156
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 35.4965i 1.57027i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 2.05677i − 0.0904567i
\(518\) 0 0
\(519\) 48.9929i 2.15055i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 37.0405 1.61967 0.809834 0.586659i \(-0.199557\pi\)
0.809834 + 0.586659i \(0.199557\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 38.5654i − 1.66422i
\(538\) 0 0
\(539\) 2.51975i 0.108533i
\(540\) 0 0
\(541\) −6.12957 −0.263531 −0.131765 0.991281i \(-0.542065\pi\)
−0.131765 + 0.991281i \(0.542065\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) − 21.1874i − 0.900981i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −9.37652 −0.395877
\(562\) 0 0
\(563\) 15.8745 0.669031 0.334515 0.942390i \(-0.391427\pi\)
0.334515 + 0.942390i \(0.391427\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −69.4429 −2.91633
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) − 35.4965i − 1.48548i −0.669579 0.742741i \(-0.733526\pi\)
0.669579 0.742741i \(-0.266474\pi\)
\(572\) 0 0
\(573\) − 66.5714i − 2.78106i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 46.5573i − 1.93820i −0.246661 0.969102i \(-0.579333\pi\)
0.246661 0.969102i \(-0.420667\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −42.0000 −1.74245
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 47.6235 1.96563 0.982817 0.184585i \(-0.0590940\pi\)
0.982817 + 0.184585i \(0.0590940\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 41.8642i 1.71916i 0.511003 + 0.859579i \(0.329274\pi\)
−0.511003 + 0.859579i \(0.670726\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.9848i 0.775698i 0.921723 + 0.387849i \(0.126782\pi\)
−0.921723 + 0.387849i \(0.873218\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −39.9173 −1.62019 −0.810097 0.586296i \(-0.800586\pi\)
−0.810097 + 0.586296i \(0.800586\pi\)
\(608\) 0 0
\(609\) −5.37652 −0.217868
\(610\) 0 0
\(611\) − 32.2568i − 1.30497i
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 49.5773i − 1.97364i −0.161817 0.986821i \(-0.551735\pi\)
0.161817 0.986821i \(-0.448265\pi\)
\(632\) 0 0
\(633\) − 93.8460i − 3.73004i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 39.5177i 1.56575i
\(638\) 0 0
\(639\) − 90.2022i − 3.56834i
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) −30.9441 −1.22032 −0.610158 0.792279i \(-0.708894\pi\)
−0.610158 + 0.792279i \(0.708894\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −47.6235 −1.87227 −0.936137 0.351636i \(-0.885626\pi\)
−0.936137 + 0.351636i \(0.885626\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 102.280i − 3.99031i
\(658\) 0 0
\(659\) 41.2093i 1.60528i 0.596461 + 0.802642i \(0.296573\pi\)
−0.596461 + 0.802642i \(0.703427\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) −147.054 −5.71111
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −66.3643 −2.56579
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 18.8409i − 0.724115i −0.932156 0.362058i \(-0.882074\pi\)
0.932156 0.362058i \(-0.117926\pi\)
\(678\) 0 0
\(679\) − 33.5611i − 1.28796i
\(680\) 0 0
\(681\) −69.1174 −2.64858
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) − 7.26040i − 0.275800i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 52.3643 1.97777 0.988887 0.148671i \(-0.0474996\pi\)
0.988887 + 0.148671i \(0.0474996\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 45.6113 1.71297 0.856484 0.516174i \(-0.172644\pi\)
0.856484 + 0.516174i \(0.172644\pi\)
\(710\) 0 0
\(711\) 61.0495i 2.28954i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 73.6109i − 2.74905i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −49.6113 −1.84762
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.29150 −0.196251 −0.0981255 0.995174i \(-0.531285\pi\)
−0.0981255 + 0.995174i \(0.531285\pi\)
\(728\) 0 0
\(729\) 52.7409 1.95336
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 53.5968i − 1.97964i −0.142318 0.989821i \(-0.545455\pi\)
0.142318 0.989821i \(-0.454545\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 17.0961i − 0.628889i −0.949276 0.314445i \(-0.898182\pi\)
0.949276 0.314445i \(-0.101818\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 121.019 4.42785
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 37.8807i 1.38229i 0.722718 + 0.691143i \(0.242893\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 26.1147 0.945415
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) − 14.5763i − 0.524954i
\(772\) 0 0
\(773\) 46.9990i 1.69044i 0.534421 + 0.845218i \(0.320530\pi\)
−0.534421 + 0.845218i \(0.679470\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 4.25915 0.152404
\(782\) 0 0
\(783\) 9.39553 0.335769
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.55849 0.233785 0.116892 0.993145i \(-0.462707\pi\)
