Properties

Label 2816.2.c.t.1409.3
Level 28162816
Weight 22
Character 2816.1409
Analytic conductor 22.48622.486
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,2,Mod(1409,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.1409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2816=2811 2816 = 2^{8} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2816.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.485873209222.4858732092
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,17)\Q(i, \sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9x2+16 x^{4} + 9x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1409.3
Root 1.56155i1.56155i of defining polynomial
Character χ\chi == 2816.1409
Dual form 2816.2.c.t.1409.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.56155iq33.56155iq5+0.561553q9+1.00000iq11+2.00000iq13+5.56155q151.12311q177.12311iq19+4.68466q237.68466q25+5.56155iq271.12311iq29+9.56155q311.56155q336.68466iq373.12311q398.24621q41+7.12311iq432.00000iq45+4.00000q477.00000q491.75379iq51+8.24621iq53+3.56155q55+11.1231q5712.6847iq5915.3693iq61+7.12311q65+4.68466iq67+7.31534iq69+3.31534q71+6.00000q7312.0000iq75+4.87689q797.00000q8113.3693iq83+4.00000iq85+1.75379q87+3.56155q89+14.9309iq9325.3693q956.68466q97+0.561553iq99+O(q100)q+1.56155i q^{3} -3.56155i q^{5} +0.561553 q^{9} +1.00000i q^{11} +2.00000i q^{13} +5.56155 q^{15} -1.12311 q^{17} -7.12311i q^{19} +4.68466 q^{23} -7.68466 q^{25} +5.56155i q^{27} -1.12311i q^{29} +9.56155 q^{31} -1.56155 q^{33} -6.68466i q^{37} -3.12311 q^{39} -8.24621 q^{41} +7.12311i q^{43} -2.00000i q^{45} +4.00000 q^{47} -7.00000 q^{49} -1.75379i q^{51} +8.24621i q^{53} +3.56155 q^{55} +11.1231 q^{57} -12.6847i q^{59} -15.3693i q^{61} +7.12311 q^{65} +4.68466i q^{67} +7.31534i q^{69} +3.31534 q^{71} +6.00000 q^{73} -12.0000i q^{75} +4.87689 q^{79} -7.00000 q^{81} -13.3693i q^{83} +4.00000i q^{85} +1.75379 q^{87} +3.56155 q^{89} +14.9309i q^{93} -25.3693 q^{95} -6.68466 q^{97} +0.561553i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q9+14q15+12q176q236q25+30q31+2q33+4q39+16q4728q49+6q55+28q57+12q65+38q71+24q73+36q7928q81+40q87+2q97+O(q100) 4 q - 6 q^{9} + 14 q^{15} + 12 q^{17} - 6 q^{23} - 6 q^{25} + 30 q^{31} + 2 q^{33} + 4 q^{39} + 16 q^{47} - 28 q^{49} + 6 q^{55} + 28 q^{57} + 12 q^{65} + 38 q^{71} + 24 q^{73} + 36 q^{79} - 28 q^{81} + 40 q^{87}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2816Z)×\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times.

nn 10251025 15411541 20472047
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.56155i 0.901563i 0.892634 + 0.450781i 0.148855π0.148855\pi
−0.892634 + 0.450781i 0.851145π0.851145\pi
44 0 0
55 − 3.56155i − 1.59277i −0.604787 0.796387i 0.706742π-0.706742\pi
0.604787 0.796387i 0.293258π-0.293258\pi
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0 0
99 0.561553 0.187184
1010 0 0
1111 1.00000i 0.301511i
1212 0 0
1313 2.00000i 0.554700i 0.960769 + 0.277350i 0.0894562π0.0894562\pi
−0.960769 + 0.277350i 0.910544π0.910544\pi
1414 0 0
1515 5.56155 1.43599
1616 0 0
1717 −1.12311 −0.272393 −0.136197 0.990682i 0.543488π-0.543488\pi
−0.136197 + 0.990682i 0.543488π0.543488\pi
1818 0 0
1919 − 7.12311i − 1.63415i −0.576530 0.817076i 0.695593π-0.695593\pi
0.576530 0.817076i 0.304407π-0.304407\pi
2020 0 0
2121 0 0
2222 0 0
2323 4.68466 0.976819 0.488409 0.872615i 0.337577π-0.337577\pi
0.488409 + 0.872615i 0.337577π0.337577\pi
2424 0 0
2525 −7.68466 −1.53693
2626 0 0
2727 5.56155i 1.07032i
2828 0 0
2929 − 1.12311i − 0.208555i −0.994548 0.104278i 0.966747π-0.966747\pi
0.994548 0.104278i 0.0332531π-0.0332531\pi
3030 0 0
3131 9.56155 1.71731 0.858653 0.512558i 0.171302π-0.171302\pi
0.858653 + 0.512558i 0.171302π0.171302\pi
3232 0 0
3333 −1.56155 −0.271831
3434 0 0
3535 0 0
3636 0 0
3737 − 6.68466i − 1.09895i −0.835510 0.549476i 0.814828π-0.814828\pi
0.835510 0.549476i 0.185172π-0.185172\pi
3838 0 0
3939 −3.12311 −0.500097
4040 0 0
4141 −8.24621 −1.28784 −0.643921 0.765092i 0.722693π-0.722693\pi
−0.643921 + 0.765092i 0.722693π0.722693\pi
4242 0 0
4343 7.12311i 1.08626i 0.839648 + 0.543132i 0.182762π0.182762\pi
−0.839648 + 0.543132i 0.817238π0.817238\pi
4444 0 0
4545 − 2.00000i − 0.298142i
4646 0 0
4747 4.00000 0.583460 0.291730 0.956501i 0.405769π-0.405769\pi
0.291730 + 0.956501i 0.405769π0.405769\pi
4848 0 0
4949 −7.00000 −1.00000
5050 0 0
5151 − 1.75379i − 0.245580i
5252 0 0
