Properties

Label 288.4.p.b.239.31
Level $288$
Weight $4$
Character 288.239
Analytic conductor $16.993$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,4,Mod(47,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.47");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 288.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9925500817\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 239.31
Character \(\chi\) \(=\) 288.239
Dual form 288.4.p.b.47.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.18814 - 0.288534i) q^{3} +(-5.34568 + 9.25900i) q^{5} +(15.5169 - 8.95867i) q^{7} +(26.8335 - 2.99391i) q^{9} +O(q^{10})\) \(q+(5.18814 - 0.288534i) q^{3} +(-5.34568 + 9.25900i) q^{5} +(15.5169 - 8.95867i) q^{7} +(26.8335 - 2.99391i) q^{9} +(19.0639 - 11.0065i) q^{11} +(-17.9061 - 10.3381i) q^{13} +(-25.0626 + 49.5793i) q^{15} -36.2107i q^{17} +125.564 q^{19} +(77.9188 - 50.9559i) q^{21} +(-88.1103 + 152.612i) q^{23} +(5.34734 + 9.26186i) q^{25} +(138.352 - 23.2752i) q^{27} +(77.3286 + 133.937i) q^{29} +(243.700 + 140.701i) q^{31} +(95.7301 - 62.6039i) q^{33} +191.561i q^{35} -223.656i q^{37} +(-95.8823 - 48.4690i) q^{39} +(47.3067 + 27.3125i) q^{41} +(-157.422 - 272.663i) q^{43} +(-115.723 + 264.456i) q^{45} +(-230.270 - 398.839i) q^{47} +(-10.9844 + 19.0256i) q^{49} +(-10.4480 - 187.866i) q^{51} +158.027 q^{53} +235.349i q^{55} +(651.443 - 36.2295i) q^{57} +(403.976 + 233.236i) q^{59} +(-382.288 + 220.714i) q^{61} +(389.550 - 286.849i) q^{63} +(191.441 - 110.529i) q^{65} +(193.518 - 335.182i) q^{67} +(-413.095 + 817.192i) q^{69} -20.3800 q^{71} -370.437 q^{73} +(30.4151 + 46.5089i) q^{75} +(197.208 - 341.574i) q^{77} +(562.808 - 324.937i) q^{79} +(711.073 - 160.674i) q^{81} +(-516.463 + 298.180i) q^{83} +(335.275 + 193.571i) q^{85} +(439.837 + 672.572i) q^{87} +1210.30i q^{89} -370.463 q^{91} +(1304.95 + 659.657i) q^{93} +(-671.225 + 1162.60i) q^{95} +(-794.702 - 1376.46i) q^{97} +(478.597 - 352.419i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 6 q^{3} + 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 6 q^{3} + 42 q^{9} - 48 q^{11} + 220 q^{19} - 902 q^{25} + 252 q^{27} - 660 q^{33} + 1620 q^{41} + 292 q^{43} + 1762 q^{49} + 1794 q^{51} - 294 q^{57} - 5592 q^{59} - 6 q^{65} - 68 q^{67} - 868 q^{73} + 4254 q^{75} + 498 q^{81} - 3654 q^{83} + 1380 q^{91} - 1912 q^{97} + 2118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.18814 0.288534i 0.998457 0.0555285i
\(4\) 0 0
\(5\) −5.34568 + 9.25900i −0.478132 + 0.828150i −0.999686 0.0250690i \(-0.992019\pi\)
0.521553 + 0.853219i \(0.325353\pi\)
\(6\) 0 0
\(7\) 15.5169 8.95867i 0.837832 0.483723i −0.0186945 0.999825i \(-0.505951\pi\)
0.856527 + 0.516103i \(0.172618\pi\)
\(8\) 0 0
\(9\) 26.8335 2.99391i 0.993833 0.110886i
\(10\) 0 0
\(11\) 19.0639 11.0065i 0.522543 0.301690i −0.215432 0.976519i \(-0.569116\pi\)
0.737974 + 0.674829i \(0.235783\pi\)
\(12\) 0 0
\(13\) −17.9061 10.3381i −0.382021 0.220560i 0.296676 0.954978i \(-0.404122\pi\)
−0.678697 + 0.734418i \(0.737455\pi\)
\(14\) 0 0
\(15\) −25.0626 + 49.5793i −0.431409 + 0.853422i
\(16\) 0 0
\(17\) 36.2107i 0.516611i −0.966063 0.258306i \(-0.916836\pi\)
0.966063 0.258306i \(-0.0831642\pi\)
\(18\) 0 0
