Properties

Label 560.2.e.c.559.7
Level 560560
Weight 22
Character 560.559
Analytic conductor 4.4724.472
Analytic rank 00
Dimension 88
CM discriminant -35
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(559,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 560=2457 560 = 2^{4} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 560.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.471622513194.47162251319
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.121550625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x74x69x5+23x4+18x316x2+8x+16 x^{8} - x^{7} - 4x^{6} - 9x^{5} + 23x^{4} + 18x^{3} - 16x^{2} + 8x + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 28 2^{8}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 559.7
Root 0.8625550.141174i-0.862555 - 0.141174i of defining polynomial
Character χ\chi == 560.559
Dual form 560.2.e.c.559.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3.25937iq32.23607q5+2.64575iq77.62348q90.359964iq11+5.64539q137.28817iq157.99190q178.62348q21+5.00000q2515.0696iq270.623475q29+1.17325q335.91608iq35+18.4004iq39+17.0466q45+5.71383iq477.00000q4926.0485iq51+0.804903iq5520.1698iq6312.6235q65+11.8322iq7113.4164q73+16.2968iq75+0.952374q77+8.00809iq79+26.2470q81+15.8745iq83+17.8704q852.03214iq87+14.9363iq9112.6849q97+2.74417iq99+O(q100)q+3.25937i q^{3} -2.23607 q^{5} +2.64575i q^{7} -7.62348 q^{9} -0.359964i q^{11} +5.64539 q^{13} -7.28817i q^{15} -7.99190 q^{17} -8.62348 q^{21} +5.00000 q^{25} -15.0696i q^{27} -0.623475 q^{29} +1.17325 q^{33} -5.91608i q^{35} +18.4004i q^{39} +17.0466 q^{45} +5.71383i q^{47} -7.00000 q^{49} -26.0485i q^{51} +0.804903i q^{55} -20.1698i q^{63} -12.6235 q^{65} +11.8322i q^{71} -13.4164 q^{73} +16.2968i q^{75} +0.952374 q^{77} +8.00809i q^{79} +26.2470 q^{81} +15.8745i q^{83} +17.8704 q^{85} -2.03214i q^{87} +14.9363i q^{91} -12.6849 q^{97} +2.74417i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q20q928q21+40q25+36q2956q4960q65+128q81+20q85+O(q100) 8 q - 20 q^{9} - 28 q^{21} + 40 q^{25} + 36 q^{29} - 56 q^{49} - 60 q^{65} + 128 q^{81} + 20 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/560Z)×\left(\mathbb{Z}/560\mathbb{Z}\right)^\times.

nn 241241 337337 351351 421421
χ(n)\chi(n) 1-1 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 3.25937i 1.88180i 0.338689 + 0.940898i 0.390016π0.390016\pi
−0.338689 + 0.940898i 0.609984π0.609984\pi
44 0 0
55 −2.23607 −1.00000
66 0 0
77 2.64575i 1.00000i
88 0 0
99 −7.62348 −2.54116
1010 0 0
1111 − 0.359964i − 0.108533i −0.998526 0.0542666i 0.982718π-0.982718\pi
0.998526 0.0542666i 0.0172821π-0.0172821\pi
1212 0 0
1313 5.64539 1.56575 0.782875 0.622179i 0.213753π-0.213753\pi
0.782875 + 0.622179i 0.213753π0.213753\pi
1414 0 0
1515 − 7.28817i − 1.88180i
1616 0 0
1717 −7.99190 −1.93832 −0.969160 0.246433i 0.920742π-0.920742\pi
−0.969160 + 0.246433i 0.920742π0.920742\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 −8.62348 −1.88180
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 5.00000 1.00000
2626 0 0
2727 − 15.0696i − 2.90015i
2828 0 0
2929 −0.623475 −0.115776 −0.0578882 0.998323i 0.518437π-0.518437\pi
−0.0578882 + 0.998323i 0.518437π0.518437\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 1.17325 0.204237
3434 0 0
3535 − 5.91608i − 1.00000i
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 18.4004i 2.94642i
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 17.0466 2.54116
4646 0 0
4747 5.71383i 0.833448i 0.909033 + 0.416724i 0.136822π0.136822\pi