5353 8.24621i 1.13270i 0.824163 + 0.566352i 0.191646π0.191646\pi
−0.824163 + 0.566352i 0.808354π0.808354\pi
5454 0 0
5555 3.56155 0.480240
5656 0 0
5757 11.1231 1.47329
5858 0 0
5959 − 12.6847i − 1.65140i −0.564108 0.825701i 0.690780π-0.690780\pi
0.564108 0.825701i 0.309220π-0.309220\pi
6060 0 0
6161 − 15.3693i − 1.96784i −0.178611 0.983920i 0.557161π-0.557161\pi
0.178611 0.983920i 0.442839π-0.442839\pi
6262 0 0
6363 0 0
6464 0 0
6565 7.12311 0.883513
6666 0 0
6767 4.68466i 0.572322i 0.958182 + 0.286161i 0.0923792π0.0923792\pi
−0.958182 + 0.286161i 0.907621π0.907621\pi
6868 0 0
6969 7.31534i 0.880664i
7070 0 0
7171 3.31534 0.393459 0.196729 0.980458i 0.436968π-0.436968\pi
0.196729 + 0.980458i 0.436968π0.436968\pi
7272 0 0
7373 6.00000 0.702247 0.351123 0.936329i 0.385800π-0.385800\pi
0.351123 + 0.936329i 0.385800π0.385800\pi
7474 0 0
7575 − 12.0000i − 1.38564i
7676 0 0
7777 0 0
7878 0 0
7979 4.87689 0.548693 0.274347 0.961631i 0.411538π-0.411538\pi
0.274347 + 0.961631i 0.411538π0.411538\pi
8080 0 0
8181 −7.00000 −0.777778
8282 0 0
8383 − 13.3693i − 1.46747i −0.679434 0.733737i 0.737775π-0.737775\pi
0.679434 0.733737i 0.262225π-0.262225\pi
8484 0 0
8585 4.00000i 0.433861i
8686 0 0
8787 1.75379 0.188026
8888 0 0
8989 3.56155 0.377524 0.188762 0.982023i 0.439553π-0.439553\pi
0.188762 + 0.982023i 0.439553π0.439553\pi
9090 0 0
9191 0 0
9292 0 0
9393 14.9309i 1.54826i
9494 0 0
9595 −25.3693 −2.60284
9696 0 0
9797 −6.68466 −0.678724 −0.339362 0.940656i 0.610211π-0.610211\pi
−0.339362 + 0.940656i 0.610211π0.610211\pi
9898 0 0
9999 0.561553i 0.0564382i
100100 0 0
101101 − 13.1231i − 1.30580i −0.757445 0.652899i 0.773553π-0.773553\pi
0.757445 0.652899i 0.226447π-0.226447\pi
102102 0 0
103103 2.24621 0.221326 0.110663 0.993858i 0.464703π-0.464703\pi
0.110663 + 0.993858i 0.464703π0.464703\pi
104104 0 0
105105 0 0
106106 0 0
107107 − 12.0000i − 1.16008i −0.814587 0.580042i 0.803036π-0.803036\pi
0.814587 0.580042i 0.196964π-0.196964\pi
108108 0 0
109109 − 14.0000i − 1.34096i −0.741929 0.670478i 0.766089π-0.766089\pi
0.741929 0.670478i 0.233911π-0.233911\pi
110110 0 0
111111 10.4384 0.990774
112112 0 0
113113 15.5616 1.46391 0.731954 0.681354i 0.238609π-0.238609\pi
0.731954 + 0.681354i 0.238609π0.238609\pi
114114 0 0
115115 − 16.6847i − 1.55585i
116116 0 0
117117 1.12311i 0.103831i
118118 0 0
119119 0 0
120120 0 0
121121 −1.00000 −0.0909091
122122 0 0
123123 − 12.8769i − 1.16107i
124124 0 0
125125 9.56155i 0.855211i
126126 0 0
127127 9.36932 0.831392 0.415696 0.909504i 0.363538π-0.363538\pi
0.415696 + 0.909504i 0.363538π0.363538\pi
128128 0 0
129129 −11.1231 −0.979335
130130 0 0
131131 − 4.00000i − 0.349482i −0.984614 0.174741i 0.944091π-0.944091\pi
0.984614 0.174741i 0.0559088π-0.0559088\pi
132132 0 0
133133 0 0
134134 0 0
135135 19.8078 1.70478
136136 0 0
137137 −1.31534 −0.112377 −0.0561886 0.998420i 0.517895π-0.517895\pi
−0.0561886 + 0.998420i 0.517895π0.517895\pi
138138 0 0
139139 12.0000i 1.01783i 0.860818 + 0.508913i 0.169953π0.169953\pi
−0.860818 + 0.508913i 0.830047π0.830047\pi
140140 0 0
141141 6.24621i 0.526026i
142142 0 0
143143 −2.00000 −0.167248
144144 0 0
145145 −4.00000 −0.332182
146146 0 0
147147 − 10.9309i − 0.901563i
148148 0 0
149149 − 13.1231i − 1.07509i −0.843236 0.537543i 0.819352π-0.819352\pi
0.843236 0.537543i 0.180648π-0.180648\pi
150150 0 0
151151 −9.36932 −0.762464 −0.381232 0.924479i 0.624500π-0.624500\pi
−0.381232 + 0.924479i 0.624500π0.624500\pi
152152 0 0
153153 −0.630683 −0.0509877
154154 0 0
155155 − 34.0540i − 2.73528i
156156 0 0
157157 − 10.6847i − 0.852729i −0.904552 0.426364i 0.859794π-0.859794\pi
0.904552 0.426364i 0.140206π-0.140206\pi
158158 0 0
159159 −12.8769 −1.02120
160160 0 0
161161 0 0
162162 0 0
163163 12.0000i 0.939913i 0.882690 + 0.469956i 0.155730π0.155730\pi
−0.882690 + 0.469956i 0.844270π0.844270\pi
164164 0 0
165165 5.56155i 0.432966i
166166 0 0
167167 −17.3693 −1.34408 −0.672039 0.740516i 0.734581π-0.734581\pi
−0.672039 + 0.740516i 0.734581π0.734581\pi
168168 0 0
169169 9.00000 0.692308
170170 0 0
171171 − 4.00000i − 0.305888i
172172 0 0
173173 18.0000i 1.36851i 0.729241 + 0.684257i 0.239873π0.239873\pi
−0.729241 + 0.684257i 0.760127π0.760127\pi
174174 0 0
175175 0 0
176176 0 0
177177 19.8078 1.48884
178178 0 0
179179 4.68466i 0.350148i 0.984555 + 0.175074i 0.0560164π0.0560164\pi
−0.984555 + 0.175074i 0.943984π0.943984\pi
180180 0 0
181181 12.0540i 0.895965i 0.894042 + 0.447982i 0.147857π0.147857\pi