\(19\) 125.564 1.51612 0.758062 0.652182i \(-0.226146\pi\)
0.758062 + 0.652182i \(0.226146\pi\)
\(20\) 0 0
\(21\) 77.9188 50.9559i 0.809679 0.529500i
\(22\) 0 0
\(23\) −88.1103 + 152.612i −0.798794 + 1.38355i 0.121607 + 0.992578i \(0.461195\pi\)
−0.920402 + 0.390974i \(0.872138\pi\)
\(24\) 0 0
\(25\) 5.34734 + 9.26186i 0.0427787 + 0.0740949i
\(26\) 0 0
\(27\) 138.352 23.2752i 0.986142 0.165900i
\(28\) 0 0
\(29\) 77.3286 + 133.937i 0.495157 + 0.857638i 0.999984 0.00558276i \(-0.00177706\pi\)
−0.504827 + 0.863221i \(0.668444\pi\)
\(30\) 0 0
\(31\) 243.700 + 140.701i 1.41193 + 0.815179i 0.995570 0.0940195i \(-0.0299716\pi\)
0.416362 + 0.909199i \(0.363305\pi\)
\(32\) 0 0
\(33\) 95.7301 62.6039i 0.504984 0.330241i
\(34\) 0 0
\(35\) 191.561i 0.925134i
\(36\) 0 0
\(37\) 223.656i 0.993754i −0.867821 0.496877i \(-0.834480\pi\)
0.867821 0.496877i \(-0.165520\pi\)
\(38\) 0 0
\(39\) −95.8823 48.4690i −0.393678 0.199006i
\(40\) 0 0
\(41\) 47.3067 + 27.3125i 0.180197 + 0.104037i 0.587385 0.809308i \(-0.300157\pi\)
−0.407188 + 0.913344i \(0.633491\pi\)
\(42\) 0 0
\(43\) −157.422 272.663i −0.558294 0.966994i −0.997639 0.0686756i \(-0.978123\pi\)
0.439345 0.898319i \(-0.355211\pi\)
\(44\) 0 0
\(45\) −115.723 + 264.456i −0.383354 + 0.876061i
\(46\) 0 0
\(47\) −230.270 398.839i −0.714644 1.23780i −0.963097 0.269156i \(-0.913255\pi\)
0.248453 0.968644i \(-0.420078\pi\)
\(48\) 0 0
\(49\) −10.9844 + 19.0256i −0.0320246 + 0.0554683i
\(50\) 0 0
\(51\) −10.4480 187.866i −0.0286866 0.515814i
\(52\) 0 0
\(53\) 158.027 0.409560 0.204780 0.978808i \(-0.434352\pi\)
0.204780 + 0.978808i \(0.434352\pi\)
\(54\) 0 0
\(55\) 235.349i 0.576991i
\(56\) 0 0
\(57\) 651.443 36.2295i 1.51379 0.0841880i
\(58\) 0 0
\(59\) 403.976 + 233.236i 0.891410 + 0.514656i 0.874403 0.485200i \(-0.161253\pi\)
0.0170066 + 0.999855i \(0.494586\pi\)
\(60\) 0 0
\(61\) −382.288 + 220.714i −0.802409 + 0.463271i −0.844313 0.535851i \(-0.819991\pi\)
0.0419039 + 0.999122i \(0.486658\pi\)
\(62\) 0 0
\(63\) 389.550 286.849i 0.779028 0.573643i
\(64\) 0 0
\(65\) 191.441 110.529i 0.365313 0.210913i
\(66\) 0 0
\(67\) 193.518 335.182i 0.352865 0.611180i −0.633885 0.773427i \(-0.718541\pi\)
0.986750 + 0.162247i \(0.0518742\pi\)
\(68\) 0 0
\(69\) −413.095 + 817.192i −0.720735 + 1.42577i
\(70\) 0 0
\(71\) −20.3800 −0.0340657 −0.0170328 0.999855i \(-0.505422\pi\)
−0.0170328 + 0.999855i \(0.505422\pi\)
\(72\) 0 0
\(73\) −370.437 −0.593922 −0.296961 0.954890i \(-0.595973\pi\)
−0.296961 + 0.954890i \(0.595973\pi\)
\(74\) 0 0
\(75\) 30.4151 + 46.5089i 0.0468271 + 0.0716051i
\(76\) 0 0
\(77\) 197.208 341.574i 0.291869 0.505531i
\(78\) 0 0
\(79\) 562.808 324.937i 0.801530 0.462763i −0.0424761 0.999097i \(-0.513525\pi\)
0.844006 + 0.536334i \(0.180191\pi\)
\(80\) 0 0
\(81\) 711.073 160.674i 0.975409 0.220403i
\(82\) 0 0
\(83\) −516.463 + 298.180i −0.683002 + 0.394331i −0.800985 0.598684i \(-0.795690\pi\)
0.117983 + 0.993016i \(0.462357\pi\)
\(84\) 0 0
\(85\) 335.275 + 193.571i 0.427832 + 0.247009i
\(86\) 0 0
\(87\) 439.837 + 672.572i 0.542017 + 0.828819i
\(88\) 0 0
\(89\) 1210.30i 1.44148i 0.693206 + 0.720739i \(0.256197\pi\)
−0.693206 + 0.720739i \(0.743803\pi\)
\(90\) 0 0
\(91\) −370.463 −0.426759
\(92\) 0 0
\(93\) 1304.95 + 659.657i 1.45502 + 0.735519i
