Properties

Label 3168.2.a.bd.1.1
Level $3168$
Weight $2$
Character 3168.1
Self dual yes
Analytic conductor $25.297$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3168,2,Mod(1,3168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3168.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.2966073603\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 3168.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.56155 q^{5} +1.00000 q^{11} +2.00000 q^{13} +1.12311 q^{17} -7.12311 q^{19} +4.68466 q^{23} +7.68466 q^{25} +1.12311 q^{29} +9.56155 q^{31} +6.68466 q^{37} -8.24621 q^{41} -7.12311 q^{43} -4.00000 q^{47} -7.00000 q^{49} +8.24621 q^{53} -3.56155 q^{55} -12.6847 q^{59} -15.3693 q^{61} -7.12311 q^{65} +4.68466 q^{67} +3.31534 q^{71} -6.00000 q^{73} +4.87689 q^{79} +13.3693 q^{83} -4.00000 q^{85} +3.56155 q^{89} +25.3693 q^{95} -6.68466 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} + 2 q^{11} + 4 q^{13} - 6 q^{17} - 6 q^{19} - 3 q^{23} + 3 q^{25} - 6 q^{29} + 15 q^{31} + q^{37} - 6 q^{43} - 8 q^{47} - 14 q^{49} - 3 q^{55} - 13 q^{59} - 6 q^{61} - 6 q^{65} - 3 q^{67}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.56155 −1.59277 −0.796387 0.604787i \(-0.793258\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.12311 0.272393 0.136197 0.990682i \(-0.456512\pi\)
0.136197 + 0.990682i \(0.456512\pi\)
\(18\) 0 0
\(19\) −7.12311 −1.63415 −0.817076 0.576530i \(-0.804407\pi\)
−0.817076 + 0.576530i \(0.804407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.68466 0.976819 0.488409 0.872615i \(-0.337577\pi\)
0.488409 + 0.872615i \(0.337577\pi\)
\(24\) 0 0
\(25\) 7.68466 1.53693
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.12311 0.208555 0.104278 0.994548i \(-0.466747\pi\)
0.104278 + 0.994548i \(0.466747\pi\)
\(30\) 0 0
\(31\) 9.56155 1.71731 0.858653 0.512558i \(-0.171302\pi\)
0.858653 + 0.512558i \(0.171302\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.68466 1.09895 0.549476 0.835510i \(-0.314828\pi\)
0.549476 + 0.835510i \(0.314828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.24621 −1.28784 −0.643921 0.765092i \(-0.722693\pi\)
−0.643921 + 0.765092i \(0.722693\pi\)
\(42\) 0 0
\(43\) −7.12311 −1.08626 −0.543132 0.839648i \(-0.682762\pi\)
−0.543132 + 0.839648i \(0.682762\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.24621 1.13270 0.566352 0.824163i \(-0.308354\pi\)
0.566352 + 0.824163i \(0.308354\pi\)
\(54\) 0 0
\(55\) −3.56155 −0.480240
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.6847 −1.65140 −0.825701 0.564108i \(-0.809220\pi\)
−0.825701 + 0.564108i \(0.809220\pi\)
\(60\) 0 0
\(61\) −15.3693 −1.96784 −0.983920 0.178611i \(-0.942839\pi\)
−0.983920 + 0.178611i \(0.942839\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.12311 −0.883513
\(66\) 0 0
\(67\) 4.68466 0.572322 0.286161 0.958182i \(-0.407621\pi\)
0.286161 + 0.958182i \(0.407621\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.31534 0.393459 0.196729 0.980458i \(-0.436968\pi\)
0.196729 + 0.980458i \(0.436968\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.87689 0.548693 0.274347 0.961631i \(-0.411538\pi\)
0.274347 + 0.961631i \(0.411538\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.3693 1.46747 0.733737 0.679434i \(-0.237775\pi\)
0.733737 + 0.679434i \(0.237775\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.56155 0.377524 0.188762 0.982023i \(-0.439553\pi\)
0.188762 + 0.982023i \(0.439553\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 25.3693 2.60284
\(96\) 0 0
\(97\) −6.68466 −0.678724 −0.339362 0.940656i \(-0.610211\pi\)
−0.339362 + 0.940656i \(0.610211\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.1231 −1.30580 −0.652899 0.757445i \(-0.726447\pi\)
−0.652899 + 0.757445i \(0.726447\pi\)
\(102\) 0 0
\(103\) −2.24621 −0.221326 −0.110663 0.993858i \(-0.535297\pi\)
