Properties

Label 2816.2.c.t.1409.3
Level $2816$
Weight $2$
Character 2816.1409
Analytic conductor $22.486$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,2,Mod(1409,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.1409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4858732092\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1409.3
Root \(1.56155i\) of defining polynomial
Character \(\chi\) \(=\) 2816.1409
Dual form 2816.2.c.t.1409.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155i q^{3} -3.56155i q^{5} +0.561553 q^{9} +1.00000i q^{11} +2.00000i q^{13} +5.56155 q^{15} -1.12311 q^{17} -7.12311i q^{19} +4.68466 q^{23} -7.68466 q^{25} +5.56155i q^{27} -1.12311i q^{29} +9.56155 q^{31} -1.56155 q^{33} -6.68466i q^{37} -3.12311 q^{39} -8.24621 q^{41} +7.12311i q^{43} -2.00000i q^{45} +4.00000 q^{47} -7.00000 q^{49} -1.75379i q^{51} +8.24621i q^{53} +3.56155 q^{55} +11.1231 q^{57} -12.6847i q^{59} -15.3693i q^{61} +7.12311 q^{65} +4.68466i q^{67} +7.31534i q^{69} +3.31534 q^{71} +6.00000 q^{73} -12.0000i q^{75} +4.87689 q^{79} -7.00000 q^{81} -13.3693i q^{83} +4.00000i q^{85} +1.75379 q^{87} +3.56155 q^{89} +14.9309i q^{93} -25.3693 q^{95} -6.68466 q^{97} +0.561553i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} + 14 q^{15} + 12 q^{17} - 6 q^{23} - 6 q^{25} + 30 q^{31} + 2 q^{33} + 4 q^{39} + 16 q^{47} - 28 q^{49} + 6 q^{55} + 28 q^{57} + 12 q^{65} + 38 q^{71} + 24 q^{73} + 36 q^{79} - 28 q^{81} + 40 q^{87}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56155i 0.901563i 0.892634 + 0.450781i \(0.148855\pi\)
−0.892634 + 0.450781i \(0.851145\pi\)
\(4\) 0 0
\(5\) − 3.56155i − 1.59277i −0.604787 0.796387i \(-0.706742\pi\)
0.604787 0.796387i \(-0.293258\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0.561553 0.187184
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 5.56155 1.43599
\(16\) 0 0
\(17\) −1.12311 −0.272393 −0.136197 0.990682i \(-0.543488\pi\)
−0.136197 + 0.990682i \(0.543488\pi\)
\(18\) 0 0
\(19\) − 7.12311i − 1.63415i −0.576530 0.817076i \(-0.695593\pi\)
0.576530 0.817076i \(-0.304407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.68466 0.976819 0.488409 0.872615i \(-0.337577\pi\)
0.488409 + 0.872615i \(0.337577\pi\)
\(24\) 0 0
\(25\) −7.68466 −1.53693
\(26\) 0 0
\(27\) 5.56155i 1.07032i
\(28\) 0 0
\(29\) − 1.12311i − 0.208555i −0.994548 0.104278i \(-0.966747\pi\)
0.994548 0.104278i \(-0.0332531\pi\)
\(30\) 0 0
\(31\) 9.56155 1.71731 0.858653 0.512558i \(-0.171302\pi\)
0.858653 + 0.512558i \(0.171302\pi\)
\(32\) 0 0
\(33\) −1.56155 −0.271831
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.68466i − 1.09895i −0.835510 0.549476i \(-0.814828\pi\)
0.835510 0.549476i \(-0.185172\pi\)
\(38\) 0 0
\(39\) −3.12311 −0.500097
\(40\) 0 0
\(41\) −8.24621 −1.28784 −0.643921 0.765092i \(-0.722693\pi\)
−0.643921 + 0.765092i \(0.722693\pi\)
\(42\) 0 0
\(43\) 7.12311i 1.08626i 0.839648 + 0.543132i \(0.182762\pi\)
−0.839648 + 0.543132i \(0.817238\pi\)
\(44\) 0 0
\(45\) − 2.00000i − 0.298142i
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) − 1.75379i − 0.245580i
\(52\) 0 0
\(53\) 8.24621i 1.13270i 0.824163 + 0.566352i \(0.191646\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 3.56155 0.480240
\(56\) 0 0
\(57\) 11.1231 1.47329
\(58\) 0 0
\(59\) − 12.6847i − 1.65140i −0.564108 0.825701i \(-0.690780\pi\)
0.564108 0.825701i \(-0.309220\pi\)
\(60\) 0 0
\(61\) − 15.3693i − 1.96784i −0.178611 0.983920i \(-0.557161\pi\)
0.178611 0.983920i \(-0.442839\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.12311 0.883513
\(66\) 0 0
\(67\) 4.68466i 0.572322i 0.958182 + 0.286161i \(0.0923792\pi\)
−0.958182 + 0.286161i \(0.907621\pi\)
\(68\) 0 0
\(69\) 7.31534i 0.880664i
\(70\) 0 0
\(71\) 3.31534 0.393459 0.196729 0.980458i \(-0.436968\pi\)
0.196729 + 0.980458i \(0.436968\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) − 12.0000i − 1.38564i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.87689 0.548693 0.274347 0.961631i \(-0.411538\pi\)
0.274347 + 0.961631i \(0.411538\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) − 13.3693i − 1.46747i −0.679434 0.733737i \(-0.737775\pi\)