−0.894042 + 0.447982i 0.852143π0.852143\pi
182182 0 0
183183 24.0000 1.77413
184184 0 0
185185 −23.8078 −1.75038
186186 0 0
187187 − 1.12311i − 0.0821296i
188188 0 0
189189 0 0
190190 0 0
191191 4.68466 0.338970 0.169485 0.985533i 0.445790π-0.445790\pi
0.169485 + 0.985533i 0.445790π0.445790\pi
192192 0 0
193193 11.3693 0.818381 0.409191 0.912449i 0.365811π-0.365811\pi
0.409191 + 0.912449i 0.365811π0.365811\pi
194194 0 0
195195 11.1231i 0.796542i
196196 0 0
197197 − 8.24621i − 0.587518i −0.955879 0.293759i 0.905094π-0.905094\pi
0.955879 0.293759i 0.0949064π-0.0949064\pi
198198 0 0
199199 2.24621 0.159230 0.0796148 0.996826i 0.474631π-0.474631\pi
0.0796148 + 0.996826i 0.474631π0.474631\pi
200200 0 0
201201 −7.31534 −0.515984
202202 0 0
203203 0 0
204204 0 0
205205 29.3693i 2.05124i
206206 0 0
207207 2.63068 0.182845
208208 0 0
209209 7.12311 0.492716
210210 0 0
211211 16.4924i 1.13539i 0.823241 + 0.567693i 0.192164π0.192164\pi
−0.823241 + 0.567693i 0.807836π0.807836\pi
212212 0 0
213213 5.17708i 0.354728i
214214 0 0
215215 25.3693 1.73017
216216 0 0
217217 0 0
218218 0 0
219219 9.36932i 0.633120i
220220 0 0
221221 − 2.24621i − 0.151097i
222222 0 0
223223 −4.68466 −0.313708 −0.156854 0.987622i 0.550135π-0.550135\pi
−0.156854 + 0.987622i 0.550135π0.550135\pi
224224 0 0
225225 −4.31534 −0.287689
226226 0 0
227227 − 20.0000i − 1.32745i −0.747978 0.663723i 0.768975π-0.768975\pi
0.747978 0.663723i 0.231025π-0.231025\pi
228228 0 0
229229 9.31534i 0.615575i 0.951455 + 0.307788i 0.0995886π0.0995886\pi
−0.951455 + 0.307788i 0.900411π0.900411\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.12311 0.0735771 0.0367885 0.999323i 0.488287π-0.488287\pi
0.0367885 + 0.999323i 0.488287π0.488287\pi
234234 0 0
235235 − 14.2462i − 0.929320i
236236 0 0
237237 7.61553i 0.494682i
238238 0 0
239239 25.3693 1.64100 0.820502 0.571643i 0.193694π-0.193694\pi
0.820502 + 0.571643i 0.193694π0.193694\pi
240240 0 0
241241 27.3693 1.76301 0.881506 0.472172i 0.156530π-0.156530\pi
0.881506 + 0.472172i 0.156530π0.156530\pi
242242 0 0
243243 5.75379i 0.369106i
244244 0 0
245245 24.9309i 1.59277i
246246 0 0
247247 14.2462 0.906465
248248 0 0
249249 20.8769 1.32302
250250 0 0
251251 14.0540i 0.887079i 0.896255 + 0.443540i 0.146277π0.146277\pi
−0.896255 + 0.443540i 0.853723π0.853723\pi
252252 0 0
253253 4.68466i 0.294522i
254254 0 0
255255 −6.24621 −0.391153
256256 0 0
257257 8.24621 0.514385 0.257192 0.966360i 0.417203π-0.417203\pi
0.257192 + 0.966360i 0.417203π0.417203\pi
258258 0 0
259259 0 0
260260 0 0
261261 − 0.630683i − 0.0390383i
262262 0 0
263263 8.00000 0.493301 0.246651 0.969104i 0.420670π-0.420670\pi
0.246651 + 0.969104i 0.420670π0.420670\pi
264264 0 0
265265 29.3693 1.80414
266266 0 0
267267 5.56155i 0.340362i
268268 0 0
269269 − 22.4924i − 1.37139i −0.727890 0.685694i 0.759499π-0.759499\pi
0.727890 0.685694i 0.240501π-0.240501\pi
270270 0 0
271271 4.87689 0.296250 0.148125 0.988969i 0.452676π-0.452676\pi
0.148125 + 0.988969i 0.452676π0.452676\pi
272272 0 0
273273 0 0
274274 0 0
275275 − 7.68466i − 0.463402i
276276 0 0
277277 − 2.00000i − 0.120168i −0.998193 0.0600842i 0.980863π-0.980863\pi
0.998193 0.0600842i 0.0191369π-0.0191369\pi
278278 0 0
279279 5.36932 0.321453
280280 0 0
281281 6.00000 0.357930 0.178965 0.983855i 0.442725π-0.442725\pi
0.178965 + 0.983855i 0.442725π0.442725\pi
282282 0 0
283283 26.2462i 1.56018i 0.625670 + 0.780088i 0.284826π0.284826\pi
−0.625670 + 0.780088i 0.715174π0.715174\pi
284284 0 0
285285 − 39.6155i − 2.34662i
286286 0 0
287287 0 0
288288 0 0
289289 −15.7386 −0.925802
290290 0 0
291291 − 10.4384i − 0.611913i
292292 0 0
293293 − 22.4924i − 1.31402i −0.753881 0.657011i 0.771821π-0.771821\pi
0.753881 0.657011i 0.228179π-0.228179\pi
294294 0 0
295295 −45.1771 −2.63031
296296 0 0
297297 −5.56155 −0.322714
298298 0 0
299299 9.36932i 0.541842i
300300 0 0
301301 0 0
302302 0 0
303303 20.4924 1.17726
304304 0 0
305305 −54.7386 −3.13433
306306 0 0
307307 − 2.63068i − 0.150141i −0.997178 0.0750705i 0.976082π-0.976082\pi
0.997178 0.0750705i 0.0239182π-0.0239182\pi
308308 0 0
309309 3.50758i 0.199539i
310310 0 0
311311 −30.7386 −1.74303 −0.871514 0.490371i 0.836861π-0.836861\pi
−0.871514 + 0.490371i 0.836861π0.836861\pi
312312 0 0
313313 −18.6847 −1.05612 −0.528060 0.849207i 0.677080π-0.677080\pi
−0.528060 + 0.849207i 0.677080π0.677080\pi
314314 0 0
315315 0 0
316316 0 0
317317 8.05398i 0.452356i 0.974086 + 0.226178i 0.0726232π0.0726232\pi