−0.110663 + 0.993858i \(0.535297\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.5616 −1.46391 −0.731954 0.681354i \(-0.761391\pi\)
−0.731954 + 0.681354i \(0.761391\pi\)
\(114\) 0 0
\(115\) −16.6847 −1.55585
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.56155 −0.855211
\(126\) 0 0
\(127\) 9.36932 0.831392 0.415696 0.909504i \(-0.363538\pi\)
0.415696 + 0.909504i \(0.363538\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.31534 −0.112377 −0.0561886 0.998420i \(-0.517895\pi\)
−0.0561886 + 0.998420i \(0.517895\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.1231 −1.07509 −0.537543 0.843236i \(-0.680648\pi\)
−0.537543 + 0.843236i \(0.680648\pi\)
\(150\) 0 0
\(151\) 9.36932 0.762464 0.381232 0.924479i \(-0.375500\pi\)
0.381232 + 0.924479i \(0.375500\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −34.0540 −2.73528
\(156\) 0 0
\(157\) −10.6847 −0.852729 −0.426364 0.904552i \(-0.640206\pi\)
−0.426364 + 0.904552i \(0.640206\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.3693 −1.34408 −0.672039 0.740516i \(-0.734581\pi\)
−0.672039 + 0.740516i \(0.734581\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.68466 −0.350148 −0.175074 0.984555i \(-0.556016\pi\)
−0.175074 + 0.984555i \(0.556016\pi\)
\(180\) 0 0
\(181\) −12.0540 −0.895965 −0.447982 0.894042i \(-0.647857\pi\)
−0.447982 + 0.894042i \(0.647857\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −23.8078 −1.75038
\(186\) 0 0
\(187\) 1.12311 0.0821296
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.68466 −0.338970 −0.169485 0.985533i \(-0.554210\pi\)
−0.169485 + 0.985533i \(0.554210\pi\)
\(192\) 0 0
\(193\) 11.3693 0.818381 0.409191 0.912449i \(-0.365811\pi\)
0.409191 + 0.912449i \(0.365811\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.24621 −0.587518 −0.293759 0.955879i \(-0.594906\pi\)
−0.293759 + 0.955879i \(0.594906\pi\)
\(198\) 0 0
\(199\) −2.24621 −0.159230 −0.0796148 0.996826i \(-0.525369\pi\)
−0.0796148 + 0.996826i \(0.525369\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 29.3693 2.05124
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.12311 −0.492716
\(210\) 0 0
\(211\) 16.4924 1.13539 0.567693 0.823241i \(-0.307836\pi\)
0.567693 + 0.823241i \(0.307836\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 25.3693 1.73017
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.24621 0.151097
\(222\) 0 0
\(223\) −4.68466 −0.313708 −0.156854 0.987622i \(-0.550135\pi\)
−0.156854 + 0.987622i \(0.550135\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) −9.31534 −0.615575 −0.307788 0.951455i \(-0.599589\pi\)
−0.307788 + 0.951455i \(0.599589\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.12311 0.0735771 0.0367885 0.999323i \(-0.488287\pi\)
0.0367885 + 0.999323i \(0.488287\pi\)
\(234\) 0 0
\(235\) 14.2462 0.929320
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −25.3693 −1.64100 −0.820502 0.571643i \(-0.806306\pi\)
−0.820502 + 0.571643i \(0.806306\pi\)
\(240\) 0 0
\(241\) 27.3693 1.76301 0.881506 0.472172i \(-0.156530\pi\)
0.881506 + 0.472172i \(0.156530\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 24.9309 1.59277
\(246\) 0 0
\(247\) −14.2462 −0.906465
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.0540 0.887079 0.443540 0.896255i \(-0.353723\pi\)
0.443540 + 0.896255i \(0.353723\pi\)
\(252\) 0 0
\(253\) 4.68466 0.294522
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.24621 −0.514385 −0.257192 0.966360i \(-0.582797\pi\)
−0.257192 + 0.966360i \(0.582797\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) −29.3693 −1.80414
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.4924 1.37139 0.685694 0.727890i \(-0.259499\pi\)
0.685694 + 0.727890i \(0.259499\pi\)
\(270\) 0 0
\(271\) 4.87689 0.296250 0.148125 0.988969i \(-0.452676\pi\)
0.148125 + 0.988969i \(0.452676\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.68466 0.463402