0.679434 0.733737i \(-0.262225\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 0 0
\(87\) 1.75379 0.188026
\(88\) 0 0
\(89\) 3.56155 0.377524 0.188762 0.982023i \(-0.439553\pi\)
0.188762 + 0.982023i \(0.439553\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 14.9309i 1.54826i
\(94\) 0 0
\(95\) −25.3693 −2.60284
\(96\) 0 0
\(97\) −6.68466 −0.678724 −0.339362 0.940656i \(-0.610211\pi\)
−0.339362 + 0.940656i \(0.610211\pi\)
\(98\) 0 0
\(99\) 0.561553i 0.0564382i
\(100\) 0 0
\(101\) − 13.1231i − 1.30580i −0.757445 0.652899i \(-0.773553\pi\)
0.757445 0.652899i \(-0.226447\pi\)
\(102\) 0 0
\(103\) 2.24621 0.221326 0.110663 0.993858i \(-0.464703\pi\)
0.110663 + 0.993858i \(0.464703\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) − 14.0000i − 1.34096i −0.741929 0.670478i \(-0.766089\pi\)
0.741929 0.670478i \(-0.233911\pi\)
\(110\) 0 0
\(111\) 10.4384 0.990774
\(112\) 0 0
\(113\) 15.5616 1.46391 0.731954 0.681354i \(-0.238609\pi\)
0.731954 + 0.681354i \(0.238609\pi\)
\(114\) 0 0
\(115\) − 16.6847i − 1.55585i
\(116\) 0 0
\(117\) 1.12311i 0.103831i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) − 12.8769i − 1.16107i
\(124\) 0 0
\(125\) 9.56155i 0.855211i
\(126\) 0 0
\(127\) 9.36932 0.831392 0.415696 0.909504i \(-0.363538\pi\)
0.415696 + 0.909504i \(0.363538\pi\)
\(128\) 0 0
\(129\) −11.1231 −0.979335
\(130\) 0 0
\(131\) − 4.00000i − 0.349482i −0.984614 0.174741i \(-0.944091\pi\)
0.984614 0.174741i \(-0.0559088\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 19.8078 1.70478
\(136\) 0 0
\(137\) −1.31534 −0.112377 −0.0561886 0.998420i \(-0.517895\pi\)
−0.0561886 + 0.998420i \(0.517895\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i 0.860818 + 0.508913i \(0.169953\pi\)
−0.860818 + 0.508913i \(0.830047\pi\)
\(140\) 0 0
\(141\) 6.24621i 0.526026i
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) − 10.9309i − 0.901563i
\(148\) 0 0
\(149\) − 13.1231i − 1.07509i −0.843236 0.537543i \(-0.819352\pi\)
0.843236 0.537543i \(-0.180648\pi\)
\(150\) 0 0
\(151\) −9.36932 −0.762464 −0.381232 0.924479i \(-0.624500\pi\)
−0.381232 + 0.924479i \(0.624500\pi\)
\(152\) 0 0
\(153\) −0.630683 −0.0509877
\(154\) 0 0
\(155\) − 34.0540i − 2.73528i
\(156\) 0 0
\(157\) − 10.6847i − 0.852729i −0.904552 0.426364i \(-0.859794\pi\)
0.904552 0.426364i \(-0.140206\pi\)
\(158\) 0 0
\(159\) −12.8769 −1.02120
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) 0 0
\(165\) 5.56155i 0.432966i
\(166\) 0 0
\(167\) −17.3693 −1.34408 −0.672039 0.740516i \(-0.734581\pi\)
−0.672039 + 0.740516i \(0.734581\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) − 4.00000i − 0.305888i
\(172\) 0 0
\(173\) 18.0000i 1.36851i 0.729241 + 0.684257i \(0.239873\pi\)
−0.729241 + 0.684257i \(0.760127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 19.8078 1.48884
\(178\) 0 0
\(179\) 4.68466i 0.350148i 0.984555 + 0.175074i \(0.0560164\pi\)
−0.984555 + 0.175074i \(0.943984\pi\)
\(180\) 0 0
\(181\) 12.0540i 0.895965i 0.894042 + 0.447982i \(0.147857\pi\)
−0.894042 + 0.447982i \(0.852143\pi\)
\(182\) 0 0
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) −23.8078 −1.75038
\(186\) 0 0
\(187\) − 1.12311i − 0.0821296i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.68466 0.338970 0.169485 0.985533i \(-0.445790\pi\)
0.169485 + 0.985533i \(0.445790\pi\)
\(192\) 0 0
\(193\) 11.3693 0.818381 0.409191 0.912449i \(-0.365811\pi\)
0.409191 + 0.912449i \(0.365811\pi\)
\(194\) 0 0
\(195\) 11.1231i 0.796542i
\(196\) 0 0
\(197\) − 8.24621i − 0.587518i −0.955879 0.293759i \(-0.905094\pi\)
0.955879 0.293759i \(-0.0949064\pi\)
\(198\) 0 0
\(199\) 2.24621 0.159230 0.0796148 0.996826i \(-0.474631\pi\)
0.0796148 + 0.996826i \(0.474631\pi\)
\(200\) 0 0
\(201\) −7.31534 −0.515984
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 29.3693i 2.05124i
\(206\) 0 0
\(207\) 2.63068 0.182845
\(208\) 0 0
\(209\) 7.12311 0.492716
\(210\) 0 0
\(211\) 16.4924i 1.13539i 0.823241 + 0.567693i \(0.192164\pi\)
−0.823241 + 0.567693i \(0.807836\pi\)
\(212\) 0 0
\(213\) 5.17708i 0.354728i