−0.974086 + 0.226178i 0.927377π0.927377\pi
318318 0 0
319319 1.12311 0.0628818
320320 0 0
321321 18.7386 1.04589
322322 0 0
323323 8.00000i 0.445132i
324324 0 0
325325 − 15.3693i − 0.852536i
326326 0 0
327327 21.8617 1.20896
328328 0 0
329329 0 0
330330 0 0
331331 28.6847i 1.57665i 0.615258 + 0.788326i 0.289052π0.289052\pi
−0.615258 + 0.788326i 0.710948π0.710948\pi
332332 0 0
333333 − 3.75379i − 0.205706i
334334 0 0
335335 16.6847 0.911580
336336 0 0
337337 −31.3693 −1.70880 −0.854398 0.519619i 0.826074π-0.826074\pi
−0.854398 + 0.519619i 0.826074π0.826074\pi
338338 0 0
339339 24.3002i 1.31980i
340340 0 0
341341 9.56155i 0.517787i
342342 0 0
343343 0 0
344344 0 0
345345 26.0540 1.40270
346346 0 0
347347 2.63068i 0.141222i 0.997504 + 0.0706112i 0.0224950π0.0224950\pi
−0.997504 + 0.0706112i 0.977505π0.977505\pi
348348 0 0
349349 11.3693i 0.608586i 0.952579 + 0.304293i 0.0984201π0.0984201\pi
−0.952579 + 0.304293i 0.901580π0.901580\pi
350350 0 0
351351 −11.1231 −0.593707
352352 0 0
353353 20.4384 1.08783 0.543914 0.839141i 0.316942π-0.316942\pi
0.543914 + 0.839141i 0.316942π0.316942\pi
354354 0 0
355355 − 11.8078i − 0.626691i
356356 0 0
357357 0 0
358358 0 0
359359 −9.36932 −0.494494 −0.247247 0.968953i 0.579526π-0.579526\pi
−0.247247 + 0.968953i 0.579526π0.579526\pi
360360 0 0
361361 −31.7386 −1.67045
362362 0 0
363363 − 1.56155i − 0.0819603i
364364 0 0
365365 − 21.3693i − 1.11852i
366366 0 0
367367 38.0540 1.98640 0.993201 0.116415i 0.0371402π-0.0371402\pi
0.993201 + 0.116415i 0.0371402π0.0371402\pi
368368 0 0
369369 −4.63068 −0.241064
370370 0 0
371371 0 0
372372 0 0
373373 − 3.36932i − 0.174457i −0.996188 0.0872283i 0.972199π-0.972199\pi
0.996188 0.0872283i 0.0278010π-0.0278010\pi
374374 0 0
375375 −14.9309 −0.771027
376376 0 0
377377 2.24621 0.115686
378378 0 0
379379 14.4384i 0.741653i 0.928702 + 0.370827i 0.120926π0.120926\pi
−0.928702 + 0.370827i 0.879074π0.879074\pi
380380 0 0
381381 14.6307i 0.749553i
382382 0 0
383383 −20.6847 −1.05694 −0.528468 0.848953i 0.677233π-0.677233\pi
−0.528468 + 0.848953i 0.677233π0.677233\pi
384384 0 0
385385 0 0
386386 0 0
387387 4.00000i 0.203331i
388388 0 0
389389 6.19224i 0.313959i 0.987602 + 0.156979i 0.0501756π0.0501756\pi
−0.987602 + 0.156979i 0.949824π0.949824\pi
390390 0 0
391391 −5.26137 −0.266079
392392 0 0
393393 6.24621 0.315080
394394 0 0
395395 − 17.3693i − 0.873945i
396396 0 0
397397 14.0000i 0.702640i 0.936255 + 0.351320i 0.114267π0.114267\pi
−0.936255 + 0.351320i 0.885733π0.885733\pi
398398 0 0
399399 0 0
400400 0 0
401401 −10.4924 −0.523967 −0.261983 0.965072i 0.584377π-0.584377\pi
−0.261983 + 0.965072i 0.584377π0.584377\pi
402402 0 0
403403 19.1231i 0.952590i
404404 0 0
405405 24.9309i 1.23882i
406406 0 0
407407 6.68466 0.331346
408408 0 0
409409 14.0000 0.692255 0.346128 0.938187i 0.387496π-0.387496\pi
0.346128 + 0.938187i 0.387496π0.387496\pi
410410 0 0
411411 − 2.05398i − 0.101315i
412412 0 0
413413 0 0
414414 0 0
415415 −47.6155 −2.33735
416416 0 0
417417 −18.7386 −0.917635
418418 0 0
419419 − 30.7386i − 1.50168i −0.660484 0.750840i 0.729649π-0.729649\pi
0.660484 0.750840i 0.270351π-0.270351\pi
420420 0 0
421421 10.0000i 0.487370i 0.969854 + 0.243685i 0.0783563π0.0783563\pi
−0.969854 + 0.243685i 0.921644π0.921644\pi
422422 0 0
423423 2.24621 0.109215
424424 0 0
425425 8.63068 0.418650
426426 0 0
427427 0 0
428428 0 0
429429 − 3.12311i − 0.150785i
430430 0 0
431431 −10.7386 −0.517262 −0.258631 0.965976i 0.583271π-0.583271\pi
−0.258631 + 0.965976i 0.583271π0.583271\pi
432432 0 0
433433 −6.68466 −0.321244 −0.160622 0.987016i 0.551350π-0.551350\pi
−0.160622 + 0.987016i 0.551350π0.551350\pi
434434 0 0
435435 − 6.24621i − 0.299483i
436436 0 0
437437 − 33.3693i − 1.59627i
438438 0 0
439439 −9.75379 −0.465523 −0.232761 0.972534i 0.574776π-0.574776\pi
−0.232761 + 0.972534i 0.574776π0.574776\pi
440440 0 0
441441 −3.93087 −0.187184
442442 0 0
443443 − 20.6847i − 0.982758i −0.870946 0.491379i 0.836493π-0.836493\pi
0.870946 0.491379i 0.163507π-0.163507\pi
444444 0 0
445445 − 12.6847i − 0.601310i
446446 0 0
447447 20.4924 0.969258
448448 0 0
449449 −17.8078 −0.840400 −0.420200 0.907431i 0.638040π-0.638040\pi
−0.420200 + 0.907431i 0.638040π0.638040\pi
450450 0 0
451451 − 8.24621i − 0.388299i
452452 0 0
453453 − 14.6307i − 0.687409i
454454 0 0
455455 0 0
456456 0 0
457457 −16.6307 −0.777951 −0.388975 0.921248i 0.627171π-0.627171\pi