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −26.2462 −1.56018 −0.780088 0.625670i \(-0.784826\pi\)
−0.780088 + 0.625670i \(0.784826\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.7386 −0.925802
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −22.4924 −1.31402 −0.657011 0.753881i \(-0.728179\pi\)
−0.657011 + 0.753881i \(0.728179\pi\)
\(294\) 0 0
\(295\) 45.1771 2.63031
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.36932 0.541842
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 54.7386 3.13433
\(306\) 0 0
\(307\) −2.63068 −0.150141 −0.0750705 0.997178i \(-0.523918\pi\)
−0.0750705 + 0.997178i \(0.523918\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.7386 −1.74303 −0.871514 0.490371i \(-0.836861\pi\)
−0.871514 + 0.490371i \(0.836861\pi\)
\(312\) 0 0
\(313\) 18.6847 1.05612 0.528060 0.849207i \(-0.322920\pi\)
0.528060 + 0.849207i \(0.322920\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.05398 −0.452356 −0.226178 0.974086i \(-0.572623\pi\)
−0.226178 + 0.974086i \(0.572623\pi\)
\(318\) 0 0
\(319\) 1.12311 0.0628818
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) 15.3693 0.852536
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −28.6847 −1.57665 −0.788326 0.615258i \(-0.789052\pi\)
−0.788326 + 0.615258i \(0.789052\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.6847 −0.911580
\(336\) 0 0
\(337\) −31.3693 −1.70880 −0.854398 0.519619i \(-0.826074\pi\)
−0.854398 + 0.519619i \(0.826074\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.56155 0.517787
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.63068 0.141222 0.0706112 0.997504i \(-0.477505\pi\)
0.0706112 + 0.997504i \(0.477505\pi\)
\(348\) 0 0
\(349\) 11.3693 0.608586 0.304293 0.952579i \(-0.401580\pi\)
0.304293 + 0.952579i \(0.401580\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.4384 −1.08783 −0.543914 0.839141i \(-0.683058\pi\)
−0.543914 + 0.839141i \(0.683058\pi\)
\(354\) 0 0
\(355\) −11.8078 −0.626691
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.36932 −0.494494 −0.247247 0.968953i \(-0.579526\pi\)
−0.247247 + 0.968953i \(0.579526\pi\)
\(360\) 0 0
\(361\) 31.7386 1.67045
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 21.3693 1.11852
\(366\) 0 0
\(367\) 38.0540 1.98640 0.993201 0.116415i \(-0.0371402\pi\)
0.993201 + 0.116415i \(0.0371402\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 3.36932 0.174457 0.0872283 0.996188i \(-0.472199\pi\)
0.0872283 + 0.996188i \(0.472199\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.24621 0.115686
\(378\) 0 0
\(379\) −14.4384 −0.741653 −0.370827 0.928702i \(-0.620926\pi\)
−0.370827 + 0.928702i \(0.620926\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.6847 1.05694 0.528468 0.848953i \(-0.322767\pi\)
0.528468 + 0.848953i \(0.322767\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.19224 0.313959 0.156979 0.987602i \(-0.449824\pi\)
0.156979 + 0.987602i \(0.449824\pi\)
\(390\) 0 0
\(391\) 5.26137 0.266079
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −17.3693 −0.873945
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.4924 0.523967 0.261983 0.965072i \(-0.415623\pi\)
0.261983 + 0.965072i \(0.415623\pi\)
\(402\) 0 0
\(403\) 19.1231 0.952590
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.68466 0.331346
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −47.6155 −2.33735
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30.7386 1.50168 0.750840 0.660484i \(-0.229649\pi\)
0.750840 + 0.660484i \(0.229649\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.63068 0.418650
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.7386 0.517262 0.258631 0.965976i \(-0.416729\pi\)
0.258631 + 0.965976i \(0.416729\pi\)
\(432\) 0 0
\(433\) −6.68466 −0.321244 −0.160622 0.987016i \(-0.551350\pi\)