−0.909033 + 0.416724i 0.863178π0.863178\pi
4848 0 0
4949 −7.00000 −1.00000
5050 0 0
5151 − 26.0485i − 3.64752i
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0.804903i 0.108533i
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 − 20.1698i − 2.54116i
6464 0 0
6565 −12.6235 −1.56575
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 0 0
7070 0 0
7171 11.8322i 1.40422i 0.712069 + 0.702109i 0.247758π0.247758\pi
−0.712069 + 0.702109i 0.752242π0.752242\pi
7272 0 0
7373 −13.4164 −1.57027 −0.785136 0.619324i 0.787407π-0.787407\pi
−0.785136 + 0.619324i 0.787407π0.787407\pi
7474 0 0
7575 16.2968i 1.88180i
7676 0 0
7777 0.952374 0.108533
7878 0 0
7979 8.00809i 0.900981i 0.892781 + 0.450490i 0.148751π0.148751\pi
−0.892781 + 0.450490i 0.851249π0.851249\pi
8080 0 0
8181 26.2470 2.91633
8282 0 0
8383 15.8745i 1.74245i 0.490881 + 0.871227i 0.336675π0.336675\pi
−0.490881 + 0.871227i 0.663325π0.663325\pi
8484 0 0
8585 17.8704 1.93832
8686 0 0
8787 − 2.03214i − 0.217868i
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 14.9363i 1.56575i
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −12.6849 −1.28796 −0.643979 0.765043i 0.722718π-0.722718\pi
−0.643979 + 0.765043i 0.722718π0.722718\pi
9898 0 0
9999 2.74417i 0.275800i
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 18.7513i 1.84762i 0.382851 + 0.923810i 0.374942π0.374942\pi
−0.382851 + 0.923810i 0.625058π0.625058\pi
104104 0 0
105105 19.2827 1.88180
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 9.87043 0.945415 0.472708 0.881219i 0.343277π-0.343277\pi
0.472708 + 0.881219i 0.343277π0.343277\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 −43.0375 −3.97882
118118 0 0
119119 − 21.1446i − 1.93832i
120120 0 0
121121 10.8704 0.988221
122122 0 0
123123 0 0
124124 0 0
125125 −11.1803 −1.00000
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 33.6967i 2.90015i
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 −18.6235 −1.56838
142142 0 0
143143 − 2.03214i − 0.169936i
144144 0 0
145145 1.39413 0.115776
146146 0 0
147147 − 22.8156i − 1.88180i
148148 0 0
149149 6.00000 0.491539 0.245770 0.969328i 0.420959π-0.420959\pi
0.245770 + 0.969328i 0.420959π0.420959\pi
150150 0 0
151151 − 5.84831i − 0.475929i −0.971274 0.237964i 0.923520π-0.923520\pi
0.971274 0.237964i 0.0764802π-0.0764802\pi
152152 0 0
153153 60.9260 4.92558
154154 0 0
155155 0 0
156156 0 0
157157 13.4164 1.07075 0.535373 0.844616i 0.320171π-0.320171\pi
0.535373 + 0.844616i 0.320171π0.320171\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 −2.62348 −0.204237
166166 0 0
167167 − 25.2700i − 1.95545i −0.209881 0.977727i 0.567308π-0.567308\pi
0.209881 0.977727i 0.432692π-0.432692\pi
168168 0 0
169169 18.8704 1.45157
170170 0 0
171171 0 0
172172 0 0
173173 15.0314 1.14282 0.571409 0.820666i 0.306397π-0.306397\pi
0.571409 + 0.820666i 0.306397π0.306397\pi
174174 0 0
175175 13.2288i 1.00000i
176176 0 0
177177 0 0
178178 0 0
179179 − 11.8322i − 0.884377i −0.896922 0.442189i 0.854202π-0.854202\pi
0.896922 0.442189i 0.145798π-0.145798\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 2.87679i 0.210372i
188188 0 0
189189 39.8704 2.90015
190190 0 0
191191 20.4246i 1.47788i 0.673774 + 0.738938i 0.264672π0.264672\pi
−0.673774 + 0.738938i 0.735328π0.735328\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 − 41.1445i − 2.94642i
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 − 1.64956i − 0.115776i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 28.7927i 1.98217i 0.133226 + 0.991086i 0.457467π0.457467\pi