\(94\) 0 0
\(95\) −671.225 + 1162.60i −0.724908 + 1.25558i
\(96\) 0 0
\(97\) −794.702 1376.46i −0.831853 1.44081i −0.896567 0.442908i \(-0.853947\pi\)
0.0647144 0.997904i \(-0.479386\pi\)
\(98\) 0 0
\(99\) 478.597 352.419i 0.485867 0.357772i
\(100\) 0 0
\(101\) −636.447 1102.36i −0.627018 1.08603i −0.988147 0.153511i \(-0.950942\pi\)
0.361129 0.932516i \(-0.382391\pi\)
\(102\) 0 0
\(103\) −1190.34 687.241i −1.13871 0.657436i −0.192601 0.981277i \(-0.561692\pi\)
−0.946111 + 0.323841i \(0.895026\pi\)
\(104\) 0 0
\(105\) 55.2719 + 993.844i 0.0513713 + 0.923707i
\(106\) 0 0
\(107\) 1612.72i 1.45708i 0.685004 + 0.728540i \(0.259801\pi\)
−0.685004 + 0.728540i \(0.740199\pi\)
\(108\) 0 0
\(109\) 1546.65i 1.35911i −0.733626 0.679554i \(-0.762174\pi\)
0.733626 0.679554i \(-0.237826\pi\)
\(110\) 0 0
\(111\) −64.5326 1160.36i −0.0551816 0.992221i
\(112\) 0 0
\(113\) −1193.12 688.848i −0.993267 0.573463i −0.0870178 0.996207i \(-0.527734\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(114\) 0 0
\(115\) −942.020 1631.63i −0.763859 1.32304i
\(116\) 0 0
\(117\) −511.435 223.798i −0.404122 0.176839i
\(118\) 0 0
\(119\) −324.400 561.877i −0.249897 0.432834i
\(120\) 0 0
\(121\) −423.213 + 733.026i −0.317966 + 0.550734i
\(122\) 0 0
\(123\) 253.314 + 128.051i 0.185696 + 0.0938700i
\(124\) 0 0
\(125\) −1450.76 −1.03808
\(126\) 0 0
\(127\) 266.075i 0.185908i 0.995670 + 0.0929539i \(0.0296309\pi\)
−0.995670 + 0.0929539i \(0.970369\pi\)
\(128\) 0 0
\(129\) −895.400 1369.19i −0.611129 0.934501i
\(130\) 0 0
\(131\) −284.037 163.989i −0.189438 0.109372i 0.402281 0.915516i \(-0.368217\pi\)
−0.591720 + 0.806144i \(0.701551\pi\)
\(132\) 0 0
\(133\) 1948.36 1124.89i 1.27026 0.733384i
\(134\) 0 0
\(135\) −524.081 + 1405.42i −0.334116 + 0.895996i
\(136\) 0 0
\(137\) −1793.30 + 1035.36i −1.11833 + 0.645671i −0.940975 0.338476i \(-0.890089\pi\)
−0.177359 + 0.984146i \(0.556755\pi\)
\(138\) 0 0
\(139\) −874.266 + 1514.27i −0.533484 + 0.924022i 0.465751 + 0.884916i \(0.345784\pi\)
−0.999235 + 0.0391059i \(0.987549\pi\)
\(140\) 0 0
\(141\) −1309.75 2002.79i −0.782274 1.19621i
\(142\) 0 0
\(143\) −455.146 −0.266163
\(144\) 0 0
\(145\) −1653.50 −0.947003
\(146\) 0 0
\(147\) −51.4992 + 101.877i −0.0288951 + 0.0571610i
\(148\) 0 0
\(149\) −51.5884 + 89.3538i −0.0283644 + 0.0491285i −0.879859 0.475235i \(-0.842363\pi\)
0.851495 + 0.524363i \(0.175697\pi\)
\(150\) 0 0
\(151\) 2205.07 1273.10i 1.18838 0.686114i 0.230446 0.973085i \(-0.425982\pi\)
0.957939 + 0.286971i \(0.0926483\pi\)
\(152\) 0 0
\(153\) −108.412 971.661i −0.0572847 0.513426i
\(154\) 0 0
\(155\) −2605.49 + 1504.28i −1.35018 + 0.779528i
\(156\) 0 0
\(157\) −154.698 89.3150i −0.0786386 0.0454020i 0.460165 0.887833i \(-0.347790\pi\)
−0.538804 + 0.842431i \(0.681124\pi\)
\(158\) 0 0
\(159\) 819.865 45.5962i 0.408928 0.0227422i
\(160\) 0 0
\(161\) 3157.41i 1.54558i
\(162\) 0 0
\(163\) −2230.94 −1.07203 −0.536014 0.844209i \(-0.680071\pi\)
−0.536014 + 0.844209i \(0.680071\pi\)
\(164\) 0 0
\(165\) 67.9064 + 1221.03i 0.0320394 + 0.576101i
\(166\) 0 0
\(167\) 922.538 1597.88i 0.427474 0.740406i −0.569174 0.822217i \(-0.692737\pi\)
0.996648 + 0.0818106i \(0.0260703\pi\)
\(168\) 0 0