\(214\) 0 0
\(215\) 25.3693 1.73017
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 9.36932i 0.633120i
\(220\) 0 0
\(221\) − 2.24621i − 0.151097i
\(222\) 0 0
\(223\) −4.68466 −0.313708 −0.156854 0.987622i \(-0.550135\pi\)
−0.156854 + 0.987622i \(0.550135\pi\)
\(224\) 0 0
\(225\) −4.31534 −0.287689
\(226\) 0 0
\(227\) − 20.0000i − 1.32745i −0.747978 0.663723i \(-0.768975\pi\)
0.747978 0.663723i \(-0.231025\pi\)
\(228\) 0 0
\(229\) 9.31534i 0.615575i 0.951455 + 0.307788i \(0.0995886\pi\)
−0.951455 + 0.307788i \(0.900411\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.12311 0.0735771 0.0367885 0.999323i \(-0.488287\pi\)
0.0367885 + 0.999323i \(0.488287\pi\)
\(234\) 0 0
\(235\) − 14.2462i − 0.929320i
\(236\) 0 0
\(237\) 7.61553i 0.494682i
\(238\) 0 0
\(239\) 25.3693 1.64100 0.820502 0.571643i \(-0.193694\pi\)
0.820502 + 0.571643i \(0.193694\pi\)
\(240\) 0 0
\(241\) 27.3693 1.76301 0.881506 0.472172i \(-0.156530\pi\)
0.881506 + 0.472172i \(0.156530\pi\)
\(242\) 0 0
\(243\) 5.75379i 0.369106i
\(244\) 0 0
\(245\) 24.9309i 1.59277i
\(246\) 0 0
\(247\) 14.2462 0.906465
\(248\) 0 0
\(249\) 20.8769 1.32302
\(250\) 0 0
\(251\) 14.0540i 0.887079i 0.896255 + 0.443540i \(0.146277\pi\)
−0.896255 + 0.443540i \(0.853723\pi\)
\(252\) 0 0
\(253\) 4.68466i 0.294522i
\(254\) 0 0
\(255\) −6.24621 −0.391153
\(256\) 0 0
\(257\) 8.24621 0.514385 0.257192 0.966360i \(-0.417203\pi\)
0.257192 + 0.966360i \(0.417203\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 0.630683i − 0.0390383i
\(262\) 0 0
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 29.3693 1.80414
\(266\) 0 0
\(267\) 5.56155i 0.340362i
\(268\) 0 0
\(269\) − 22.4924i − 1.37139i −0.727890 0.685694i \(-0.759499\pi\)
0.727890 0.685694i \(-0.240501\pi\)
\(270\) 0 0
\(271\) 4.87689 0.296250 0.148125 0.988969i \(-0.452676\pi\)
0.148125 + 0.988969i \(0.452676\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 7.68466i − 0.463402i
\(276\) 0 0
\(277\) − 2.00000i − 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) 0 0
\(279\) 5.36932 0.321453
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 26.2462i 1.56018i 0.625670 + 0.780088i \(0.284826\pi\)
−0.625670 + 0.780088i \(0.715174\pi\)
\(284\) 0 0
\(285\) − 39.6155i − 2.34662i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.7386 −0.925802
\(290\) 0 0
\(291\) − 10.4384i − 0.611913i
\(292\) 0 0
\(293\) − 22.4924i − 1.31402i −0.753881 0.657011i \(-0.771821\pi\)
0.753881 0.657011i \(-0.228179\pi\)
\(294\) 0 0
\(295\) −45.1771 −2.63031
\(296\) 0 0
\(297\) −5.56155 −0.322714
\(298\) 0 0
\(299\) 9.36932i 0.541842i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 20.4924 1.17726
\(304\) 0 0
\(305\) −54.7386 −3.13433
\(306\) 0 0
\(307\) − 2.63068i − 0.150141i −0.997178 0.0750705i \(-0.976082\pi\)
0.997178 0.0750705i \(-0.0239182\pi\)
\(308\) 0 0
\(309\) 3.50758i 0.199539i
\(310\) 0 0
\(311\) −30.7386 −1.74303 −0.871514 0.490371i \(-0.836861\pi\)
−0.871514 + 0.490371i \(0.836861\pi\)
\(312\) 0 0
\(313\) −18.6847 −1.05612 −0.528060 0.849207i \(-0.677080\pi\)
−0.528060 + 0.849207i \(0.677080\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.05398i 0.452356i 0.974086 + 0.226178i \(0.0726232\pi\)
−0.974086 + 0.226178i \(0.927377\pi\)
\(318\) 0 0
\(319\) 1.12311 0.0628818
\(320\) 0 0
\(321\) 18.7386 1.04589
\(322\) 0 0
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) − 15.3693i − 0.852536i
\(326\) 0 0
\(327\) 21.8617 1.20896
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 28.6847i 1.57665i 0.615258 + 0.788326i \(0.289052\pi\)
−0.615258 + 0.788326i \(0.710948\pi\)
\(332\) 0 0
\(333\) − 3.75379i − 0.205706i
\(334\) 0 0
\(335\) 16.6847 0.911580
\(336\) 0 0
\(337\) −31.3693 −1.70880 −0.854398 0.519619i \(-0.826074\pi\)
−0.854398 + 0.519619i \(0.826074\pi\)
\(338\) 0 0
\(339\) 24.3002i 1.31980i
\(340\) 0 0
\(341\) 9.56155i 0.517787i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 26.0540 1.40270
\(346\) 0 0
\(347\) 2.63068i 0.141222i 0.997504 + 0.0706112i \(0.0224950\pi\)
−0.997504 + 0.0706112i \(0.977505\pi\)
\(348\) 0 0
\(349\) 11.3693i 0.608586i 0.952579 + 0.304293i \(0.0984201\pi\)
