Properties

Label 2842.2.a.d
Level $2842$
Weight $2$
Character orbit 2842.a
Self dual yes
Analytic conductor $22.693$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2842,2,Mod(1,2842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2842 = 2 \cdot 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.6934842544\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + 3 q^{3} + q^{4} + 3 q^{5} - 3 q^{6} - q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + 3 q^{3} + q^{4} + 3 q^{5} - 3 q^{6} - q^{8} + 6 q^{9} - 3 q^{10} - q^{11} + 3 q^{12} - 3 q^{13} + 9 q^{15} + q^{16} + 4 q^{17} - 6 q^{18} + 8 q^{19} + 3 q^{20} + q^{22} - 3 q^{24} + 4 q^{25} + 3 q^{26} + 9 q^{27} - q^{29} - 9 q^{30} - 3 q^{31} - q^{32} - 3 q^{33} - 4 q^{34} + 6 q^{36} - 8 q^{37} - 8 q^{38} - 9 q^{39} - 3 q^{40} + 2 q^{41} + 7 q^{43} - q^{44} + 18 q^{45} - 11 q^{47} + 3 q^{48} - 4 q^{50} + 12 q^{51} - 3 q^{52} + q^{53} - 9 q^{54} - 3 q^{55} + 24 q^{57} + q^{58} + 4 q^{59} + 9 q^{60} - 4 q^{61} + 3 q^{62} + q^{64} - 9 q^{65} + 3 q^{66} - 4 q^{67} + 4 q^{68} - 2 q^{71} - 6 q^{72} + 12 q^{73} + 8 q^{74} + 12 q^{75} + 8 q^{76} + 9 q^{78} - 7 q^{79} + 3 q^{80} + 9 q^{81} - 2 q^{82} + 12 q^{85} - 7 q^{86} - 3 q^{87} + q^{88} + 6 q^{89} - 18 q^{90} - 9 q^{93} + 11 q^{94} + 24 q^{95} - 3 q^{96} + 6 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 3.00000 1.00000 3.00000 −3.00000 0 −1.00000 6.00000 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2842.2.a.d 1
7.b odd 2 1 58.2.a.a 1
21.c even 2 1 522.2.a.k 1
28.d even 2 1 464.2.a.f 1
35.c odd 2 1 1450.2.a.i 1
35.f even 4 2 1450.2.b.f 2
56.e even 2 1 1856.2.a.b 1
56.h odd 2 1 1856.2.a.p 1
77.b even 2 1 7018.2.a.c 1
84.h odd 2 1 4176.2.a.bh 1
91.b odd 2 1 9802.2.a.d 1
203.c odd 2 1 1682.2.a.j 1
203.g even 4 2 1682.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.a.a 1 7.b odd 2 1
464.2.a.f 1 28.d even 2 1
522.2.a.k 1 21.c even 2 1
1450.2.a.i 1 35.c odd 2 1
1450.2.b.f 2 35.f even 4 2
1682.2.a.j 1 203.c odd 2 1
1682.2.b.e 2 203.g even 4 2
1856.2.a.b 1 56.e even 2 1
1856.2.a.p 1 56.h odd 2 1
2842.2.a.d 1 1.a even 1 1 trivial
4176.2.a.bh 1 84.h odd 2 1
7018.2.a.c 1 77.b even 2 1
9802.2.a.d 1 91.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2842))\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{5} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T + 3 \) Copy content Toggle raw display
$17$ \( T - 4 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T + 3 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T - 7 \) Copy content Toggle raw display
$47$ \( T + 11 \) Copy content Toggle raw display
$53$ \( T - 1 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 2 \) Copy content Toggle raw display
$73$ \( T - 12 \) Copy content Toggle raw display
$79$ \( T + 7 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 6 \) Copy content Toggle raw display
show more
show less