\(169\) −884.747 1532.43i −0.402707 0.697509i
\(170\) 0 0
\(171\) 3369.32 375.927i 1.50677 0.168116i
\(172\) 0 0
\(173\) 1557.87 + 2698.32i 0.684642 + 1.18583i 0.973549 + 0.228477i \(0.0733746\pi\)
−0.288908 + 0.957357i \(0.593292\pi\)
\(174\) 0 0
\(175\) 165.948 + 95.8100i 0.0716827 + 0.0413860i
\(176\) 0 0
\(177\) 2163.18 + 1093.50i 0.918613 + 0.464363i
\(178\) 0 0
\(179\) 2456.16i 1.02560i −0.858509 0.512799i \(-0.828609\pi\)
0.858509 0.512799i \(-0.171391\pi\)
\(180\) 0 0
\(181\) 3026.42i 1.24283i 0.783482 + 0.621415i \(0.213442\pi\)
−0.783482 + 0.621415i \(0.786558\pi\)
\(182\) 0 0
\(183\) −1919.68 + 1255.40i −0.775446 + 0.507113i
\(184\) 0 0
\(185\) 2070.83 + 1195.60i 0.822977 + 0.475146i
\(186\) 0 0
\(187\) −398.554 690.316i −0.155857 0.269951i
\(188\) 0 0
\(189\) 1938.27 1600.61i 0.745972 0.616016i
\(190\) 0 0
\(191\) −976.763 1691.80i −0.370032 0.640914i 0.619538 0.784967i \(-0.287320\pi\)
−0.989570 + 0.144052i \(0.953987\pi\)
\(192\) 0 0
\(193\) 807.292 1398.27i 0.301089 0.521501i −0.675294 0.737549i \(-0.735983\pi\)
0.976383 + 0.216047i \(0.0693165\pi\)
\(194\) 0 0
\(195\) 961.331 628.674i 0.353037 0.230873i
\(196\) 0 0
\(197\) −3469.85 −1.25491 −0.627453 0.778654i \(-0.715903\pi\)
−0.627453 + 0.778654i \(0.715903\pi\)
\(198\) 0 0
\(199\) 1323.61i 0.471500i −0.971814 0.235750i \(-0.924245\pi\)
0.971814 0.235750i \(-0.0757546\pi\)
\(200\) 0 0
\(201\) 907.284 1794.81i 0.318383 0.629831i
\(202\) 0 0
\(203\) 2399.80 + 1385.52i 0.829718 + 0.479038i
\(204\) 0 0
\(205\) −505.773 + 292.008i −0.172316 + 0.0994865i
\(206\) 0 0
\(207\) −1907.40 + 4358.90i −0.640452 + 1.46360i
\(208\) 0 0
\(209\) 2393.73 1382.02i 0.792239 0.457400i
\(210\) 0 0
\(211\) 73.6849 127.626i 0.0240411 0.0416405i −0.853755 0.520676i \(-0.825680\pi\)
0.877796 + 0.479035i \(0.159013\pi\)
\(212\) 0 0
\(213\) −105.734 + 5.88033i −0.0340131 + 0.00189161i
\(214\) 0 0
\(215\) 3366.12 1.06775
\(216\) 0 0
\(217\) 5041.96 1.57728
\(218\) 0 0
\(219\) −1921.88 + 106.884i −0.593006 + 0.0329796i
\(220\) 0 0
\(221\) −374.351 + 648.394i −0.113944 + 0.197356i
\(222\) 0 0
\(223\) −1045.36 + 603.537i −0.313911 + 0.181237i −0.648675 0.761065i \(-0.724677\pi\)
0.334764 + 0.942302i \(0.391343\pi\)
\(224\) 0 0
\(225\) 171.217 + 232.519i 0.0507309 + 0.0688944i
\(226\) 0 0
\(227\) 461.434 266.409i 0.134918 0.0778951i −0.431022 0.902342i \(-0.641847\pi\)
0.565940 + 0.824447i \(0.308513\pi\)
\(228\) 0 0
\(229\) −438.805 253.344i −0.126625 0.0731069i 0.435350 0.900261i \(-0.356625\pi\)
−0.561974 + 0.827155i \(0.689958\pi\)
\(230\) 0 0
\(231\) 924.584 1829.03i 0.263347 0.520958i
\(232\) 0 0
\(233\) 401.945i 0.113014i −0.998402 0.0565070i \(-0.982004\pi\)
0.998402 0.0565070i \(-0.0179963\pi\)
\(234\) 0 0
\(235\) 4923.79 1.36678
\(236\) 0 0
\(237\) 2826.17 1848.21i 0.774596 0.506557i
\(238\) 0 0
\(239\) −437.215 + 757.279i −0.118331 + 0.204955i −0.919106 0.394010i \(-0.871088\pi\)
0.800775 + 0.598965i \(0.204421\pi\)
\(240\) 0 0
\(241\) −479.685 830.839i −0.128213 0.222071i 0.794772 0.606909i \(-0.207591\pi\)
−0.922984 + 0.384838i \(0.874257\pi\)
\(242\) 0 0
\(243\) 3642.78 1038.77i 0.961665 0.274226i
\(244\) 0 0
\(245\) −117.439 203.410i −0.0306240 0.0530424i
\(246\) 0 0
\(247\) −2248.37 1298.09i −0.579191 0.334396i