−0.952579 + 0.304293i \(0.901580\pi\)
\(350\) 0 0
\(351\) −11.1231 −0.593707
\(352\) 0 0
\(353\) 20.4384 1.08783 0.543914 0.839141i \(-0.316942\pi\)
0.543914 + 0.839141i \(0.316942\pi\)
\(354\) 0 0
\(355\) − 11.8078i − 0.626691i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.36932 −0.494494 −0.247247 0.968953i \(-0.579526\pi\)
−0.247247 + 0.968953i \(0.579526\pi\)
\(360\) 0 0
\(361\) −31.7386 −1.67045
\(362\) 0 0
\(363\) − 1.56155i − 0.0819603i
\(364\) 0 0
\(365\) − 21.3693i − 1.11852i
\(366\) 0 0
\(367\) 38.0540 1.98640 0.993201 0.116415i \(-0.0371402\pi\)
0.993201 + 0.116415i \(0.0371402\pi\)
\(368\) 0 0
\(369\) −4.63068 −0.241064
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 3.36932i − 0.174457i −0.996188 0.0872283i \(-0.972199\pi\)
0.996188 0.0872283i \(-0.0278010\pi\)
\(374\) 0 0
\(375\) −14.9309 −0.771027
\(376\) 0 0
\(377\) 2.24621 0.115686
\(378\) 0 0
\(379\) 14.4384i 0.741653i 0.928702 + 0.370827i \(0.120926\pi\)
−0.928702 + 0.370827i \(0.879074\pi\)
\(380\) 0 0
\(381\) 14.6307i 0.749553i
\(382\) 0 0
\(383\) −20.6847 −1.05694 −0.528468 0.848953i \(-0.677233\pi\)
−0.528468 + 0.848953i \(0.677233\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) 6.19224i 0.313959i 0.987602 + 0.156979i \(0.0501756\pi\)
−0.987602 + 0.156979i \(0.949824\pi\)
\(390\) 0 0
\(391\) −5.26137 −0.266079
\(392\) 0 0
\(393\) 6.24621 0.315080
\(394\) 0 0
\(395\) − 17.3693i − 0.873945i
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.4924 −0.523967 −0.261983 0.965072i \(-0.584377\pi\)
−0.261983 + 0.965072i \(0.584377\pi\)
\(402\) 0 0
\(403\) 19.1231i 0.952590i
\(404\) 0 0
\(405\) 24.9309i 1.23882i
\(406\) 0 0
\(407\) 6.68466 0.331346
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) − 2.05398i − 0.101315i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −47.6155 −2.33735
\(416\) 0 0
\(417\) −18.7386 −0.917635
\(418\) 0 0
\(419\) − 30.7386i − 1.50168i −0.660484 0.750840i \(-0.729649\pi\)
0.660484 0.750840i \(-0.270351\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i 0.969854 + 0.243685i \(0.0783563\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(422\) 0 0
\(423\) 2.24621 0.109215
\(424\) 0 0
\(425\) 8.63068 0.418650
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) − 3.12311i − 0.150785i
\(430\) 0 0
\(431\) −10.7386 −0.517262 −0.258631 0.965976i \(-0.583271\pi\)
−0.258631 + 0.965976i \(0.583271\pi\)
\(432\) 0 0
\(433\) −6.68466 −0.321244 −0.160622 0.987016i \(-0.551350\pi\)
−0.160622 + 0.987016i \(0.551350\pi\)
\(434\) 0 0
\(435\) − 6.24621i − 0.299483i
\(436\) 0 0
\(437\) − 33.3693i − 1.59627i
\(438\) 0 0
\(439\) −9.75379 −0.465523 −0.232761 0.972534i \(-0.574776\pi\)
−0.232761 + 0.972534i \(0.574776\pi\)
\(440\) 0 0
\(441\) −3.93087 −0.187184
\(442\) 0 0
\(443\) − 20.6847i − 0.982758i −0.870946 0.491379i \(-0.836493\pi\)
0.870946 0.491379i \(-0.163507\pi\)
\(444\) 0 0
\(445\) − 12.6847i − 0.601310i
\(446\) 0 0
\(447\) 20.4924 0.969258
\(448\) 0 0
\(449\) −17.8078 −0.840400 −0.420200 0.907431i \(-0.638040\pi\)
−0.420200 + 0.907431i \(0.638040\pi\)
\(450\) 0 0
\(451\) − 8.24621i − 0.388299i
\(452\) 0 0
\(453\) − 14.6307i − 0.687409i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.6307 −0.777951 −0.388975 0.921248i \(-0.627171\pi\)
−0.388975 + 0.921248i \(0.627171\pi\)
\(458\) 0 0
\(459\) − 6.24621i − 0.291548i
\(460\) 0 0
\(461\) − 10.8769i − 0.506587i −0.967389 0.253294i \(-0.918486\pi\)
0.967389 0.253294i \(-0.0815139\pi\)
\(462\) 0 0
\(463\) −5.06913 −0.235582 −0.117791 0.993038i \(-0.537581\pi\)
−0.117791 + 0.993038i \(0.537581\pi\)
\(464\) 0 0
\(465\) 53.1771 2.46603
\(466\) 0 0
\(467\) 20.6847i 0.957172i 0.878041 + 0.478586i \(0.158850\pi\)
−0.878041 + 0.478586i \(0.841150\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 16.6847 0.768788
\(472\) 0 0
\(473\) −7.12311 −0.327521
\(474\) 0 0
\(475\) 54.7386i 2.51158i
\(476\) 0 0
\(477\) 4.63068i 0.212024i
\(478\) 0 0
\(479\) −25.3693 −1.15915 −0.579577 0.814918i \(-0.696782\pi\)
−0.579577 + 0.814918i \(0.696782\pi\)
\(480\) 0 0
\(481\) 13.3693 0.609588