−0.160622 + 0.987016i \(0.551350\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −33.3693 −1.59627
\(438\) 0 0
\(439\) 9.75379 0.465523 0.232761 0.972534i \(-0.425224\pi\)
0.232761 + 0.972534i \(0.425224\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.6847 −0.982758 −0.491379 0.870946i \(-0.663507\pi\)
−0.491379 + 0.870946i \(0.663507\pi\)
\(444\) 0 0
\(445\) −12.6847 −0.601310
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.8078 0.840400 0.420200 0.907431i \(-0.361960\pi\)
0.420200 + 0.907431i \(0.361960\pi\)
\(450\) 0 0
\(451\) −8.24621 −0.388299
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.6307 0.777951 0.388975 0.921248i \(-0.372829\pi\)
0.388975 + 0.921248i \(0.372829\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.8769 0.506587 0.253294 0.967389i \(-0.418486\pi\)
0.253294 + 0.967389i \(0.418486\pi\)
\(462\) 0 0
\(463\) −5.06913 −0.235582 −0.117791 0.993038i \(-0.537581\pi\)
−0.117791 + 0.993038i \(0.537581\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.6847 −0.957172 −0.478586 0.878041i \(-0.658850\pi\)
−0.478586 + 0.878041i \(0.658850\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.12311 −0.327521
\(474\) 0 0
\(475\) −54.7386 −2.51158
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.3693 1.15915 0.579577 0.814918i \(-0.303218\pi\)
0.579577 + 0.814918i \(0.303218\pi\)
\(480\) 0 0
\(481\) 13.3693 0.609588
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.8078 1.08105
\(486\) 0 0
\(487\) 19.3153 0.875262 0.437631 0.899155i \(-0.355818\pi\)
0.437631 + 0.899155i \(0.355818\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 22.7386 1.02618 0.513090 0.858335i \(-0.328501\pi\)
0.513090 + 0.858335i \(0.328501\pi\)
\(492\) 0 0
\(493\) 1.26137 0.0568091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.50758 0.336085 0.168043 0.985780i \(-0.446255\pi\)
0.168043 + 0.985780i \(0.446255\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9.36932 −0.417757 −0.208879 0.977942i \(-0.566981\pi\)
−0.208879 + 0.977942i \(0.566981\pi\)
\(504\) 0 0
\(505\) 46.7386 2.07984
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.31534 0.0583015 0.0291507 0.999575i \(-0.490720\pi\)
0.0291507 + 0.999575i \(0.490720\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) −4.00000 −0.175920
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.0540 −0.878581 −0.439290 0.898345i \(-0.644770\pi\)
−0.439290 + 0.898345i \(0.644770\pi\)
\(522\) 0 0
\(523\) 40.1080 1.75380 0.876899 0.480674i \(-0.159608\pi\)
0.876899 + 0.480674i \(0.159608\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.7386 0.467782
\(528\) 0 0
\(529\) −1.05398 −0.0458250
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −16.4924 −0.714366
\(534\) 0 0
\(535\) 42.7386 1.84775
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.00000 −0.301511
\(540\) 0 0
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 49.8617 2.13584
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.63068 −0.365694 −0.182847 0.983141i \(-0.558531\pi\)
−0.182847 + 0.983141i \(0.558531\pi\)
\(558\) 0 0
\(559\) −14.2462 −0.602551
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −30.7386 −1.29548 −0.647739 0.761862i \(-0.724285\pi\)
−0.647739 + 0.761862i \(0.724285\pi\)
\(564\) 0 0
\(565\) 55.4233 2.33168
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.36932 −0.141249 −0.0706246 0.997503i \(-0.522499\pi\)
−0.0706246 + 0.997503i \(0.522499\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 36.0000 1.50130
\(576\) 0 0
\(577\) −6.68466 −0.278286 −0.139143 0.990272i \(-0.544435\pi\)
−0.139143 + 0.990272i \(0.544435\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.24621 0.341523
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) −68.1080 −2.80634
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.8617 −1.30840 −0.654202 0.756320i \(-0.726996\pi\)