\(248\) 0 0
\(249\) −2593.44 + 1696.01i −0.660051 + 0.431649i
\(250\) 0 0
\(251\) 1486.12i 0.373719i −0.982387 0.186859i \(-0.940169\pi\)
0.982387 0.186859i \(-0.0598308\pi\)
\(252\) 0 0
\(253\) 3879.15i 0.963953i
\(254\) 0 0
\(255\) 1795.30 + 907.535i 0.440888 + 0.222871i
\(256\) 0 0
\(257\) 810.352 + 467.857i 0.196686 + 0.113557i 0.595109 0.803645i \(-0.297109\pi\)
−0.398423 + 0.917202i \(0.630442\pi\)
\(258\) 0 0
\(259\) −2003.66 3470.45i −0.480701 0.832599i
\(260\) 0 0
\(261\) 2475.99 + 3362.49i 0.587203 + 0.797443i
\(262\) 0 0
\(263\) 723.768 + 1253.60i 0.169694 + 0.293918i 0.938312 0.345789i \(-0.112389\pi\)
−0.768619 + 0.639707i \(0.779056\pi\)
\(264\) 0 0
\(265\) −844.762 + 1463.17i −0.195824 + 0.339177i
\(266\) 0 0
\(267\) 349.213 + 6279.20i 0.0800431 + 1.43925i
\(268\) 0 0
\(269\) −2458.16 −0.557161 −0.278581 0.960413i \(-0.589864\pi\)
−0.278581 + 0.960413i \(0.589864\pi\)
\(270\) 0 0
\(271\) 484.315i 0.108561i 0.998526 + 0.0542806i \(0.0172865\pi\)
−0.998526 + 0.0542806i \(0.982713\pi\)
\(272\) 0 0
\(273\) −1922.01 + 106.891i −0.426100 + 0.0236973i
\(274\) 0 0
\(275\) 203.882 + 117.711i 0.0447074 + 0.0258118i
\(276\) 0 0
\(277\) 3576.88 2065.11i 0.775862 0.447944i −0.0590999 0.998252i \(-0.518823\pi\)
0.834962 + 0.550308i \(0.185490\pi\)
\(278\) 0 0
\(279\) 6960.58 + 3045.87i 1.49362 + 0.653589i
\(280\) 0 0
\(281\) 734.232 423.909i 0.155874 0.0899939i −0.420034 0.907508i \(-0.637982\pi\)
0.575908 + 0.817514i \(0.304649\pi\)
\(282\) 0 0
\(283\) −2706.55 + 4687.88i −0.568507 + 0.984683i 0.428207 + 0.903681i \(0.359146\pi\)
−0.996714 + 0.0810026i \(0.974188\pi\)
\(284\) 0 0
\(285\) −3146.96 + 6225.38i −0.654069 + 1.29389i
\(286\) 0 0
\(287\) 978.735 0.201299
\(288\) 0 0
\(289\) 3601.78 0.733113
\(290\) 0 0
\(291\) −4520.18 6911.98i −0.910575 1.39240i
\(292\) 0 0
\(293\) 4158.79 7203.24i 0.829213 1.43624i −0.0694441 0.997586i \(-0.522123\pi\)
0.898657 0.438653i \(-0.144544\pi\)
\(294\) 0 0
\(295\) −4319.06 + 2493.61i −0.852424 + 0.492147i
\(296\) 0 0
\(297\) 2381.34 1966.49i 0.465251 0.384199i
\(298\) 0 0
\(299\) 3155.43 1821.79i 0.610312 0.352364i
\(300\) 0 0
\(301\) −4885.40 2820.59i −0.935514 0.540119i
\(302\) 0 0
\(303\) −3620.04 5535.54i −0.686356 1.04953i
\(304\) 0 0
\(305\) 4719.47i 0.886020i
\(306\) 0 0
\(307\) 7799.02 1.44988 0.724940 0.688812i \(-0.241867\pi\)
0.724940 + 0.688812i \(0.241867\pi\)
\(308\) 0 0
\(309\) −6373.92 3222.05i −1.17346 0.593191i
\(310\) 0 0
\(311\) −2762.34 + 4784.52i −0.503660 + 0.872364i 0.496331 + 0.868133i \(0.334680\pi\)
−0.999991 + 0.00423108i \(0.998653\pi\)
\(312\) 0 0
\(313\) −1521.85 2635.91i −0.274824 0.476008i 0.695267 0.718752i \(-0.255286\pi\)
−0.970091 + 0.242743i \(0.921953\pi\)
\(314\) 0 0
\(315\) 573.516 + 5140.25i 0.102584 + 0.919429i
\(316\) 0 0
\(317\) 3235.14 + 5603.42i 0.573197 + 0.992806i 0.996235 + 0.0866940i \(0.0276302\pi\)
−0.423038 + 0.906112i \(0.639036\pi\)
\(318\) 0 0
\(319\) 2948.36 + 1702.24i 0.517482 + 0.298768i
\(320\) 0 0
\(321\) 465.325 + 8367.01i 0.0809094 + 1.45483i
\(322\) 0 0
\(323\) 4546.77i 0.783247i
\(324\) 0 0
\(325\) 221.125i 0.0377410i
\(326\) 0 0
\(327\) −446.263 8024.26i −0.0754691 1.35701i
\(328\) 0 0
\(329\) −7146.13 4125.82i −1.19750 0.691379i