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.8078i 1.08105i
\(486\) 0 0
\(487\) −19.3153 −0.875262 −0.437631 0.899155i \(-0.644182\pi\)
−0.437631 + 0.899155i \(0.644182\pi\)
\(488\) 0 0
\(489\) −18.7386 −0.847390
\(490\) 0 0
\(491\) 22.7386i 1.02618i 0.858335 + 0.513090i \(0.171499\pi\)
−0.858335 + 0.513090i \(0.828501\pi\)
\(492\) 0 0
\(493\) 1.26137i 0.0568091i
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.50758i 0.336085i 0.985780 + 0.168043i \(0.0537446\pi\)
−0.985780 + 0.168043i \(0.946255\pi\)
\(500\) 0 0
\(501\) − 27.1231i − 1.21177i
\(502\) 0 0
\(503\) −9.36932 −0.417757 −0.208879 0.977942i \(-0.566981\pi\)
−0.208879 + 0.977942i \(0.566981\pi\)
\(504\) 0 0
\(505\) −46.7386 −2.07984
\(506\) 0 0
\(507\) 14.0540i 0.624159i
\(508\) 0 0
\(509\) − 1.31534i − 0.0583015i −0.999575 0.0291507i \(-0.990720\pi\)
0.999575 0.0291507i \(-0.00928028\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 39.6155 1.74907
\(514\) 0 0
\(515\) − 8.00000i − 0.352522i
\(516\) 0 0
\(517\) 4.00000i 0.175920i
\(518\) 0 0
\(519\) −28.1080 −1.23380
\(520\) 0 0
\(521\) −20.0540 −0.878581 −0.439290 0.898345i \(-0.644770\pi\)
−0.439290 + 0.898345i \(0.644770\pi\)
\(522\) 0 0
\(523\) − 40.1080i − 1.75380i −0.480674 0.876899i \(-0.659608\pi\)
0.480674 0.876899i \(-0.340392\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.7386 −0.467782
\(528\) 0 0
\(529\) −1.05398 −0.0458250
\(530\) 0 0
\(531\) − 7.12311i − 0.309116i
\(532\) 0 0
\(533\) − 16.4924i − 0.714366i
\(534\) 0 0
\(535\) −42.7386 −1.84775
\(536\) 0 0
\(537\) −7.31534 −0.315680
\(538\) 0 0
\(539\) − 7.00000i − 0.301511i
\(540\) 0 0
\(541\) 18.0000i 0.773880i 0.922105 + 0.386940i \(0.126468\pi\)
−0.922105 + 0.386940i \(0.873532\pi\)
\(542\) 0 0
\(543\) −18.8229 −0.807769
\(544\) 0 0
\(545\) −49.8617 −2.13584
\(546\) 0 0
\(547\) − 12.0000i − 0.513083i −0.966533 0.256541i \(-0.917417\pi\)
0.966533 0.256541i \(-0.0825830\pi\)
\(548\) 0 0
\(549\) − 8.63068i − 0.368349i
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) − 37.1771i − 1.57808i
\(556\) 0 0
\(557\) 8.63068i 0.365694i 0.983141 + 0.182847i \(0.0585313\pi\)
−0.983141 + 0.182847i \(0.941469\pi\)
\(558\) 0 0
\(559\) −14.2462 −0.602551
\(560\) 0 0
\(561\) 1.75379 0.0740450
\(562\) 0 0
\(563\) 30.7386i 1.29548i 0.761862 + 0.647739i \(0.224285\pi\)
−0.761862 + 0.647739i \(0.775715\pi\)
\(564\) 0 0
\(565\) − 55.4233i − 2.33168i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.36932 −0.141249 −0.0706246 0.997503i \(-0.522499\pi\)
−0.0706246 + 0.997503i \(0.522499\pi\)
\(570\) 0 0
\(571\) 12.0000i 0.502184i 0.967963 + 0.251092i \(0.0807897\pi\)
−0.967963 + 0.251092i \(0.919210\pi\)
\(572\) 0 0
\(573\) 7.31534i 0.305603i
\(574\) 0 0
\(575\) −36.0000 −1.50130
\(576\) 0 0
\(577\) −6.68466 −0.278286 −0.139143 0.990272i \(-0.544435\pi\)
−0.139143 + 0.990272i \(0.544435\pi\)
\(578\) 0 0
\(579\) 17.7538i 0.737822i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.24621 −0.341523
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) 0 0
\(589\) − 68.1080i − 2.80634i
\(590\) 0 0
\(591\) 12.8769 0.529685
\(592\) 0 0
\(593\) 31.8617 1.30840 0.654202 0.756320i \(-0.273004\pi\)
0.654202 + 0.756320i \(0.273004\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.50758i 0.143556i
\(598\) 0 0
\(599\) 14.7386 0.602204 0.301102 0.953592i \(-0.402645\pi\)
0.301102 + 0.953592i \(0.402645\pi\)
\(600\) 0 0
\(601\) 42.1080 1.71762 0.858810 0.512295i \(-0.171205\pi\)
0.858810 + 0.512295i \(0.171205\pi\)
\(602\) 0 0
\(603\) 2.63068i 0.107130i
\(604\) 0 0
\(605\) 3.56155i 0.144798i
\(606\) 0 0
\(607\) −28.8769 −1.17208 −0.586038 0.810283i \(-0.699313\pi\)
−0.586038 + 0.810283i \(0.699313\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000i 0.323645i
\(612\) 0 0
\(613\) 7.36932i 0.297644i 0.988864 + 0.148822i \(0.0475481\pi\)
−0.988864 + 0.148822i \(0.952452\pi\)
\(614\) 0 0
\(615\) −45.8617 −1.84932
\(616\) 0 0
\(617\) 15.7538 0.634224 0.317112 0.948388i \(-0.397287\pi\)
0.317112 + 0.948388i \(0.397287\pi\)
\(618\) 0 0
\(619\) 4.68466i 0.188292i 0.995558 + 0.0941462i \(0.0300121\pi\)
−0.995558 + 0.0941462i \(0.969988\pi\)