−0.133226 + 0.991086i 0.542533π0.542533\pi
212212 0 0
213213 −38.5654 −2.64245
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 − 43.7290i − 2.95493i
220220 0 0
221221 −45.1174 −3.03492
222222 0 0
223223 − 20.3611i − 1.36348i −0.731594 0.681740i 0.761223π-0.761223\pi
0.731594 0.681740i 0.238777π-0.238777\pi
224224 0 0
225225 −38.1174 −2.54116
226226 0 0
227227 21.2058i 1.40748i 0.710460 + 0.703738i 0.248487π0.248487\pi
−0.710460 + 0.703738i 0.751513π0.751513\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 3.10414i 0.204237i
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 − 12.7765i − 0.833448i
236236 0 0
237237 −26.1013 −1.69546
238238 0 0
239239 − 22.5844i − 1.46087i −0.682985 0.730433i 0.739318π-0.739318\pi
0.682985 0.730433i 0.260682π-0.260682\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0 0
243243 40.3396i 2.58779i
244244 0 0
245245 15.6525 1.00000
246246 0 0
247247 0 0
248248 0 0
249249 −51.7409 −3.27894
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 58.2463i 3.64752i
256256 0 0
257257 4.47214 0.278964 0.139482 0.990225i 0.455456π-0.455456\pi
0.139482 + 0.990225i 0.455456π0.455456\pi
258258 0 0
259259 0 0
260260 0 0
261261 4.75305 0.294206
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 −48.6829 −2.94642
274274 0 0
275275 − 1.79982i − 0.108533i
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 11.3765 0.678667 0.339333 0.940666i 0.389799π-0.389799\pi
0.339333 + 0.940666i 0.389799π0.389799\pi
282282 0 0
283283 − 27.7245i − 1.64805i −0.566553 0.824025i 0.691723π-0.691723\pi
0.566553 0.824025i 0.308277π-0.308277\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 46.8704 2.75708
290290 0 0
291291 − 41.3448i − 2.42367i
292292 0 0
293293 32.9200 1.92320 0.961602 0.274446i 0.0884946π-0.0884946\pi
0.961602 + 0.274446i 0.0884946π0.0884946\pi
294294 0 0
295295 0 0
296296 0 0
297297 −5.42451 −0.314762
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 11.3879i 0.649942i 0.945724 + 0.324971i 0.105355π0.105355\pi
−0.945724 + 0.324971i 0.894645π0.894645\pi
308308 0 0
309309 −61.1174 −3.47685
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 −35.2665 −1.99338 −0.996689 0.0813030i 0.974092π-0.974092\pi
−0.996689 + 0.0813030i 0.974092π0.974092\pi
314314 0 0
315315 45.1011i 2.54116i
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0.224428i 0.0125656i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 28.2269 1.56575
326326 0 0
327327 32.1713i 1.77908i
328328 0 0
329329 −15.1174 −0.833448
330330 0 0
331331 35.4965i 1.95106i 0.219860 + 0.975531i 0.429440π0.429440\pi
−0.219860 + 0.975531i 0.570560π0.570560\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 − 18.5203i − 1.00000i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 − 85.0738i − 4.54090i
352352 0 0
353353 6.08715 0.323986 0.161993 0.986792i 0.448208π-0.448208\pi
0.161993 + 0.986792i 0.448208π0.448208\pi
354354 0 0
355355 − 26.4575i − 1.40422i
356356 0 0
357357 68.9179 3.64752
358358 0 0
359359 11.8322i 0.624477i 0.950004 + 0.312239i 0.101079π0.101079\pi
−0.950004 + 0.312239i 0.898921π0.898921\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 35.4307i 1.85963i
364364 0 0
365365 30.0000 1.57027
366366 0 0
367367 − 38.3075i − 1.99964i −0.0190919 0.999818i 0.506077π-0.506077\pi
0.0190919 0.999818i 0.493923π-0.493923\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 − 36.4408i − 1.88180i
376376 0 0