\(330\) 0 0
\(331\) 3283.78 + 5687.67i 0.545295 + 0.944479i 0.998588 + 0.0531172i \(0.0169157\pi\)
−0.453293 + 0.891361i \(0.649751\pi\)
\(332\) 0 0
\(333\) −669.607 6001.48i −0.110193 0.987625i
\(334\) 0 0
\(335\) 2068.97 + 3583.56i 0.337432 + 0.584450i
\(336\) 0 0
\(337\) −5965.59 + 10332.7i −0.964292 + 1.67020i −0.252786 + 0.967522i \(0.581347\pi\)
−0.711506 + 0.702680i \(0.751986\pi\)
\(338\) 0 0
\(339\) −6388.82 3229.58i −1.02358 0.517424i
\(340\) 0 0
\(341\) 6194.49 0.983726
\(342\) 0 0
\(343\) 6539.27i 1.02941i
\(344\) 0 0
\(345\) −5358.11 8193.29i −0.836147 1.27859i
\(346\) 0 0
\(347\) 1257.88 + 726.237i 0.194601 + 0.112353i 0.594135 0.804366i \(-0.297495\pi\)
−0.399534 + 0.916718i \(0.630828\pi\)
\(348\) 0 0
\(349\) 2775.33 1602.34i 0.425673 0.245763i −0.271828 0.962346i \(-0.587628\pi\)
0.697502 + 0.716583i \(0.254295\pi\)
\(350\) 0 0
\(351\) −2717.97 1013.53i −0.413318 0.154126i
\(352\) 0 0
\(353\) 3481.39 2009.98i 0.524917 0.303061i −0.214027 0.976828i \(-0.568658\pi\)
0.738944 + 0.673767i \(0.235325\pi\)
\(354\) 0 0
\(355\) 108.945 188.698i 0.0162879 0.0282115i
\(356\) 0 0
\(357\) −1845.15 2821.50i −0.273546 0.418290i
\(358\) 0 0
\(359\) −4423.07 −0.650253 −0.325126 0.945671i \(-0.605407\pi\)
−0.325126 + 0.945671i \(0.605407\pi\)
\(360\) 0 0
\(361\) 8907.32 1.29863
\(362\) 0 0
\(363\) −1984.18 + 3925.15i −0.286894 + 0.567540i
\(364\) 0 0
\(365\) 1980.24 3429.87i 0.283974 0.491857i
\(366\) 0 0
\(367\) −1037.58 + 599.048i −0.147579 + 0.0852045i −0.571971 0.820274i \(-0.693821\pi\)
0.424392 + 0.905478i \(0.360488\pi\)
\(368\) 0 0
\(369\) 1351.17 + 591.258i 0.190622 + 0.0834138i
\(370\) 0 0
\(371\) 2452.08 1415.71i 0.343142 0.198113i
\(372\) 0 0
\(373\) 1831.97 + 1057.69i 0.254305 + 0.146823i 0.621734 0.783229i \(-0.286429\pi\)
−0.367429 + 0.930052i \(0.619762\pi\)
\(374\) 0 0
\(375\) −7526.75 + 418.594i −1.03648 + 0.0576430i
\(376\) 0 0
\(377\) 3197.73i 0.436847i
\(378\) 0 0
\(379\) 4201.28 0.569406 0.284703 0.958616i \(-0.408105\pi\)
0.284703 + 0.958616i \(0.408105\pi\)
\(380\) 0 0
\(381\) 76.7716 + 1380.43i 0.0103232 + 0.185621i
\(382\) 0 0
\(383\) 1040.16 1801.61i 0.138772 0.240360i −0.788260 0.615342i \(-0.789018\pi\)
0.927032 + 0.374982i \(0.122351\pi\)
\(384\) 0 0
\(385\) 2108.42 + 3651.89i 0.279104 + 0.483422i
\(386\) 0 0
\(387\) −5040.52 6845.20i −0.662077 0.899124i
\(388\) 0 0
\(389\) −1695.86 2937.32i −0.221038 0.382848i 0.734086 0.679057i \(-0.237611\pi\)
−0.955123 + 0.296208i \(0.904278\pi\)
\(390\) 0 0
\(391\) 5526.18 + 3190.54i 0.714759 + 0.412666i
\(392\) 0 0
\(393\) −1520.94 768.841i −0.195219 0.0986842i
\(394\) 0 0
\(395\) 6948.05i 0.885049i
\(396\) 0 0
\(397\) 2852.23i 0.360577i 0.983614 + 0.180289i \(0.0577031\pi\)
−0.983614 + 0.180289i \(0.942297\pi\)
\(398\) 0 0
\(399\) 9783.79 6398.23i 1.22757 0.802788i
\(400\) 0 0
\(401\) 784.032 + 452.661i 0.0976376 + 0.0563711i 0.548024 0.836463i \(-0.315380\pi\)
−0.450386 + 0.892834i \(0.648714\pi\)
\(402\) 0 0
\(403\) −2909.15 5038.80i −0.359591 0.622831i
\(404\) 0 0
\(405\) −2313.49 + 7442.73i −0.283848 + 0.913167i
\(406\) 0 0
\(407\) −2461.68 4263.75i −0.299806 0.519279i
\(408\) 0 0
\(409\) −3943.23 + 6829.88i −0.476724 + 0.825711i −0.999644 0.0266709i \(-0.991509\pi\)
