Properties

Label 2842.2.a.i
Level 28422842
Weight 22
Character orbit 2842.a
Self dual yes
Analytic conductor 22.69322.693
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2842,2,Mod(1,2842)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2842, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2842.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2842=27229 2842 = 2 \cdot 7^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2842.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-4,2,-2,-4,0,2,2,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 22.693484254422.6934842544
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 406)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q22q3+q4+(β1)q52q6+q8+q9+(β1)q102βq112q12+(β+1)q13+(2β+2)q15+q16+(3β+1)q17+2βq99+O(q100) q + q^{2} - 2 q^{3} + q^{4} + ( - \beta - 1) q^{5} - 2 q^{6} + q^{8} + q^{9} + ( - \beta - 1) q^{10} - 2 \beta q^{11} - 2 q^{12} + (\beta + 1) q^{13} + (2 \beta + 2) q^{15} + q^{16} + (3 \beta + 1) q^{17} + \cdots - 2 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q24q3+2q42q54q6+2q8+2q92q104q12+2q13+4q15+2q16+2q17+2q182q204q234q242q25+2q26++10q97+O(q100) 2 q + 2 q^{2} - 4 q^{3} + 2 q^{4} - 2 q^{5} - 4 q^{6} + 2 q^{8} + 2 q^{9} - 2 q^{10} - 4 q^{12} + 2 q^{13} + 4 q^{15} + 2 q^{16} + 2 q^{17} + 2 q^{18} - 2 q^{20} - 4 q^{23} - 4 q^{24} - 2 q^{25} + 2 q^{26}+ \cdots + 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.73205
−1.73205
1.00000 −2.00000 1.00000 −2.73205 −2.00000 0 1.00000 1.00000 −2.73205
1.2 1.00000 −2.00000 1.00000 0.732051 −2.00000 0 1.00000 1.00000 0.732051
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 1 -1
2929 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2842.2.a.i 2
7.b odd 2 1 406.2.a.e 2
21.c even 2 1 3654.2.a.y 2
28.d even 2 1 3248.2.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
406.2.a.e 2 7.b odd 2 1
2842.2.a.i 2 1.a even 1 1 trivial
3248.2.a.o 2 28.d even 2 1
3654.2.a.y 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2842))S_{2}^{\mathrm{new}}(\Gamma_0(2842)):

T3+2 T_{3} + 2 Copy content Toggle raw display
T52+2T52 T_{5}^{2} + 2T_{5} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)2 (T - 1)^{2} Copy content Toggle raw display
33 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
55 T2+2T2 T^{2} + 2T - 2 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T212 T^{2} - 12 Copy content Toggle raw display
1313 T22T2 T^{2} - 2T - 2 Copy content Toggle raw display
1717 T22T26 T^{2} - 2T - 26 Copy content Toggle raw display
1919 T212 T^{2} - 12 Copy content Toggle raw display
2323 T2+4T44 T^{2} + 4T - 44 Copy content Toggle raw display
2929 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
3131 T2+6T18 T^{2} + 6T - 18 Copy content Toggle raw display
3737 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
4141 T22T74 T^{2} - 2T - 74 Copy content Toggle raw display
4343 T28T32 T^{2} - 8T - 32 Copy content Toggle raw display
4747 T2+2T74 T^{2} + 2T - 74 Copy content Toggle raw display
5353 T2+4T44 T^{2} + 4T - 44 Copy content Toggle raw display
5959 T2+18T+78 T^{2} + 18T + 78 Copy content Toggle raw display
6161 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
6767 T248 T^{2} - 48 Copy content Toggle raw display
7171 T24T44 T^{2} - 4T - 44 Copy content Toggle raw display
7373 T2+14T+46 T^{2} + 14T + 46 Copy content Toggle raw display
7979 T2+12T+24 T^{2} + 12T + 24 Copy content Toggle raw display
8383 T2+2T242 T^{2} + 2T - 242 Copy content Toggle raw display
8989 T2+22T+94 T^{2} + 22T + 94 Copy content Toggle raw display
9797 T210T+22 T^{2} - 10T + 22 Copy content Toggle raw display
show more
show less