−0.388975 + 0.921248i 0.627171π0.627171\pi
458458 0 0
459459 − 6.24621i − 0.291548i
460460 0 0
461461 − 10.8769i − 0.506587i −0.967389 0.253294i 0.918486π-0.918486\pi
0.967389 0.253294i 0.0815139π-0.0815139\pi
462462 0 0
463463 −5.06913 −0.235582 −0.117791 0.993038i 0.537581π-0.537581\pi
−0.117791 + 0.993038i 0.537581π0.537581\pi
464464 0 0
465465 53.1771 2.46603
466466 0 0
467467 20.6847i 0.957172i 0.878041 + 0.478586i 0.158850π0.158850\pi
−0.878041 + 0.478586i 0.841150π0.841150\pi
468468 0 0
469469 0 0
470470 0 0
471471 16.6847 0.768788
472472 0 0
473473 −7.12311 −0.327521
474474 0 0
475475 54.7386i 2.51158i
476476 0 0
477477 4.63068i 0.212024i
478478 0 0
479479 −25.3693 −1.15915 −0.579577 0.814918i 0.696782π-0.696782\pi
−0.579577 + 0.814918i 0.696782π0.696782\pi
480480 0 0
481481 13.3693 0.609588
482482 0 0
483483 0 0
484484 0 0
485485 23.8078i 1.08105i
486486 0 0
487487 −19.3153 −0.875262 −0.437631 0.899155i 0.644182π-0.644182\pi
−0.437631 + 0.899155i 0.644182π0.644182\pi
488488 0 0
489489 −18.7386 −0.847390
490490 0 0
491491 22.7386i 1.02618i 0.858335 + 0.513090i 0.171499π0.171499\pi
−0.858335 + 0.513090i 0.828501π0.828501\pi
492492 0 0
493493 1.26137i 0.0568091i
494494 0 0
495495 2.00000 0.0898933
496496 0 0
497497 0 0
498498 0 0
499499 7.50758i 0.336085i 0.985780 + 0.168043i 0.0537446π0.0537446\pi
−0.985780 + 0.168043i 0.946255π0.946255\pi
500500 0 0
501501 − 27.1231i − 1.21177i
502502 0 0
503503 −9.36932 −0.417757 −0.208879 0.977942i 0.566981π-0.566981\pi
−0.208879 + 0.977942i 0.566981π0.566981\pi
504504 0 0
505505 −46.7386 −2.07984
506506 0 0
507507 14.0540i 0.624159i
508508 0 0
509509 − 1.31534i − 0.0583015i −0.999575 0.0291507i 0.990720π-0.990720\pi
0.999575 0.0291507i 0.00928028π-0.00928028\pi
510510 0 0
511511 0 0
512512 0 0
513513 39.6155 1.74907
514514 0 0
515515 − 8.00000i − 0.352522i
516516 0 0
517517 4.00000i 0.175920i
518518 0 0
519519 −28.1080 −1.23380
520520 0 0
521521 −20.0540 −0.878581 −0.439290 0.898345i 0.644770π-0.644770\pi
−0.439290 + 0.898345i 0.644770π0.644770\pi
522522 0 0
523523 − 40.1080i − 1.75380i −0.480674 0.876899i 0.659608π-0.659608\pi
0.480674 0.876899i 0.340392π-0.340392\pi
524524 0 0
525525 0 0
526526 0 0
527527 −10.7386 −0.467782
528528 0 0
529529 −1.05398 −0.0458250
530530 0 0
531531 − 7.12311i − 0.309116i
532532 0 0
533533 − 16.4924i − 0.714366i
534534 0 0
535535 −42.7386 −1.84775
536536 0 0
537537 −7.31534 −0.315680
538538 0 0
539539 − 7.00000i − 0.301511i
540540 0 0
541541 18.0000i 0.773880i 0.922105 + 0.386940i 0.126468π0.126468\pi
−0.922105 + 0.386940i 0.873532π0.873532\pi
542542 0 0
543543 −18.8229 −0.807769
544544 0 0
545545 −49.8617 −2.13584
546546 0 0
547547 − 12.0000i − 0.513083i −0.966533 0.256541i 0.917417π-0.917417\pi
0.966533 0.256541i 0.0825830π-0.0825830\pi
548548 0 0
549549 − 8.63068i − 0.368349i
550550 0 0
551551 −8.00000 −0.340811
552552 0 0
553553 0 0
554554 0 0
555555 − 37.1771i − 1.57808i
556556 0 0
557557 8.63068i 0.365694i 0.983141 + 0.182847i 0.0585313π0.0585313\pi
−0.983141 + 0.182847i 0.941469π0.941469\pi
558558 0 0
559559 −14.2462 −0.602551
560560 0 0
561561 1.75379 0.0740450
562562 0 0
563563 30.7386i 1.29548i 0.761862 + 0.647739i 0.224285π0.224285\pi
−0.761862 + 0.647739i 0.775715π0.775715\pi
564564 0 0
565565 − 55.4233i − 2.33168i
566566 0 0
567567 0 0
568568 0 0
569569 −3.36932 −0.141249 −0.0706246 0.997503i 0.522499π-0.522499\pi
−0.0706246 + 0.997503i 0.522499π0.522499\pi
570570 0 0
571571 12.0000i 0.502184i 0.967963 + 0.251092i 0.0807897π0.0807897\pi
−0.967963 + 0.251092i 0.919210π0.919210\pi
572572 0 0
573573 7.31534i 0.305603i
574574 0 0
575575 −36.0000 −1.50130
576576 0 0
577577 −6.68466 −0.278286 −0.139143 0.990272i 0.544435π-0.544435\pi
−0.139143 + 0.990272i 0.544435π0.544435\pi
578578 0 0
579579 17.7538i 0.737822i
580580 0 0
581581 0 0
582582 0 0
583583 −8.24621 −0.341523
584584 0 0
585585 4.00000 0.165380
586586 0 0
587587 28.0000i 1.15568i 0.816149 + 0.577842i 0.196105π0.196105\pi
−0.816149 + 0.577842i 0.803895π0.803895\pi
588588 0 0
589589 − 68.1080i − 2.80634i
590590 0 0
591591 12.8769 0.529685
592592 0 0
593593 31.8617 1.30840 0.654202 0.756320i 0.273004π-0.273004\pi
0.654202 + 0.756320i 0.273004π0.273004\pi
594594 0 0
595595 0 0
596596 0 0
597597 3.50758i 0.143556i
598598 0 0
599599 14.7386 0.602204 0.301102 0.953592i 0.402645π-0.402645\pi
0.301102 + 0.953592i 0.402645π0.402645\pi
600600 0 0
601601 42.1080 1.71762 0.858810 0.512295i 0.171205π-0.171205\pi