0.116892 + 0.993145i \(0.462707\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.8247i 1.23355i 0.787138 + 0.616777i \(0.211562\pi\)
−0.787138 + 0.616777i \(0.788438\pi\)
\(798\) 0 0
\(799\) − 45.6644i − 1.61549i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.82942 0.170427
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.3643 −0.575339 −0.287670 0.957730i \(-0.592880\pi\)
−0.287670 + 0.957730i \(0.592880\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) − 113.866i − 3.97882i
\(820\) 0 0
\(821\) 23.3765 0.815846 0.407923 0.913016i \(-0.366253\pi\)
0.407923 + 0.913016i \(0.366253\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 55.9433i 1.93832i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −28.6113 −0.986596
\(842\) 0 0
\(843\) 37.0803 1.27711
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −28.7604 −0.988221
\(848\) 0 0
\(849\) −90.3643 −3.10130
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 40.2492i − 1.37811i −0.724710 0.689054i \(-0.758026\pi\)
0.724710 0.689054i \(-0.241974\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.1935i 1.68042i 0.542263 + 0.840209i \(0.317568\pi\)
−0.542263 + 0.840209i \(0.682432\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −152.768 −5.18827
\(868\) 0 0
\(869\) −2.88262 −0.0977863
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 96.7031i 3.27290i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 107.298i 3.61908i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −47.6235 −1.59904 −0.799521 0.600639i \(-0.794913\pi\)
−0.799521 + 0.600639i \(0.794913\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.44795i 0.316518i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 59.1608i − 1.96008i −0.198789 0.980042i \(-0.563701\pi\)
0.198789 0.980042i \(-0.436299\pi\)
\(912\) 0 0
\(913\) 5.71425i 0.189114i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 51.7371i − 1.70665i −0.521380 0.853325i \(-0.674583\pi\)
0.521380 0.853325i \(-0.325417\pi\)
\(920\) 0 0
\(921\) −37.1174 −1.22306
\(922\) 0 0
\(923\) 66.7972 2.19866
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 142.950 4.69510
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 49.3455i 1.61205i 0.591883 + 0.806024i \(0.298385\pi\)
−0.591883 + 0.806024i \(0.701615\pi\)
\(938\) 0 0
\(939\) − 114.946i − 3.75113i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 75.7409 2.45865
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0.731495i 0.0236459i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −75.2470 −2.40245
\(982\) 0 0
\(983\) 52.9548 1.68900 0.844498 0.535559i \(-0.179899\pi\)
0.844498 + 0.535559i \(0.179899\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 49.2731 1.56838
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 35.4965i 1.12758i 0.825917 + 0.563791i \(0.190658\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 0 0
\(993\) − 115.696i − 3.67150i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 14.1479i − 0.448069i −0.974581 0.224034i \(-0.928077\pi\)
0.974581 0.224034i \(-0.0719228\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2800.2.k.p.2351.8 8
4.3 odd 2 inner 2800.2.k.p.2351.1 8
5.2 odd 4 560.2.e.c.559.1 8
5.3 odd 4 560.2.e.c.559.8 yes 8
5.4 even 2 inner 2800.2.k.p.2351.2 8
7.6 odd 2 inner 2800.2.k.p.2351.2 8
20.3 even 4 560.2.e.c.559.2 yes 8
20.7 even 4 560.2.e.c.559.7 yes 8
20.19 odd 2 inner 2800.2.k.p.2351.7 8
28.27 even 2 inner 2800.2.k.p.2351.7 8
35.13 even 4 560.2.e.c.559.1 8
35.27 even 4 560.2.e.c.559.8 yes 8
35.34 odd 2 CM 2800.2.k.p.2351.8 8
40.3 even 4 2240.2.e.d.2239.7 8
40.13 odd 4 2240.2.e.d.2239.1 8
40.27 even 4 2240.2.e.d.2239.2 8
40.37 odd 4 2240.2.e.d.2239.8 8
140.27 odd 4 560.2.e.c.559.2 yes 8
140.83 odd 4 560.2.e.c.559.7 yes 8
140.139 even 2 inner 2800.2.k.p.2351.1 8
280.13 even 4 2240.2.e.d.2239.8 8
280.27 odd 4 2240.2.e.d.2239.7 8
280.83 odd 4 2240.2.e.d.2239.2 8
280.237 even 4 2240.2.e.d.2239.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.2.e.c.559.1 8 5.2 odd 4
560.2.e.c.559.1 8 35.13 even 4
560.2.e.c.559.2 yes 8 20.3 even 4
560.2.e.c.559.2 yes 8 140.27 odd 4
560.2.e.c.559.7 yes 8 20.7 even 4
560.2.e.c.559.7 yes 8 140.83 odd 4
560.2.e.c.559.8 yes 8 5.3 odd 4
560.2.e.c.559.8 yes 8 35.27 even 4
2240.2.e.d.2239.1 8 40.13 odd 4
2240.2.e.d.2239.1 8 280.237 even 4
2240.2.e.d.2239.2 8 40.27 even 4
2240.2.e.d.2239.2 8 280.83 odd 4
2240.2.e.d.2239.7 8 40.3 even 4
2240.2.e.d.2239.7 8 280.27 odd 4
2240.2.e.d.2239.8 8 40.37 odd 4
2240.2.e.d.2239.8 8 280.13 even 4
2800.2.k.p.2351.1 8 4.3 odd 2 inner
2800.2.k.p.2351.1 8 140.139 even 2 inner
2800.2.k.p.2351.2 8 5.4 even 2 inner
2800.2.k.p.2351.2 8 7.6 odd 2 inner
2800.2.k.p.2351.7 8 20.19 odd 2 inner
2800.2.k.p.2351.7 8 28.27 even 2 inner
2800.2.k.p.2351.8 8 1.1 even 1 trivial
2800.2.k.p.2351.8 8 35.34 odd 2 CM