−0.654202 + 0.756320i \(0.726996\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.7386 0.602204 0.301102 0.953592i \(-0.402645\pi\)
0.301102 + 0.953592i \(0.402645\pi\)
\(600\) 0 0
\(601\) −42.1080 −1.71762 −0.858810 0.512295i \(-0.828795\pi\)
−0.858810 + 0.512295i \(0.828795\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.56155 −0.144798
\(606\) 0 0
\(607\) −28.8769 −1.17208 −0.586038 0.810283i \(-0.699313\pi\)
−0.586038 + 0.810283i \(0.699313\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) −7.36932 −0.297644 −0.148822 0.988864i \(-0.547548\pi\)
−0.148822 + 0.988864i \(0.547548\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.7538 0.634224 0.317112 0.948388i \(-0.397287\pi\)
0.317112 + 0.948388i \(0.397287\pi\)
\(618\) 0 0
\(619\) −4.68466 −0.188292 −0.0941462 0.995558i \(-0.530012\pi\)
−0.0941462 + 0.995558i \(0.530012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.50758 0.299347
\(630\) 0 0
\(631\) −23.4233 −0.932467 −0.466233 0.884662i \(-0.654389\pi\)
−0.466233 + 0.884662i \(0.654389\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −33.3693 −1.32422
\(636\) 0 0
\(637\) −14.0000 −0.554700
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.930870 −0.0367671 −0.0183836 0.999831i \(-0.505852\pi\)
−0.0183836 + 0.999831i \(0.505852\pi\)
\(642\) 0 0
\(643\) 38.4384 1.51586 0.757932 0.652333i \(-0.226210\pi\)
0.757932 + 0.652333i \(0.226210\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.3153 0.759364 0.379682 0.925117i \(-0.376033\pi\)
0.379682 + 0.925117i \(0.376033\pi\)
\(648\) 0 0
\(649\) −12.6847 −0.497916
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.31534 0.0514733 0.0257366 0.999669i \(-0.491807\pi\)
0.0257366 + 0.999669i \(0.491807\pi\)
\(654\) 0 0
\(655\) −14.2462 −0.556646
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −37.3693 −1.45570 −0.727851 0.685735i \(-0.759481\pi\)
−0.727851 + 0.685735i \(0.759481\pi\)
\(660\) 0 0
\(661\) 16.0540 0.624427 0.312214 0.950012i \(-0.398930\pi\)
0.312214 + 0.950012i \(0.398930\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.26137 0.203721
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.3693 −0.593326
\(672\) 0 0
\(673\) −24.7386 −0.953604 −0.476802 0.879011i \(-0.658204\pi\)
−0.476802 + 0.879011i \(0.658204\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.8617 0.763349 0.381674 0.924297i \(-0.375348\pi\)
0.381674 + 0.924297i \(0.375348\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 4.68466 0.178992
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.4924 0.628311
\(690\) 0 0
\(691\) −28.3002 −1.07659 −0.538295 0.842757i \(-0.680931\pi\)
−0.538295 + 0.842757i \(0.680931\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 42.7386 1.62117
\(696\) 0 0
\(697\) −9.26137 −0.350799
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.38447 0.241138 0.120569 0.992705i \(-0.461528\pi\)
0.120569 + 0.992705i \(0.461528\pi\)
\(702\) 0 0
\(703\) −47.6155 −1.79585
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 22.6847 0.851940 0.425970 0.904737i \(-0.359933\pi\)
0.425970 + 0.904737i \(0.359933\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 44.7926 1.67750
\(714\) 0 0
\(715\) −7.12311 −0.266389
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 28.6847 1.06976 0.534879 0.844929i \(-0.320357\pi\)
0.534879 + 0.844929i \(0.320357\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.63068 0.320536
\(726\) 0 0
\(727\) −28.6847 −1.06386 −0.531928 0.846790i \(-0.678532\pi\)
−0.531928 + 0.846790i \(0.678532\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) 38.1080 1.40755 0.703775 0.710423i \(-0.251496\pi\)
0.703775 + 0.710423i \(0.251496\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.68466 0.172562
\(738\) 0 0
\(739\) 11.6155 0.427284 0.213642 0.976912i \(-0.431467\pi\)