0.858810 + 0.512295i 0.171205π0.171205\pi
602602 0 0
603603 2.63068i 0.107130i
604604 0 0
605605 3.56155i 0.144798i
606606 0 0
607607 −28.8769 −1.17208 −0.586038 0.810283i 0.699313π-0.699313\pi
−0.586038 + 0.810283i 0.699313π0.699313\pi
608608 0 0
609609 0 0
610610 0 0
611611 8.00000i 0.323645i
612612 0 0
613613 7.36932i 0.297644i 0.988864 + 0.148822i 0.0475481π0.0475481\pi
−0.988864 + 0.148822i 0.952452π0.952452\pi
614614 0 0
615615 −45.8617 −1.84932
616616 0 0
617617 15.7538 0.634224 0.317112 0.948388i 0.397287π-0.397287\pi
0.317112 + 0.948388i 0.397287π0.397287\pi
618618 0 0
619619 4.68466i 0.188292i 0.995558 + 0.0941462i 0.0300121π0.0300121\pi
−0.995558 + 0.0941462i 0.969988π0.969988\pi
620620 0 0
621621 26.0540i 1.04551i
622622 0 0
623623 0 0
624624 0 0
625625 −4.36932 −0.174773
626626 0 0
627627 11.1231i 0.444214i
628628 0 0
629629 7.50758i 0.299347i
630630 0 0
631631 23.4233 0.932467 0.466233 0.884662i 0.345611π-0.345611\pi
0.466233 + 0.884662i 0.345611π0.345611\pi
632632 0 0
633633 −25.7538 −1.02362
634634 0 0
635635 − 33.3693i − 1.32422i
636636 0 0
637637 − 14.0000i − 0.554700i
638638 0 0
639639 1.86174 0.0736493
640640 0 0
641641 0.930870 0.0367671 0.0183836 0.999831i 0.494148π-0.494148\pi
0.0183836 + 0.999831i 0.494148π0.494148\pi
642642 0 0
643643 38.4384i 1.51586i 0.652333 + 0.757932i 0.273790π0.273790\pi
−0.652333 + 0.757932i 0.726210π0.726210\pi
644644 0 0
645645 39.6155i 1.55986i
646646 0 0
647647 19.3153 0.759364 0.379682 0.925117i 0.376033π-0.376033\pi
0.379682 + 0.925117i 0.376033π0.376033\pi
648648 0 0
649649 12.6847 0.497916
650650 0 0
651651 0 0
652652 0 0
653653 − 1.31534i − 0.0514733i −0.999669 0.0257366i 0.991807π-0.991807\pi
0.999669 0.0257366i 0.00819313π-0.00819313\pi
654654 0 0
655655 −14.2462 −0.556646
656656 0 0
657657 3.36932 0.131450
658658 0 0
659659 37.3693i 1.45570i 0.685735 + 0.727851i 0.259481π0.259481\pi
−0.685735 + 0.727851i 0.740519π0.740519\pi
660660 0 0
661661 − 16.0540i − 0.624427i −0.950012 0.312214i 0.898930π-0.898930\pi
0.950012 0.312214i 0.101070π-0.101070\pi
662662 0 0
663663 3.50758 0.136223
664664 0 0
665665 0 0
666666 0 0
667667 − 5.26137i − 0.203721i
668668 0 0
669669 − 7.31534i − 0.282827i
670670 0 0
671671 15.3693 0.593326
672672 0 0
673673 −24.7386 −0.953604 −0.476802 0.879011i 0.658204π-0.658204\pi
−0.476802 + 0.879011i 0.658204π0.658204\pi
674674 0 0
675675 − 42.7386i − 1.64501i
676676 0 0
677677 19.8617i 0.763349i 0.924297 + 0.381674i 0.124652π0.124652\pi
−0.924297 + 0.381674i 0.875348π0.875348\pi
678678 0 0
679679 0 0
680680 0 0
681681 31.2311 1.19678
682682 0 0
683683 − 12.0000i − 0.459167i −0.973289 0.229584i 0.926264π-0.926264\pi
0.973289 0.229584i 0.0737364π-0.0737364\pi
684684 0 0
685685 4.68466i 0.178992i
686686 0 0
687687 −14.5464 −0.554980
688688 0 0
689689 −16.4924 −0.628311
690690 0 0
691691 − 28.3002i − 1.07659i −0.842757 0.538295i 0.819069π-0.819069\pi
0.842757 0.538295i 0.180931π-0.180931\pi
692692 0 0
693693 0 0
694694 0 0
695695 42.7386 1.62117
696696 0 0
697697 9.26137 0.350799
698698 0 0
699699 1.75379i 0.0663344i
700700 0 0
701701 − 6.38447i − 0.241138i −0.992705 0.120569i 0.961528π-0.961528\pi
0.992705 0.120569i 0.0384719π-0.0384719\pi
702702 0 0
703703 −47.6155 −1.79585
704704 0 0
705705 22.2462 0.837841
706706 0 0
707707 0 0
708708 0 0
709709 − 22.6847i − 0.851940i −0.904737 0.425970i 0.859933π-0.859933\pi
0.904737 0.425970i 0.140067π-0.140067\pi
710710 0 0
711711 2.73863 0.102707
712712 0 0
713713 44.7926 1.67750
714714 0 0
715715 7.12311i 0.266389i
716716 0 0
717717 39.6155i 1.47947i
718718 0 0
719719 −28.6847 −1.06976 −0.534879 0.844929i 0.679643π-0.679643\pi
−0.534879 + 0.844929i 0.679643π0.679643\pi
720720 0 0
721721 0 0
722722 0 0
723723 42.7386i 1.58947i
724724 0 0
725725 8.63068i 0.320536i
726726 0 0
727727 28.6847 1.06386 0.531928 0.846790i 0.321468π-0.321468\pi
0.531928 + 0.846790i 0.321468π0.321468\pi
728728 0 0
729729 −29.9848 −1.11055
730730 0 0
731731 − 8.00000i − 0.295891i
732732 0 0
733733 38.1080i 1.40755i 0.710423 + 0.703775i 0.248504π0.248504\pi
−0.710423 + 0.703775i 0.751496π0.751496\pi
734734 0 0
735735 −38.9309 −1.43599
736736 0 0
737737 −4.68466 −0.172562
738738 0 0
739739 11.6155i 0.427284i 0.976912 + 0.213642i 0.0685326π0.0685326\pi
−0.976912 + 0.213642i 0.931467π0.931467\pi
740740 0 0
741741 22.2462i 0.817235i
742742 0 0
743743 18.7386 0.687454 0.343727 0.939070i 0.388311π-0.388311\pi
