gp: [N,k,chi] = [2842,2,Mod(1,2842)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2842, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2842.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,2,-4,2,-2,-4,0,2,2,-2,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 3 \beta = \sqrt{3} β = 3 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
7 7 7
− 1 -1 − 1
29 29 2 9
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 2842 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(2842)) S 2 n e w ( Γ 0 ( 2 8 4 2 ) ) :
T 3 + 2 T_{3} + 2 T 3 + 2
T3 + 2
T 5 2 + 2 T 5 − 2 T_{5}^{2} + 2T_{5} - 2 T 5 2 + 2 T 5 − 2
T5^2 + 2*T5 - 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
3 3 3
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
5 5 5
T 2 + 2 T − 2 T^{2} + 2T - 2 T 2 + 2 T − 2
T^2 + 2*T - 2
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 − 12 T^{2} - 12 T 2 − 1 2
T^2 - 12
13 13 1 3
T 2 − 2 T − 2 T^{2} - 2T - 2 T 2 − 2 T − 2
T^2 - 2*T - 2
17 17 1 7
T 2 − 2 T − 26 T^{2} - 2T - 26 T 2 − 2 T − 2 6
T^2 - 2*T - 26
19 19 1 9
T 2 − 12 T^{2} - 12 T 2 − 1 2
T^2 - 12
23 23 2 3
T 2 + 4 T − 44 T^{2} + 4T - 44 T 2 + 4 T − 4 4
T^2 + 4*T - 44
29 29 2 9
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
31 31 3 1
T 2 + 6 T − 18 T^{2} + 6T - 18 T 2 + 6 T − 1 8
T^2 + 6*T - 18
37 37 3 7
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
41 41 4 1
T 2 − 2 T − 74 T^{2} - 2T - 74 T 2 − 2 T − 7 4
T^2 - 2*T - 74
43 43 4 3
T 2 − 8 T − 32 T^{2} - 8T - 32 T 2 − 8 T − 3 2
T^2 - 8*T - 32
47 47 4 7
T 2 + 2 T − 74 T^{2} + 2T - 74 T 2 + 2 T − 7 4
T^2 + 2*T - 74
53 53 5 3
T 2 + 4 T − 44 T^{2} + 4T - 44 T 2 + 4 T − 4 4
T^2 + 4*T - 44
59 59 5 9
T 2 + 18 T + 78 T^{2} + 18T + 78 T 2 + 1 8 T + 7 8
T^2 + 18*T + 78
61 61 6 1
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
67 67 6 7
T 2 − 48 T^{2} - 48 T 2 − 4 8
T^2 - 48
71 71 7 1
T 2 − 4 T − 44 T^{2} - 4T - 44 T 2 − 4 T − 4 4
T^2 - 4*T - 44
73 73 7 3
T 2 + 14 T + 46 T^{2} + 14T + 46 T 2 + 1 4 T + 4 6
T^2 + 14*T + 46
79 79 7 9
T 2 + 12 T + 24 T^{2} + 12T + 24 T 2 + 1 2 T + 2 4
T^2 + 12*T + 24
83 83 8 3
T 2 + 2 T − 242 T^{2} + 2T - 242 T 2 + 2 T − 2 4 2
T^2 + 2*T - 242
89 89 8 9
T 2 + 22 T + 94 T^{2} + 22T + 94 T 2 + 2 2 T + 9 4
T^2 + 22*T + 94
97 97 9 7
T 2 − 10 T + 22 T^{2} - 10T + 22 T 2 − 1 0 T + 2 2
T^2 - 10*T + 22
show more
show less