377377 −3.51976 −0.181277
378378 0 0
379379 35.4965i 1.82333i 0.410932 + 0.911666i 0.365203π0.365203\pi
−0.410932 + 0.911666i 0.634797π0.634797\pi
380380 0 0
381381 0 0
382382 0 0
383383 − 15.8745i − 0.811149i −0.914062 0.405575i 0.867071π-0.867071\pi
0.914062 0.405575i 0.132929π-0.132929\pi
384384 0 0
385385 −2.12957 −0.108533
386386 0 0
387387 0 0
388388 0 0
389389 −24.6235 −1.24846 −0.624230 0.781241i 0.714587π-0.714587\pi
−0.624230 + 0.781241i 0.714587π0.714587\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 − 17.9066i − 0.900981i
396396 0 0
397397 19.7244 0.989941 0.494971 0.868910i 0.335179π-0.335179\pi
0.494971 + 0.868910i 0.335179π0.335179\pi
398398 0 0
399399 0 0
400400 0 0
401401 −39.1174 −1.95343 −0.976714 0.214544i 0.931173π-0.931173\pi
−0.976714 + 0.214544i 0.931173π0.931173\pi
402402 0 0
403403 0 0
404404 0 0
405405 −58.6900 −2.91633
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 − 35.4965i − 1.74245i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 33.8704 1.65074 0.825372 0.564590i 0.190966π-0.190966\pi
0.825372 + 0.564590i 0.190966π0.190966\pi
422422 0 0
423423 − 43.5593i − 2.11792i
424424 0 0
425425 −39.9595 −1.93832
426426 0 0
427427 0 0
428428 0 0
429429 6.62348 0.319784
430430 0 0
431431 23.3044i 1.12253i 0.827636 + 0.561266i 0.189685π0.189685\pi
−0.827636 + 0.561266i 0.810315π0.810315\pi
432432 0 0
433433 40.2492 1.93425 0.967127 0.254293i 0.0818429π-0.0818429\pi
0.967127 + 0.254293i 0.0818429π0.0818429\pi
434434 0 0
435435 4.54399i 0.217868i
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 53.3643 2.54116
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 19.5562i 0.924977i
448448 0 0
449449 40.3643 1.90491 0.952455 0.304679i 0.0985491π-0.0985491\pi
0.952455 + 0.304679i 0.0985491π0.0985491\pi
450450 0 0
451451 0 0
452452 0 0
453453 19.0618 0.895601
454454 0 0
455455 − 33.3986i − 1.56575i
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 120.435i 5.62141i
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 − 40.7620i − 1.88624i −0.332454 0.943119i 0.607877π-0.607877\pi
0.332454 0.943119i 0.392123π-0.392123\pi
468468 0 0
469469 0 0
470470 0 0
471471 43.7290i 2.01493i
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 28.3643 1.28796
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0 0
491491 − 43.3690i − 1.95722i −0.205731 0.978609i 0.565957π-0.565957\pi
0.205731 0.978609i 0.434043π-0.434043\pi
492492 0 0
493493 4.98275 0.224412
494494 0 0
495495 − 6.13616i − 0.275800i
496496 0 0
497497 −31.3050 −1.40422
498498 0 0
499499 − 26.6329i − 1.19225i −0.802890 0.596127i 0.796706π-0.796706\pi
0.802890 0.596127i 0.203294π-0.203294\pi
500500 0 0
501501 82.3643 3.67977
502502 0 0
503503 44.8262i 1.99870i 0.0360049 + 0.999352i 0.488537π0.488537\pi
−0.0360049 + 0.999352i 0.511463π0.511463\pi
504504 0 0
505505 0 0
506506 0 0
507507 61.5057i 2.73156i
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 − 35.4965i − 1.57027i
512512 0 0
513513 0 0
514514 0 0
515515 − 41.9292i − 1.84762i
516516 0 0
517517 2.05677 0.0904567
518518 0 0
519519 48.9929i 2.15055i
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 37.0405i 1.61967i 0.586659 + 0.809834i 0.300443π0.300443\pi
−0.586659 + 0.809834i 0.699557π0.699557\pi
524524 0 0
525525 −43.1174 −1.88180
526526 0 0
527527 0 0
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 38.5654 1.66422
538538 0 0
539539 2.51975i 0.108533i
540540 0 0
541541 −6.12957 −0.263531 −0.131765 0.991281i 0.542065π-0.542065\pi