0.343727 + 0.939070i 0.388311π0.388311\pi
744744 0 0
745745 −46.7386 −1.71237
746746 0 0
747747 − 7.50758i − 0.274688i
748748 0 0
749749 0 0
750750 0 0
751751 33.1771 1.21065 0.605324 0.795979i 0.293043π-0.293043\pi
0.605324 + 0.795979i 0.293043π0.293043\pi
752752 0 0
753753 −21.9460 −0.799758
754754 0 0
755755 33.3693i 1.21443i
756756 0 0
757757 10.0000i 0.363456i 0.983349 + 0.181728i 0.0581691π0.0581691\pi
−0.983349 + 0.181728i 0.941831π0.941831\pi
758758 0 0
759759 −7.31534 −0.265530
760760 0 0
761761 20.2462 0.733925 0.366962 0.930236i 0.380398π-0.380398\pi
0.366962 + 0.930236i 0.380398π0.380398\pi
762762 0 0
763763 0 0
764764 0 0
765765 2.24621i 0.0812119i
766766 0 0
767767 25.3693 0.916033
768768 0 0
769769 −38.0000 −1.37032 −0.685158 0.728395i 0.740267π-0.740267\pi
−0.685158 + 0.728395i 0.740267π0.740267\pi
770770 0 0
771771 12.8769i 0.463750i
772772 0 0
773773 8.24621i 0.296596i 0.988943 + 0.148298i 0.0473794π0.0473794\pi
−0.988943 + 0.148298i 0.952621π0.952621\pi
774774 0 0
775775 −73.4773 −2.63938
776776 0 0
777777 0 0
778778 0 0
779779 58.7386i 2.10453i
780780 0 0
781781 3.31534i 0.118632i
782782 0 0
783783 6.24621 0.223221
784784 0 0
785785 −38.0540 −1.35820
786786 0 0
787787 12.0000i 0.427754i 0.976861 + 0.213877i 0.0686091π0.0686091\pi
−0.976861 + 0.213877i 0.931391π0.931391\pi
788788 0 0
789789 12.4924i 0.444742i
790790 0 0
791791 0 0
792792 0 0
793793 30.7386 1.09156
794794 0 0
795795 45.8617i 1.62655i
796796 0 0
797797 − 20.4384i − 0.723967i −0.932185 0.361983i 0.882100π-0.882100\pi
0.932185 0.361983i 0.117900π-0.117900\pi
798798 0 0
799799 −4.49242 −0.158930
800800 0 0
801801 2.00000 0.0706665
802802 0 0
803803 6.00000i 0.211735i
804804 0 0
805805 0 0
806806 0 0
807807 35.1231 1.23639
808808 0 0
809809 −8.24621 −0.289921 −0.144961 0.989437i 0.546306π-0.546306\pi
−0.144961 + 0.989437i 0.546306π0.546306\pi
810810 0 0
811811 26.6307i 0.935130i 0.883959 + 0.467565i 0.154869π0.154869\pi
−0.883959 + 0.467565i 0.845131π0.845131\pi
812812 0 0
813813 7.61553i 0.267088i
814814 0 0
815815 42.7386 1.49707
816816 0 0
817817 50.7386 1.77512
818818 0 0
819819 0 0
820820 0 0
821821 48.7386i 1.70099i 0.525983 + 0.850495i 0.323698π0.323698\pi
−0.525983 + 0.850495i 0.676302π0.676302\pi
822822 0 0
823823 14.4384 0.503293 0.251646 0.967819i 0.419028π-0.419028\pi
0.251646 + 0.967819i 0.419028π0.419028\pi
824824 0 0
825825 12.0000 0.417786
826826 0 0
827827 − 21.3693i − 0.743084i −0.928416 0.371542i 0.878829π-0.878829\pi
0.928416 0.371542i 0.121171π-0.121171\pi
828828 0 0
829829 5.31534i 0.184609i 0.995731 + 0.0923047i 0.0294234π0.0294234\pi
−0.995731 + 0.0923047i 0.970577π0.970577\pi
830830 0 0
831831 3.12311 0.108339
832832 0 0
833833 7.86174 0.272393
834834 0 0
835835 61.8617i 2.14081i
836836 0 0
837837 53.1771i 1.83807i
838838 0 0
839839 31.4233 1.08485 0.542426 0.840103i 0.317506π-0.317506\pi
0.542426 + 0.840103i 0.317506π0.317506\pi
840840 0 0
841841 27.7386 0.956505
842842 0 0
843843 9.36932i 0.322696i
844844 0 0
845845 − 32.0540i − 1.10269i
846846 0 0
847847 0 0
848848 0 0
849849 −40.9848 −1.40660
850850 0 0
851851 − 31.3153i − 1.07348i
852852 0 0
853853 8.73863i 0.299205i 0.988746 + 0.149603i 0.0477994π0.0477994\pi
−0.988746 + 0.149603i 0.952201π0.952201\pi
854854 0 0
855855 −14.2462 −0.487210
856856 0 0
857857 −13.1231 −0.448277 −0.224138 0.974557i 0.571957π-0.571957\pi
−0.224138 + 0.974557i 0.571957π0.571957\pi
858858 0 0
859859 29.0691i 0.991826i 0.868372 + 0.495913i 0.165167π0.165167\pi
−0.868372 + 0.495913i 0.834833π0.834833\pi
860860 0 0
861861 0 0
862862 0 0
863863 30.7386 1.04636 0.523178 0.852224i 0.324746π-0.324746\pi
0.523178 + 0.852224i 0.324746π0.324746\pi
864864 0 0
865865 64.1080 2.17974
866866 0 0
867867 − 24.5767i − 0.834669i
868868 0 0
869869 4.87689i 0.165437i
870870 0 0
871871 −9.36932 −0.317467
872872 0 0
873873 −3.75379 −0.127047
874874 0 0
875875 0 0
876876 0 0
877877 − 56.7386i − 1.91593i −0.286889 0.957964i 0.592621π-0.592621\pi
0.286889 0.957964i 0.407379π-0.407379\pi
878878 0 0
879879 35.1231 1.18467
880880 0 0
881881 34.3002 1.15560 0.577801 0.816177i 0.303911π-0.303911\pi
0.577801 + 0.816177i 0.303911π0.303911\pi
882882 0 0
883883 36.0000i 1.21150i 0.795656 + 0.605748i 0.207126π0.207126\pi
−0.795656 + 0.605748i 0.792874π0.792874\pi
884884 0 0
885885 − 70.5464i − 2.37139i
886886 0 0
887887 −52.1080 −1.74961 −0.874807 0.484472i 0.839012π-0.839012\pi
−0.874807 + 0.484472i 0.839012π0.839012\pi