0.213642 + 0.976912i \(0.431467\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.7386 0.687454 0.343727 0.939070i \(-0.388311\pi\)
0.343727 + 0.939070i \(0.388311\pi\)
\(744\) 0 0
\(745\) 46.7386 1.71237
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 33.1771 1.21065 0.605324 0.795979i \(-0.293043\pi\)
0.605324 + 0.795979i \(0.293043\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −33.3693 −1.21443
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.2462 0.733925 0.366962 0.930236i \(-0.380398\pi\)
0.366962 + 0.930236i \(0.380398\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.3693 −0.916033
\(768\) 0 0
\(769\) −38.0000 −1.37032 −0.685158 0.728395i \(-0.740267\pi\)
−0.685158 + 0.728395i \(0.740267\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.24621 0.296596 0.148298 0.988943i \(-0.452621\pi\)
0.148298 + 0.988943i \(0.452621\pi\)
\(774\) 0 0
\(775\) 73.4773 2.63938
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 58.7386 2.10453
\(780\) 0 0
\(781\) 3.31534 0.118632
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 38.0540 1.35820
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −30.7386 −1.09156
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.4384 0.723967 0.361983 0.932185i \(-0.382100\pi\)
0.361983 + 0.932185i \(0.382100\pi\)
\(798\) 0 0
\(799\) −4.49242 −0.158930
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8.24621 −0.289921 −0.144961 0.989437i \(-0.546306\pi\)
−0.144961 + 0.989437i \(0.546306\pi\)
\(810\) 0 0
\(811\) −26.6307 −0.935130 −0.467565 0.883959i \(-0.654869\pi\)
−0.467565 + 0.883959i \(0.654869\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −42.7386 −1.49707
\(816\) 0 0
\(817\) 50.7386 1.77512
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.7386 1.70099 0.850495 0.525983i \(-0.176302\pi\)
0.850495 + 0.525983i \(0.176302\pi\)
\(822\) 0 0
\(823\) −14.4384 −0.503293 −0.251646 0.967819i \(-0.580972\pi\)
−0.251646 + 0.967819i \(0.580972\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21.3693 −0.743084 −0.371542 0.928416i \(-0.621171\pi\)
−0.371542 + 0.928416i \(0.621171\pi\)
\(828\) 0 0
\(829\) 5.31534 0.184609 0.0923047 0.995731i \(-0.470577\pi\)
0.0923047 + 0.995731i \(0.470577\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.86174 −0.272393
\(834\) 0 0
\(835\) 61.8617 2.14081
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.4233 1.08485 0.542426 0.840103i \(-0.317506\pi\)
0.542426 + 0.840103i \(0.317506\pi\)
\(840\) 0 0
\(841\) −27.7386 −0.956505
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 32.0540 1.10269
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 31.3153 1.07348
\(852\) 0 0
\(853\) −8.73863 −0.299205 −0.149603 0.988746i \(-0.547799\pi\)
−0.149603 + 0.988746i \(0.547799\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.1231 −0.448277 −0.224138 0.974557i \(-0.571957\pi\)
−0.224138 + 0.974557i \(0.571957\pi\)
\(858\) 0 0
\(859\) −29.0691 −0.991826 −0.495913 0.868372i \(-0.665167\pi\)
−0.495913 + 0.868372i \(0.665167\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.7386 −1.04636 −0.523178 0.852224i \(-0.675254\pi\)
−0.523178 + 0.852224i \(0.675254\pi\)
\(864\) 0 0
\(865\) 64.1080 2.17974
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.87689 0.165437
\(870\) 0 0
\(871\) 9.36932 0.317467
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −56.7386 −1.91593 −0.957964 0.286889i \(-0.907379\pi\)
−0.957964 + 0.286889i \(0.907379\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34.3002 −1.15560 −0.577801 0.816177i \(-0.696089\pi\)
−0.577801 + 0.816177i \(0.696089\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −52.1080 −1.74961 −0.874807 0.484472i \(-0.839012\pi\)
−0.874807 + 0.484472i \(0.839012\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 28.4924 0.953463
\(894\) 0 0
\(895\) 16.6847 0.557707