−0.131765 + 0.991281i 0.542065π0.542065\pi
542542 0 0
543543 0 0
544544 0 0
545545 −22.0709 −0.945415
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 −21.1874 −0.900981
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 −9.37652 −0.395877
562562 0 0
563563 15.8745i 0.669031i 0.942390 + 0.334515i 0.108573π0.108573\pi
−0.942390 + 0.334515i 0.891427π0.891427\pi
564564 0 0
565565 0 0
566566 0 0
567567 69.4429i 2.91633i
568568 0 0
569569 −6.00000 −0.251533 −0.125767 0.992060i 0.540139π-0.540139\pi
−0.125767 + 0.992060i 0.540139π0.540139\pi
570570 0 0
571571 35.4965i 1.48548i 0.669579 + 0.742741i 0.266474π0.266474\pi
−0.669579 + 0.742741i 0.733526π0.733526\pi
572572 0 0
573573 −66.5714 −2.78106
574574 0 0
575575 0 0
576576 0 0
577577 46.5573 1.93820 0.969102 0.246661i 0.0793334π-0.0793334\pi
0.969102 + 0.246661i 0.0793334π0.0793334\pi
578578 0 0
579579 0 0
580580 0 0
581581 −42.0000 −1.74245
582582 0 0
583583 0 0
584584 0 0
585585 96.2348 3.97882
586586 0 0
587587 − 47.6235i − 1.96563i −0.184585 0.982817i 0.559094π-0.559094\pi
0.184585 0.982817i 0.440906π-0.440906\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 41.8642 1.71916 0.859579 0.511003i 0.170726π-0.170726\pi
0.859579 + 0.511003i 0.170726π0.170726\pi
594594 0 0
595595 47.2807i 1.93832i
596596 0 0
597597 0 0
598598 0 0
599599 18.9848i 0.775698i 0.921723 + 0.387849i 0.126782π0.126782\pi
−0.921723 + 0.387849i 0.873218π0.873218\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 −24.3070 −0.988221
606606 0 0
607607 39.9173i 1.62019i 0.586296 + 0.810097i 0.300586π0.300586\pi
−0.586296 + 0.810097i 0.699414π0.699414\pi
608608 0 0
609609 5.37652 0.217868
610610 0 0
611611 32.2568i 1.30497i
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 25.0000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 49.5773i 1.97364i 0.161817 + 0.986821i 0.448265π0.448265\pi
−0.161817 + 0.986821i 0.551735π0.551735\pi
632632 0 0
633633 −93.8460 −3.73004
634634 0 0
635635 0 0
636636 0 0
637637 −39.5177 −1.56575
638638 0 0
639639 − 90.2022i − 3.56834i
640640 0 0
641641 18.0000 0.710957 0.355479 0.934684i 0.384318π-0.384318\pi
0.355479 + 0.934684i 0.384318π0.384318\pi
642642 0 0
643643 − 30.9441i − 1.22032i −0.792279 0.610158i 0.791106π-0.791106\pi
0.792279 0.610158i 0.208894π-0.208894\pi
644644 0 0
645645 0 0
646646 0 0
647647 47.6235i 1.87227i 0.351636 + 0.936137i 0.385626π0.385626\pi
−0.351636 + 0.936137i 0.614374π0.614374\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 102.280 3.99031
658658 0 0
659659 41.2093i 1.60528i 0.596461 + 0.802642i 0.296573π0.296573\pi
−0.596461 + 0.802642i 0.703427π0.703427\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 − 147.054i − 5.71111i
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 66.3643 2.56579
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 − 75.3480i − 2.90015i
676676 0 0
677677 18.8409 0.724115 0.362058 0.932156i 0.382074π-0.382074\pi
0.362058 + 0.932156i 0.382074π0.382074\pi
678678 0 0
679679 − 33.5611i − 1.28796i
680680 0 0
681681 −69.1174 −2.64858
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 −7.26040 −0.275800
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 52.3643 1.97777 0.988887 0.148671i 0.0474996π-0.0474996\pi
0.988887 + 0.148671i 0.0474996π0.0474996\pi
702702 0 0
703703 0 0
704704 0 0
705705 41.6434 1.56838
706706 0 0
707707 0 0
708708 0 0
709709 −45.6113 −1.71297 −0.856484 0.516174i 0.827356π-0.827356\pi
−0.856484 + 0.516174i 0.827356π0.827356\pi