888888 0 0
889889 0 0
890890 0 0
891891 − 7.00000i − 0.234509i
892892 0 0
893893 − 28.4924i − 0.953463i
894894 0 0
895895 16.6847 0.557707
896896 0 0
897897 −14.6307 −0.488504
898898 0 0
899899 − 10.7386i − 0.358153i
900900 0 0
901901 − 9.26137i − 0.308541i
902902 0 0
903903 0 0
904904 0 0
905905 42.9309 1.42707
906906 0 0
907907 16.4924i 0.547622i 0.961784 + 0.273811i 0.0882843π0.0882843\pi
−0.961784 + 0.273811i 0.911716π0.911716\pi
908908 0 0
909909 − 7.36932i − 0.244425i
910910 0 0
911911 22.7386 0.753365 0.376682 0.926343i 0.377065π-0.377065\pi
0.376682 + 0.926343i 0.377065π0.377065\pi
912912 0 0
913913 13.3693 0.442460
914914 0 0
915915 − 85.4773i − 2.82579i
916916 0 0
917917 0 0
918918 0 0
919919 −23.6155 −0.779004 −0.389502 0.921026i 0.627353π-0.627353\pi
−0.389502 + 0.921026i 0.627353π0.627353\pi
920920 0 0
921921 4.10795 0.135362
922922 0 0
923923 6.63068i 0.218252i
924924 0 0
925925 51.3693i 1.68901i
926926 0 0
927927 1.26137 0.0414287
928928 0 0
929929 −10.4924 −0.344245 −0.172123 0.985076i 0.555063π-0.555063\pi
−0.172123 + 0.985076i 0.555063π0.555063\pi
930930 0 0
931931 49.8617i 1.63415i
932932 0 0
933933 − 48.0000i − 1.57145i
934934 0 0
935935 −4.00000 −0.130814
936936 0 0
937937 −28.7386 −0.938850 −0.469425 0.882972i 0.655539π-0.655539\pi
−0.469425 + 0.882972i 0.655539π0.655539\pi
938938 0 0
939939 − 29.1771i − 0.952158i
940940 0 0
941941 8.24621i 0.268819i 0.990926 + 0.134409i 0.0429137π0.0429137\pi
−0.990926 + 0.134409i 0.957086π0.957086\pi
942942 0 0
943943 −38.6307 −1.25799
944944 0 0
945945 0 0
946946 0 0
947947 − 19.3153i − 0.627664i −0.949478 0.313832i 0.898387π-0.898387\pi
0.949478 0.313832i 0.101613π-0.101613\pi
948948 0 0
949949 12.0000i 0.389536i
950950 0 0
951951 −12.5767 −0.407828
952952 0 0
953953 6.38447 0.206813 0.103407 0.994639i 0.467026π-0.467026\pi
0.103407 + 0.994639i 0.467026π0.467026\pi
954954 0 0
955955 − 16.6847i − 0.539903i
956956 0 0
957957 1.75379i 0.0566919i
958958 0 0
959959 0 0
960960 0 0
961961 60.4233 1.94914
962962 0 0
963963 − 6.73863i − 0.217149i
964964 0 0
965965 − 40.4924i − 1.30350i
966966 0 0
967967 18.7386 0.602594 0.301297 0.953530i 0.402580π-0.402580\pi
0.301297 + 0.953530i 0.402580π0.402580\pi
968968 0 0
969969 −12.4924 −0.401314
970970 0 0
971971 28.6847i 0.920534i 0.887780 + 0.460267i 0.152246π0.152246\pi
−0.887780 + 0.460267i 0.847754π0.847754\pi
972972 0 0
973973 0 0
974974 0 0
975975 24.0000 0.768615
976976 0 0
977977 53.0388 1.69686 0.848431 0.529306i 0.177548π-0.177548\pi
0.848431 + 0.529306i 0.177548π0.177548\pi
978978 0 0
979979 3.56155i 0.113828i
980980 0 0
981981 − 7.86174i − 0.251006i
982982 0 0
983983 28.6847 0.914899 0.457449 0.889236i 0.348763π-0.348763\pi
0.457449 + 0.889236i 0.348763π0.348763\pi
984984 0 0
985985 −29.3693 −0.935784
986986 0 0
987987 0 0
988988 0 0
989989 33.3693i 1.06108i
990990 0 0
991991 −54.7386 −1.73883 −0.869415 0.494083i 0.835504π-0.835504\pi
−0.869415 + 0.494083i 0.835504π0.835504\pi
992992 0 0
993993 −44.7926 −1.42145
994994 0 0
995995 − 8.00000i − 0.253617i
996996 0 0
997997 − 0.630683i − 0.0199739i −0.999950 0.00998697i 0.996821π-0.996821\pi
0.999950 0.00998697i 0.00317900π-0.00317900\pi
998998 0 0
999999 37.1771 1.17623
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.c.t.1409.3 4
4.3 odd 2 2816.2.c.s.1409.2 4
8.3 odd 2 2816.2.c.s.1409.3 4
8.5 even 2 inner 2816.2.c.t.1409.2 4
16.3 odd 4 704.2.a.n.1.2 2
16.5 even 4 352.2.a.g.1.2 2
16.11 odd 4 352.2.a.h.1.1 yes 2
16.13 even 4 704.2.a.o.1.1 2
48.5 odd 4 3168.2.a.bd.1.1 2
48.11 even 4 3168.2.a.bc.1.1 2
48.29 odd 4 6336.2.a.cv.1.2 2
48.35 even 4 6336.2.a.cw.1.2 2
80.59 odd 4 8800.2.a.bd.1.2 2
80.69 even 4 8800.2.a.be.1.1 2
176.21 odd 4 3872.2.a.p.1.2 2
176.43 even 4 3872.2.a.ba.1.1 2
176.109 odd 4 7744.2.a.cm.1.1 2
176.131 even 4 7744.2.a.bw.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.a.g.1.2 2 16.5 even 4
352.2.a.h.1.1 yes 2 16.11 odd 4
704.2.a.n.1.2 2 16.3 odd 4
704.2.a.o.1.1 2 16.13 even 4
2816.2.c.s.1409.2 4 4.3 odd 2
2816.2.c.s.1409.3 4 8.3 odd 2
2816.2.c.t.1409.2 4 8.5 even 2 inner
2816.2.c.t.1409.3 4 1.1 even 1 trivial
3168.2.a.bc.1.1 2 48.11 even 4
3168.2.a.bd.1.1 2 48.5 odd 4
3872.2.a.p.1.2 2 176.21 odd 4
3872.2.a.ba.1.1 2 176.43 even 4
6336.2.a.cv.1.2 2 48.29 odd 4
6336.2.a.cw.1.2 2 48.35 even 4
7744.2.a.bw.1.2 2 176.131 even 4
7744.2.a.cm.1.1 2 176.109 odd 4
8800.2.a.bd.1.2 2 80.59 odd 4
8800.2.a.be.1.1 2 80.69 even 4