\(620\) 0 0
\(621\) 26.0540i 1.04551i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) 11.1231i 0.444214i
\(628\) 0 0
\(629\) 7.50758i 0.299347i
\(630\) 0 0
\(631\) 23.4233 0.932467 0.466233 0.884662i \(-0.345611\pi\)
0.466233 + 0.884662i \(0.345611\pi\)
\(632\) 0 0
\(633\) −25.7538 −1.02362
\(634\) 0 0
\(635\) − 33.3693i − 1.32422i
\(636\) 0 0
\(637\) − 14.0000i − 0.554700i
\(638\) 0 0
\(639\) 1.86174 0.0736493
\(640\) 0 0
\(641\) 0.930870 0.0367671 0.0183836 0.999831i \(-0.494148\pi\)
0.0183836 + 0.999831i \(0.494148\pi\)
\(642\) 0 0
\(643\) 38.4384i 1.51586i 0.652333 + 0.757932i \(0.273790\pi\)
−0.652333 + 0.757932i \(0.726210\pi\)
\(644\) 0 0
\(645\) 39.6155i 1.55986i
\(646\) 0 0
\(647\) 19.3153 0.759364 0.379682 0.925117i \(-0.376033\pi\)
0.379682 + 0.925117i \(0.376033\pi\)
\(648\) 0 0
\(649\) 12.6847 0.497916
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 1.31534i − 0.0514733i −0.999669 0.0257366i \(-0.991807\pi\)
0.999669 0.0257366i \(-0.00819313\pi\)
\(654\) 0 0
\(655\) −14.2462 −0.556646
\(656\) 0 0
\(657\) 3.36932 0.131450
\(658\) 0 0
\(659\) 37.3693i 1.45570i 0.685735 + 0.727851i \(0.259481\pi\)
−0.685735 + 0.727851i \(0.740519\pi\)
\(660\) 0 0
\(661\) − 16.0540i − 0.624427i −0.950012 0.312214i \(-0.898930\pi\)
0.950012 0.312214i \(-0.101070\pi\)
\(662\) 0 0
\(663\) 3.50758 0.136223
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 5.26137i − 0.203721i
\(668\) 0 0
\(669\) − 7.31534i − 0.282827i
\(670\) 0 0
\(671\) 15.3693 0.593326
\(672\) 0 0
\(673\) −24.7386 −0.953604 −0.476802 0.879011i \(-0.658204\pi\)
−0.476802 + 0.879011i \(0.658204\pi\)
\(674\) 0 0
\(675\) − 42.7386i − 1.64501i
\(676\) 0 0
\(677\) 19.8617i 0.763349i 0.924297 + 0.381674i \(0.124652\pi\)
−0.924297 + 0.381674i \(0.875348\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 31.2311 1.19678
\(682\) 0 0
\(683\) − 12.0000i − 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 4.68466i 0.178992i
\(686\) 0 0
\(687\) −14.5464 −0.554980
\(688\) 0 0
\(689\) −16.4924 −0.628311
\(690\) 0 0
\(691\) − 28.3002i − 1.07659i −0.842757 0.538295i \(-0.819069\pi\)
0.842757 0.538295i \(-0.180931\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 42.7386 1.62117
\(696\) 0 0
\(697\) 9.26137 0.350799
\(698\) 0 0
\(699\) 1.75379i 0.0663344i
\(700\) 0 0
\(701\) − 6.38447i − 0.241138i −0.992705 0.120569i \(-0.961528\pi\)
0.992705 0.120569i \(-0.0384719\pi\)
\(702\) 0 0
\(703\) −47.6155 −1.79585
\(704\) 0 0
\(705\) 22.2462 0.837841
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 22.6847i − 0.851940i −0.904737 0.425970i \(-0.859933\pi\)
0.904737 0.425970i \(-0.140067\pi\)
\(710\) 0 0
\(711\) 2.73863 0.102707
\(712\) 0 0
\(713\) 44.7926 1.67750
\(714\) 0 0
\(715\) 7.12311i 0.266389i
\(716\) 0 0
\(717\) 39.6155i 1.47947i
\(718\) 0 0
\(719\) −28.6847 −1.06976 −0.534879 0.844929i \(-0.679643\pi\)
−0.534879 + 0.844929i \(0.679643\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 42.7386i 1.58947i
\(724\) 0 0
\(725\) 8.63068i 0.320536i
\(726\) 0 0
\(727\) 28.6847 1.06386 0.531928 0.846790i \(-0.321468\pi\)
0.531928 + 0.846790i \(0.321468\pi\)
\(728\) 0 0
\(729\) −29.9848 −1.11055
\(730\) 0 0
\(731\) − 8.00000i − 0.295891i
\(732\) 0 0
\(733\) 38.1080i 1.40755i 0.710423 + 0.703775i \(0.248504\pi\)
−0.710423 + 0.703775i \(0.751496\pi\)
\(734\) 0 0
\(735\) −38.9309 −1.43599
\(736\) 0 0
\(737\) −4.68466 −0.172562
\(738\) 0 0
\(739\) 11.6155i 0.427284i 0.976912 + 0.213642i \(0.0685326\pi\)
−0.976912 + 0.213642i \(0.931467\pi\)
\(740\) 0 0
\(741\) 22.2462i 0.817235i
\(742\) 0 0
\(743\) 18.7386 0.687454 0.343727 0.939070i \(-0.388311\pi\)
0.343727 + 0.939070i \(0.388311\pi\)
\(744\) 0 0
\(745\) −46.7386 −1.71237
\(746\) 0 0
\(747\) − 7.50758i − 0.274688i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 33.1771 1.21065 0.605324 0.795979i \(-0.293043\pi\)
0.605324 + 0.795979i \(0.293043\pi\)
\(752\) 0 0
\(753\) −21.9460 −0.799758
\(754\) 0 0
\(755\) 33.3693i 1.21443i
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 0 0
\(759\) −7.31534 −0.265530
\(760\) 0 0
\(761\) 20.2462 0.733925 0.366962 0.930236i \(-0.380398\pi\)