710710 0 0
711711 − 61.0495i − 2.28954i
712712 0 0
713713 0 0
714714 0 0
715715 4.54399i 0.169936i
716716 0 0
717717 73.6109 2.74905
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 −49.6113 −1.84762
722722 0 0
723723 0 0
724724 0 0
725725 −3.11738 −0.115776
726726 0 0
727727 5.29150i 0.196251i 0.995174 + 0.0981255i 0.0312847π0.0312847\pi
−0.995174 + 0.0981255i 0.968715π0.968715\pi
728728 0 0
729729 −52.7409 −1.95336
730730 0 0
731731 0 0
732732 0 0
733733 −53.5968 −1.97964 −0.989821 0.142318i 0.954545π-0.954545\pi
−0.989821 + 0.142318i 0.954545π0.954545\pi
734734 0 0
735735 51.0172i 1.88180i
736736 0 0
737737 0 0
738738 0 0
739739 − 17.0961i − 0.628889i −0.949276 0.314445i 0.898182π-0.898182\pi
0.949276 0.314445i 0.101818π-0.101818\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 −13.4164 −0.491539
746746 0 0
747747 − 121.019i − 4.42785i
748748 0 0
749749 0 0
750750 0 0
751751 − 37.8807i − 1.38229i −0.722718 0.691143i 0.757107π-0.757107\pi
0.722718 0.691143i 0.242893π-0.242893\pi
752752 0 0
753753 0 0
754754 0 0
755755 13.0772i 0.475929i
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 26.1147i 0.945415i
764764 0 0
765765 −136.235 −4.92558
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 14.5763i 0.524954i
772772 0 0
773773 46.9990 1.69044 0.845218 0.534421i 0.179470π-0.179470\pi
0.845218 + 0.534421i 0.179470π0.179470\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 4.25915 0.152404
782782 0 0
783783 9.39553i 0.335769i
784784 0 0
785785 −30.0000 −1.07075
786786 0 0
787787 − 6.55849i − 0.233785i −0.993145 0.116892i 0.962707π-0.962707\pi
0.993145 0.116892i 0.0372933π-0.0372933\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 −34.8247 −1.23355 −0.616777 0.787138i 0.711562π-0.711562\pi
−0.616777 + 0.787138i 0.711562π0.711562\pi
798798 0 0
799799 − 45.6644i − 1.61549i
800800 0 0
801801 0 0
802802 0 0
803803 4.82942i 0.170427i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 16.3643 0.575339 0.287670 0.957730i 0.407120π-0.407120\pi
0.287670 + 0.957730i 0.407120π0.407120\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 − 113.866i − 3.97882i
820820 0 0
821821 23.3765 0.815846 0.407923 0.913016i 0.366253π-0.366253\pi
0.407923 + 0.913016i 0.366253π0.366253\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 5.86627 0.204237
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 55.9433 1.93832
834834 0 0
835835 56.5055i 1.95545i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −28.6113 −0.986596
842842 0 0
843843 37.0803i 1.27711i
844844 0 0
845845 −42.1956 −1.45157
846846 0 0
847847 28.7604i 0.988221i
848848 0 0
849849 90.3643 3.10130
850850 0 0
851851 0 0
852852 0 0
853853 −40.2492 −1.37811 −0.689054 0.724710i 0.741974π-0.741974\pi
−0.689054 + 0.724710i 0.741974π0.741974\pi
854854 0 0
855855 0 0
856856 0 0
857857 −49.1935 −1.68042 −0.840209 0.542263i 0.817568π-0.817568\pi
−0.840209 + 0.542263i 0.817568π0.817568\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 −33.6113 −1.14282
866866 0 0
867867 152.768i 5.18827i
868868 0 0
869869 2.88262 0.0977863
870870 0 0
871871 0 0
872872 0 0
873873 96.7031 3.27290
874874 0 0
875875 − 29.5804i − 1.00000i
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 107.298i 3.61908i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 0 0
887887 47.6235i 1.59904i 0.600639 + 0.799521i 0.294913π0.294913\pi
−0.600639 + 0.799521i 0.705087π0.705087\pi
888888 0 0
889889 0 0
890890 0 0
891891 − 9.44795i − 0.316518i
892892 0 0