0.522920 + 0.852382i \(0.324843\pi\)
\(410\) 0 0
\(411\) −9005.14 + 5889.02i −1.08076 + 0.706774i
\(412\) 0 0
\(413\) 8357.93 0.995803
\(414\) 0 0
\(415\) 6375.90i 0.754170i
\(416\) 0 0
\(417\) −4098.89 + 8108.51i −0.481352 + 0.952220i
\(418\) 0 0
\(419\) −12290.9 7096.16i −1.43306 0.827375i −0.435703 0.900091i \(-0.643500\pi\)
−0.997353 + 0.0727158i \(0.976833\pi\)
\(420\) 0 0
\(421\) −13997.7 + 8081.57i −1.62044 + 0.935562i −0.633640 + 0.773628i \(0.718440\pi\)
−0.986802 + 0.161935i \(0.948227\pi\)
\(422\) 0 0
\(423\) −7373.02 10012.8i −0.847491 1.15092i
\(424\) 0 0
\(425\) 335.379 193.631i 0.0382782 0.0221000i
\(426\) 0 0
\(427\) −3954.61 + 6849.58i −0.448189 + 0.776287i
\(428\) 0 0
\(429\) −2361.36 + 131.325i −0.265752 + 0.0147796i
\(430\) 0 0
\(431\) 9955.69 1.11264 0.556321 0.830968i \(-0.312213\pi\)
0.556321 + 0.830968i \(0.312213\pi\)
\(432\) 0 0
\(433\) −3785.69 −0.420158 −0.210079 0.977684i \(-0.567372\pi\)
−0.210079 + 0.977684i \(0.567372\pi\)
\(434\) 0 0
\(435\) −8578.57 + 477.091i −0.945542 + 0.0525856i
\(436\) 0 0
\(437\) −11063.5 + 19162.5i −1.21107 + 2.09764i
\(438\) 0 0
\(439\) 13629.0 7868.72i 1.48173 0.855475i 0.481941 0.876204i \(-0.339932\pi\)
0.999785 + 0.0207289i \(0.00659870\pi\)
\(440\) 0 0
\(441\) −237.790 + 543.410i −0.0256765 + 0.0586773i
\(442\) 0 0
\(443\) −5151.93 + 2974.47i −0.552541 + 0.319010i −0.750146 0.661272i \(-0.770017\pi\)
0.197605 + 0.980282i \(0.436684\pi\)
\(444\) 0 0
\(445\) −11206.2 6469.88i −1.19376 0.689218i
\(446\) 0 0
\(447\) −241.866 + 478.465i −0.0255926 + 0.0506277i
\(448\) 0 0
\(449\) 15116.6i 1.58886i −0.607356 0.794430i \(-0.707770\pi\)
0.607356 0.794430i \(-0.292230\pi\)
\(450\) 0 0
\(451\) 1202.46 0.125547
\(452\) 0 0
\(453\) 11072.9 7241.24i 1.14845 0.751045i
\(454\) 0 0
\(455\) 1980.38 3430.11i 0.204047 0.353420i
\(456\) 0 0
\(457\) 1777.87 + 3079.37i 0.181981 + 0.315201i 0.942555 0.334051i \(-0.108416\pi\)
−0.760574 + 0.649251i \(0.775082\pi\)
\(458\) 0 0
\(459\) −842.812 5009.83i −0.0857061 0.509452i
\(460\) 0 0
\(461\) −4424.78 7663.95i −0.447034 0.774286i 0.551157 0.834401i \(-0.314186\pi\)
−0.998191 + 0.0601155i \(0.980853\pi\)
\(462\) 0 0
\(463\) −11428.3 6598.13i −1.14712 0.662292i −0.198939 0.980012i \(-0.563750\pi\)
−0.948185 + 0.317720i \(0.897083\pi\)
\(464\) 0 0
\(465\) −13083.6 + 8556.19i −1.30481 + 0.853298i
\(466\) 0 0
\(467\) 8917.23i 0.883598i −0.897114 0.441799i \(-0.854340\pi\)
0.897114 0.441799i \(-0.145660\pi\)
\(468\) 0 0
\(469\) 6934.64i 0.682755i
\(470\) 0 0
\(471\) −828.365 418.743i −0.0810383 0.0409653i
\(472\) 0 0
\(473\) −6002.15 3465.34i −0.583465 0.336864i
\(474\) 0 0
\(475\) 671.433 + 1162.96i 0.0648578 + 0.112337i
\(476\) 0 0
\(477\) 4240.41 473.118i 0.407034 0.0454142i
\(478\) 0 0
\(479\) −3252.43 5633.38i −0.310245 0.537360i 0.668170 0.744009i \(-0.267078\pi\)
−0.978415 + 0.206648i \(0.933744\pi\)
\(480\) 0 0
\(481\) −2312.18 + 4004.82i −0.219182 + 0.379634i
\(482\) 0 0
\(483\) 911.020 + 16381.0i 0.0858237 + 1.54320i
\(484\) 0 0
\(485\) 16992.9 1.59094
\(486\) 0 0
\(487\) 20850.6i 1.94010i 0.242898 + 0.970052i \(0.421902\pi\)
−0.242898 + 0.970052i \(0.578098\pi\)
\(488\) 0 0
\(489\) −11574.4 + 643.703i −1.07037 + 0.0595281i
\(490\) 0 0