0.366962 + 0.930236i \(0.380398\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.24621i 0.0812119i
\(766\) 0 0
\(767\) 25.3693 0.916033
\(768\) 0 0
\(769\) −38.0000 −1.37032 −0.685158 0.728395i \(-0.740267\pi\)
−0.685158 + 0.728395i \(0.740267\pi\)
\(770\) 0 0
\(771\) 12.8769i 0.463750i
\(772\) 0 0
\(773\) 8.24621i 0.296596i 0.988943 + 0.148298i \(0.0473794\pi\)
−0.988943 + 0.148298i \(0.952621\pi\)
\(774\) 0 0
\(775\) −73.4773 −2.63938
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 58.7386i 2.10453i
\(780\) 0 0
\(781\) 3.31534i 0.118632i
\(782\) 0 0
\(783\) 6.24621 0.223221
\(784\) 0 0
\(785\) −38.0540 −1.35820
\(786\) 0 0
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 0 0
\(789\) 12.4924i 0.444742i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.7386 1.09156
\(794\) 0 0
\(795\) 45.8617i 1.62655i
\(796\) 0 0
\(797\) − 20.4384i − 0.723967i −0.932185 0.361983i \(-0.882100\pi\)
0.932185 0.361983i \(-0.117900\pi\)
\(798\) 0 0
\(799\) −4.49242 −0.158930
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) 6.00000i 0.211735i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 35.1231 1.23639
\(808\) 0 0
\(809\) −8.24621 −0.289921 −0.144961 0.989437i \(-0.546306\pi\)
−0.144961 + 0.989437i \(0.546306\pi\)
\(810\) 0 0
\(811\) 26.6307i 0.935130i 0.883959 + 0.467565i \(0.154869\pi\)
−0.883959 + 0.467565i \(0.845131\pi\)
\(812\) 0 0
\(813\) 7.61553i 0.267088i
\(814\) 0 0
\(815\) 42.7386 1.49707
\(816\) 0 0
\(817\) 50.7386 1.77512
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.7386i 1.70099i 0.525983 + 0.850495i \(0.323698\pi\)
−0.525983 + 0.850495i \(0.676302\pi\)
\(822\) 0 0
\(823\) 14.4384 0.503293 0.251646 0.967819i \(-0.419028\pi\)
0.251646 + 0.967819i \(0.419028\pi\)
\(824\) 0 0
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) − 21.3693i − 0.743084i −0.928416 0.371542i \(-0.878829\pi\)
0.928416 0.371542i \(-0.121171\pi\)
\(828\) 0 0
\(829\) 5.31534i 0.184609i 0.995731 + 0.0923047i \(0.0294234\pi\)
−0.995731 + 0.0923047i \(0.970577\pi\)
\(830\) 0 0
\(831\) 3.12311 0.108339
\(832\) 0 0
\(833\) 7.86174 0.272393
\(834\) 0 0
\(835\) 61.8617i 2.14081i
\(836\) 0 0
\(837\) 53.1771i 1.83807i
\(838\) 0 0
\(839\) 31.4233 1.08485 0.542426 0.840103i \(-0.317506\pi\)
0.542426 + 0.840103i \(0.317506\pi\)
\(840\) 0 0
\(841\) 27.7386 0.956505
\(842\) 0 0
\(843\) 9.36932i 0.322696i
\(844\) 0 0
\(845\) − 32.0540i − 1.10269i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −40.9848 −1.40660
\(850\) 0 0
\(851\) − 31.3153i − 1.07348i
\(852\) 0 0
\(853\) 8.73863i 0.299205i 0.988746 + 0.149603i \(0.0477994\pi\)
−0.988746 + 0.149603i \(0.952201\pi\)
\(854\) 0 0
\(855\) −14.2462 −0.487210
\(856\) 0 0
\(857\) −13.1231 −0.448277 −0.224138 0.974557i \(-0.571957\pi\)
−0.224138 + 0.974557i \(0.571957\pi\)
\(858\) 0 0
\(859\) 29.0691i 0.991826i 0.868372 + 0.495913i \(0.165167\pi\)
−0.868372 + 0.495913i \(0.834833\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.7386 1.04636 0.523178 0.852224i \(-0.324746\pi\)
0.523178 + 0.852224i \(0.324746\pi\)
\(864\) 0 0
\(865\) 64.1080 2.17974
\(866\) 0 0
\(867\) − 24.5767i − 0.834669i
\(868\) 0 0
\(869\) 4.87689i 0.165437i
\(870\) 0 0
\(871\) −9.36932 −0.317467
\(872\) 0 0
\(873\) −3.75379 −0.127047
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 56.7386i − 1.91593i −0.286889 0.957964i \(-0.592621\pi\)
0.286889 0.957964i \(-0.407379\pi\)
\(878\) 0 0
\(879\) 35.1231 1.18467
\(880\) 0 0
\(881\) 34.3002 1.15560 0.577801 0.816177i \(-0.303911\pi\)
0.577801 + 0.816177i \(0.303911\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) 0 0
\(885\) − 70.5464i − 2.37139i
\(886\) 0 0
\(887\) −52.1080 −1.74961 −0.874807 0.484472i \(-0.839012\pi\)
−0.874807 + 0.484472i \(0.839012\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 7.00000i − 0.234509i
\(892\) 0 0
\(893\) − 28.4924i − 0.953463i
\(894\) 0 0
\(895\) 16.6847 0.557707
\(896\) 0 0
\(897\) −14.6307 −0.488504
\(898\) 0 0
\(899\) − 10.7386i − 0.358153i
\(900\) 0 0
\(901\) − 9.26137i − 0.308541i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 42.9309 1.42707