893893 0 0
894894 0 0
895895 26.4575i 0.884377i
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 59.1608i 1.96008i 0.198789 + 0.980042i 0.436299π0.436299\pi
−0.198789 + 0.980042i 0.563701π0.563701\pi
912912 0 0
913913 5.71425 0.189114
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 − 51.7371i − 1.70665i −0.521380 0.853325i 0.674583π-0.674583\pi
0.521380 0.853325i 0.325417π-0.325417\pi
920920 0 0
921921 −37.1174 −1.22306
922922 0 0
923923 66.7972i 2.19866i
924924 0 0
925925 0 0
926926 0 0
927927 − 142.950i − 4.69510i
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 − 6.43270i − 0.210372i
936936 0 0
937937 −49.3455 −1.61205 −0.806024 0.591883i 0.798385π-0.798385\pi
−0.806024 + 0.591883i 0.798385π0.798385\pi
938938 0 0
939939 − 114.946i − 3.75113i
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 −89.1530 −2.90015
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 −75.7409 −2.45865
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 − 45.6709i − 1.47788i
956956 0 0
957957 −0.731495 −0.0236459
958958 0 0
959959 0 0
960960 0 0
961961 −31.0000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 92.0020i 2.94642i
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 −75.2470 −2.40245
982982 0 0
983983 52.9548i 1.68900i 0.535559 + 0.844498i 0.320101π0.320101\pi
−0.535559 + 0.844498i 0.679899π0.679899\pi
984984 0 0
985985 0 0
986986 0 0
987987 − 49.2731i − 1.56838i
988988 0 0
989989 0 0
990990 0 0
991991 − 35.4965i − 1.12758i −0.825917 0.563791i 0.809342π-0.809342\pi
0.825917 0.563791i 0.190658π-0.190658\pi
992992 0 0
993993 −115.696 −3.67150
994994 0 0
995995 0 0
996996 0 0
997997 14.1479 0.448069 0.224034 0.974581i 0.428077π-0.428077\pi
0.224034 + 0.974581i 0.428077π0.428077\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.e.c.559.7 yes 8
4.3 odd 2 inner 560.2.e.c.559.1 8
5.2 odd 4 2800.2.k.p.2351.7 8
5.3 odd 4 2800.2.k.p.2351.1 8
5.4 even 2 inner 560.2.e.c.559.2 yes 8
7.6 odd 2 inner 560.2.e.c.559.2 yes 8
8.3 odd 2 2240.2.e.d.2239.8 8
8.5 even 2 2240.2.e.d.2239.2 8
20.3 even 4 2800.2.k.p.2351.8 8
20.7 even 4 2800.2.k.p.2351.2 8
20.19 odd 2 inner 560.2.e.c.559.8 yes 8
28.27 even 2 inner 560.2.e.c.559.8 yes 8
35.13 even 4 2800.2.k.p.2351.7 8
35.27 even 4 2800.2.k.p.2351.1 8
35.34 odd 2 CM 560.2.e.c.559.7 yes 8
40.19 odd 2 2240.2.e.d.2239.1 8
40.29 even 2 2240.2.e.d.2239.7 8
56.13 odd 2 2240.2.e.d.2239.7 8
56.27 even 2 2240.2.e.d.2239.1 8
140.27 odd 4 2800.2.k.p.2351.8 8
140.83 odd 4 2800.2.k.p.2351.2 8
140.139 even 2 inner 560.2.e.c.559.1 8
280.69 odd 2 2240.2.e.d.2239.2 8
280.139 even 2 2240.2.e.d.2239.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.2.e.c.559.1 8 4.3 odd 2 inner
560.2.e.c.559.1 8 140.139 even 2 inner
560.2.e.c.559.2 yes 8 5.4 even 2 inner
560.2.e.c.559.2 yes 8 7.6 odd 2 inner
560.2.e.c.559.7 yes 8 1.1 even 1 trivial
560.2.e.c.559.7 yes 8 35.34 odd 2 CM
560.2.e.c.559.8 yes 8 20.19 odd 2 inner
560.2.e.c.559.8 yes 8 28.27 even 2 inner
2240.2.e.d.2239.1 8 40.19 odd 2
2240.2.e.d.2239.1 8 56.27 even 2
2240.2.e.d.2239.2 8 8.5 even 2
2240.2.e.d.2239.2 8 280.69 odd 2
2240.2.e.d.2239.7 8 40.29 even 2
2240.2.e.d.2239.7 8 56.13 odd 2
2240.2.e.d.2239.8 8 8.3 odd 2
2240.2.e.d.2239.8 8 280.139 even 2
2800.2.k.p.2351.1 8 5.3 odd 4
2800.2.k.p.2351.1 8 35.27 even 4
2800.2.k.p.2351.2 8 20.7 even 4
2800.2.k.p.2351.2 8 140.83 odd 4
2800.2.k.p.2351.7 8 5.2 odd 4
2800.2.k.p.2351.7 8 35.13 even 4
2800.2.k.p.2351.8 8 20.3 even 4
2800.2.k.p.2351.8 8 140.27 odd 4