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.7386 0.358153
\(900\) 0 0
\(901\) 9.26137 0.308541
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 42.9309 1.42707
\(906\) 0 0
\(907\) −16.4924 −0.547622 −0.273811 0.961784i \(-0.588284\pi\)
−0.273811 + 0.961784i \(0.588284\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22.7386 −0.753365 −0.376682 0.926343i \(-0.622935\pi\)
−0.376682 + 0.926343i \(0.622935\pi\)
\(912\) 0 0
\(913\) 13.3693 0.442460
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 23.6155 0.779004 0.389502 0.921026i \(-0.372647\pi\)
0.389502 + 0.921026i \(0.372647\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.63068 0.218252
\(924\) 0 0
\(925\) 51.3693 1.68901
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.4924 0.344245 0.172123 0.985076i \(-0.444937\pi\)
0.172123 + 0.985076i \(0.444937\pi\)
\(930\) 0 0
\(931\) 49.8617 1.63415
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) 28.7386 0.938850 0.469425 0.882972i \(-0.344461\pi\)
0.469425 + 0.882972i \(0.344461\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.24621 −0.268819 −0.134409 0.990926i \(-0.542914\pi\)
−0.134409 + 0.990926i \(0.542914\pi\)
\(942\) 0 0
\(943\) −38.6307 −1.25799
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.3153 0.627664 0.313832 0.949478i \(-0.398387\pi\)
0.313832 + 0.949478i \(0.398387\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.38447 0.206813 0.103407 0.994639i \(-0.467026\pi\)
0.103407 + 0.994639i \(0.467026\pi\)
\(954\) 0 0
\(955\) 16.6847 0.539903
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 60.4233 1.94914
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −40.4924 −1.30350
\(966\) 0 0
\(967\) −18.7386 −0.602594 −0.301297 0.953530i \(-0.597420\pi\)
−0.301297 + 0.953530i \(0.597420\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.6847 0.920534 0.460267 0.887780i \(-0.347754\pi\)
0.460267 + 0.887780i \(0.347754\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −53.0388 −1.69686 −0.848431 0.529306i \(-0.822452\pi\)
−0.848431 + 0.529306i \(0.822452\pi\)
\(978\) 0 0
\(979\) 3.56155 0.113828
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.6847 0.914899 0.457449 0.889236i \(-0.348763\pi\)
0.457449 + 0.889236i \(0.348763\pi\)
\(984\) 0 0
\(985\) 29.3693 0.935784
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −33.3693 −1.06108
\(990\) 0 0
\(991\) −54.7386 −1.73883 −0.869415 0.494083i \(-0.835504\pi\)
−0.869415 + 0.494083i \(0.835504\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.00000 0.253617
\(996\) 0 0
\(997\) 0.630683 0.0199739 0.00998697 0.999950i \(-0.496821\pi\)
0.00998697 + 0.999950i \(0.496821\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.a.bd.1.1 2
3.2 odd 2 352.2.a.g.1.2 2
4.3 odd 2 3168.2.a.bc.1.1 2
8.3 odd 2 6336.2.a.cw.1.2 2
8.5 even 2 6336.2.a.cv.1.2 2
12.11 even 2 352.2.a.h.1.1 yes 2
15.14 odd 2 8800.2.a.be.1.1 2
24.5 odd 2 704.2.a.o.1.1 2
24.11 even 2 704.2.a.n.1.2 2
33.32 even 2 3872.2.a.p.1.2 2
48.5 odd 4 2816.2.c.t.1409.2 4
48.11 even 4 2816.2.c.s.1409.3 4
48.29 odd 4 2816.2.c.t.1409.3 4
48.35 even 4 2816.2.c.s.1409.2 4
60.59 even 2 8800.2.a.bd.1.2 2
132.131 odd 2 3872.2.a.ba.1.1 2
264.131 odd 2 7744.2.a.bw.1.2 2
264.197 even 2 7744.2.a.cm.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.a.g.1.2 2 3.2 odd 2
352.2.a.h.1.1 yes 2 12.11 even 2
704.2.a.n.1.2 2 24.11 even 2
704.2.a.o.1.1 2 24.5 odd 2
2816.2.c.s.1409.2 4 48.35 even 4
2816.2.c.s.1409.3 4 48.11 even 4
2816.2.c.t.1409.2 4 48.5 odd 4
2816.2.c.t.1409.3 4 48.29 odd 4
3168.2.a.bc.1.1 2 4.3 odd 2
3168.2.a.bd.1.1 2 1.1 even 1 trivial
3872.2.a.p.1.2 2 33.32 even 2
3872.2.a.ba.1.1 2 132.131 odd 2
6336.2.a.cv.1.2 2 8.5 even 2
6336.2.a.cw.1.2 2 8.3 odd 2
7744.2.a.bw.1.2 2 264.131 odd 2
7744.2.a.cm.1.1 2 264.197 even 2
8800.2.a.bd.1.2 2 60.59 even 2
8800.2.a.be.1.1 2 15.14 odd 2