\(906\) 0 0
\(907\) 16.4924i 0.547622i 0.961784 + 0.273811i \(0.0882843\pi\)
−0.961784 + 0.273811i \(0.911716\pi\)
\(908\) 0 0
\(909\) − 7.36932i − 0.244425i
\(910\) 0 0
\(911\) 22.7386 0.753365 0.376682 0.926343i \(-0.377065\pi\)
0.376682 + 0.926343i \(0.377065\pi\)
\(912\) 0 0
\(913\) 13.3693 0.442460
\(914\) 0 0
\(915\) − 85.4773i − 2.82579i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −23.6155 −0.779004 −0.389502 0.921026i \(-0.627353\pi\)
−0.389502 + 0.921026i \(0.627353\pi\)
\(920\) 0 0
\(921\) 4.10795 0.135362
\(922\) 0 0
\(923\) 6.63068i 0.218252i
\(924\) 0 0
\(925\) 51.3693i 1.68901i
\(926\) 0 0
\(927\) 1.26137 0.0414287
\(928\) 0 0
\(929\) −10.4924 −0.344245 −0.172123 0.985076i \(-0.555063\pi\)
−0.172123 + 0.985076i \(0.555063\pi\)
\(930\) 0 0
\(931\) 49.8617i 1.63415i
\(932\) 0 0
\(933\) − 48.0000i − 1.57145i
\(934\) 0 0
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) −28.7386 −0.938850 −0.469425 0.882972i \(-0.655539\pi\)
−0.469425 + 0.882972i \(0.655539\pi\)
\(938\) 0 0
\(939\) − 29.1771i − 0.952158i
\(940\) 0 0
\(941\) 8.24621i 0.268819i 0.990926 + 0.134409i \(0.0429137\pi\)
−0.990926 + 0.134409i \(0.957086\pi\)
\(942\) 0 0
\(943\) −38.6307 −1.25799
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 19.3153i − 0.627664i −0.949478 0.313832i \(-0.898387\pi\)
0.949478 0.313832i \(-0.101613\pi\)
\(948\) 0 0
\(949\) 12.0000i 0.389536i
\(950\) 0 0
\(951\) −12.5767 −0.407828
\(952\) 0 0
\(953\) 6.38447 0.206813 0.103407 0.994639i \(-0.467026\pi\)
0.103407 + 0.994639i \(0.467026\pi\)
\(954\) 0 0
\(955\) − 16.6847i − 0.539903i
\(956\) 0 0
\(957\) 1.75379i 0.0566919i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 60.4233 1.94914
\(962\) 0 0
\(963\) − 6.73863i − 0.217149i
\(964\) 0 0
\(965\) − 40.4924i − 1.30350i
\(966\) 0 0
\(967\) 18.7386 0.602594 0.301297 0.953530i \(-0.402580\pi\)
0.301297 + 0.953530i \(0.402580\pi\)
\(968\) 0 0
\(969\) −12.4924 −0.401314
\(970\) 0 0
\(971\) 28.6847i 0.920534i 0.887780 + 0.460267i \(0.152246\pi\)
−0.887780 + 0.460267i \(0.847754\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 24.0000 0.768615
\(976\) 0 0
\(977\) 53.0388 1.69686 0.848431 0.529306i \(-0.177548\pi\)
0.848431 + 0.529306i \(0.177548\pi\)
\(978\) 0 0
\(979\) 3.56155i 0.113828i
\(980\) 0 0
\(981\) − 7.86174i − 0.251006i
\(982\) 0 0
\(983\) 28.6847 0.914899 0.457449 0.889236i \(-0.348763\pi\)
0.457449 + 0.889236i \(0.348763\pi\)
\(984\) 0 0
\(985\) −29.3693 −0.935784
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 33.3693i 1.06108i
\(990\) 0 0
\(991\) −54.7386 −1.73883 −0.869415 0.494083i \(-0.835504\pi\)
−0.869415 + 0.494083i \(0.835504\pi\)
\(992\) 0 0
\(993\) −44.7926 −1.42145
\(994\) 0 0
\(995\) − 8.00000i − 0.253617i
\(996\) 0 0
\(997\) − 0.630683i − 0.0199739i −0.999950 0.00998697i \(-0.996821\pi\)
0.999950 0.00998697i \(-0.00317900\pi\)
\(998\) 0 0
\(999\) 37.1771 1.17623
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.c.t.1409.3 4
4.3 odd 2 2816.2.c.s.1409.2 4
8.3 odd 2 2816.2.c.s.1409.3 4
8.5 even 2 inner 2816.2.c.t.1409.2 4
16.3 odd 4 704.2.a.n.1.2 2
16.5 even 4 352.2.a.g.1.2 2
16.11 odd 4 352.2.a.h.1.1 yes 2
16.13 even 4 704.2.a.o.1.1 2
48.5 odd 4 3168.2.a.bd.1.1 2
48.11 even 4 3168.2.a.bc.1.1 2
48.29 odd 4 6336.2.a.cv.1.2 2
48.35 even 4 6336.2.a.cw.1.2 2
80.59 odd 4 8800.2.a.bd.1.2 2
80.69 even 4 8800.2.a.be.1.1 2
176.21 odd 4 3872.2.a.p.1.2 2
176.43 even 4 3872.2.a.ba.1.1 2
176.109 odd 4 7744.2.a.cm.1.1 2
176.131 even 4 7744.2.a.bw.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.a.g.1.2 2 16.5 even 4
352.2.a.h.1.1 yes 2 16.11 odd 4
704.2.a.n.1.2 2 16.3 odd 4
704.2.a.o.1.1 2 16.13 even 4
2816.2.c.s.1409.2 4 4.3 odd 2
2816.2.c.s.1409.3 4 8.3 odd 2
2816.2.c.t.1409.2 4 8.5 even 2 inner
2816.2.c.t.1409.3 4 1.1 even 1 trivial
3168.2.a.bc.1.1 2 48.11 even 4
3168.2.a.bd.1.1 2 48.5 odd 4
3872.2.a.p.1.2 2 176.21 odd 4
3872.2.a.ba.1.1 2 176.43 even 4
6336.2.a.cv.1.2 2 48.29 odd 4
6336.2.a.cw.1.2 2 48.35 even 4
7744.2.a.bw.1.2 2 176.131 even 4
7744.2.a.cm.1.1 2 176.109 odd 4
8800.2.a.bd.1.2 2 80.59 odd 4
8800.2.a.be.1.1 2 80.69 even 4