\(491\) 3316.39 + 1914.72i 0.304820 + 0.175988i 0.644606 0.764515i \(-0.277021\pi\)
−0.339786 + 0.940503i \(0.610355\pi\)
\(492\) 0 0
\(493\) 4849.96 2800.13i 0.443065 0.255804i
\(494\) 0 0
\(495\) 704.615 + 6315.25i 0.0639800 + 0.573433i
\(496\) 0 0
\(497\) −316.234 + 182.578i −0.0285413 + 0.0164783i
\(498\) 0 0
\(499\) −1634.90 + 2831.73i −0.146670 + 0.254040i −0.929995 0.367573i \(-0.880189\pi\)
0.783325 + 0.621613i \(0.213522\pi\)
\(500\) 0 0
\(501\) 4325.21 8556.22i 0.385701 0.763001i
\(502\) 0 0
\(503\) −15404.4 −1.36550 −0.682750 0.730652i \(-0.739216\pi\)
−0.682750 + 0.730652i \(0.739216\pi\)
\(504\) 0 0
\(505\) 13609.0 1.19919
\(506\) 0 0
\(507\) −5032.34 7695.16i −0.440817 0.674071i
\(508\) 0 0
\(509\) 4493.67 7783.27i 0.391314 0.677775i −0.601309 0.799016i \(-0.705354\pi\)
0.992623 + 0.121241i \(0.0386874\pi\)
\(510\) 0 0
\(511\) −5748.02 + 3318.62i −0.497607 + 0.287294i
\(512\) 0 0
\(513\) 17372.0 2922.53i 1.49511 0.251526i
\(514\) 0 0
\(515\) 12726.3 7347.55i 1.08891 0.628683i
\(516\) 0 0
\(517\) −8779.65 5068.93i −0.746864 0.431202i
\(518\) 0 0
\(519\) 8861.02 + 13549.7i 0.749433 + 1.14599i
\(520\) 0 0
\(521\) 14007.5i 1.17789i 0.808175 + 0.588943i \(0.200456\pi\)
−0.808175 + 0.588943i \(0.799544\pi\)
\(522\) 0 0
\(523\) 12759.6 1.06681 0.533403 0.845862i \(-0.320913\pi\)
0.533403 + 0.845862i \(0.320913\pi\)
\(524\) 0 0
\(525\) 888.604 + 449.194i 0.0738702 + 0.0373418i
\(526\) 0 0
\(527\) 5094.87 8824.57i 0.421131 0.729420i
\(528\) 0 0
\(529\) −9443.36 16356.4i −0.776145 1.34432i
\(530\) 0 0
\(531\) 11538.4 + 5049.06i 0.942981 + 0.412638i
\(532\) 0 0
\(533\) −564.720 978.123i −0.0458925 0.0794882i
\(534\) 0 0
\(535\) −14932.2 8621.09i −1.20668 0.696677i
\(536\) 0 0
\(537\) −708.686 12742.9i −0.0569499 1.02402i
\(538\) 0 0
\(539\) 483.602i 0.0386460i
\(540\) 0 0
\(541\) 11304.7i 0.898389i 0.893434 + 0.449194i \(0.148289\pi\)
−0.893434 + 0.449194i \(0.851711\pi\)
\(542\) 0 0
\(543\) 873.227 + 15701.5i 0.0690124 + 1.24091i
\(544\) 0 0
\(545\) 14320.5 + 8267.93i 1.12554 + 0.649833i
\(546\) 0 0
\(547\) −4074.44 7057.14i −0.318484 0.551630i 0.661688 0.749779i \(-0.269840\pi\)
−0.980172 + 0.198149i \(0.936507\pi\)
\(548\) 0 0
\(549\) −9597.32 + 7067.06i −0.746091 + 0.549390i
\(550\) 0 0
\(551\) 9709.69 + 16817.7i 0.750720 + 1.30029i
\(552\) 0 0
\(553\) 5822.01 10084.0i 0.447698 0.775436i
\(554\) 0 0
\(555\) 11088.7 + 5605.41i 0.848091 + 0.428714i
\(556\) 0 0
\(557\) −9696.33 −0.737607 −0.368803 0.929507i \(-0.620232\pi\)
−0.368803 + 0.929507i \(0.620232\pi\)
\(558\) 0 0
\(559\) 6509.79i 0.492549i
\(560\) 0 0
\(561\) −2266.93 3466.46i −0.170606 0.260880i
\(562\) 0 0
\(563\) 4632.29 + 2674.46i 0.346763 + 0.200204i 0.663259 0.748390i \(-0.269173\pi\)
−0.316495 + 0.948594i \(0.602506\pi\)
\(564\) 0 0
\(565\) 12756.1 7364.72i 0.949827 0.548383i
\(566\) 0 0
\(567\) 9594.20 8863.43i 0.710615 0.656489i
\(568\) 0 0
\(569\) −6251.55 + 3609.33i −0.460595 + 0.265924i −0.712294 0.701881i \(-0.752344\pi\)
0.251700 + 0.967805i \(0.419011\pi\)
\(570\) 0 0
\(571\) −1605.63 + 2781.03i −0.117677 + 0.203822i −0.918847 0.394615i \(-0.870878\pi\)
0.801170 + 0.598437i \(0.204211\pi\)
\(572\) 0 0
\(573\) −5555.72 8495.48i −0.405050 0.619378i
\(574\) 0 0
\(575\) −1884.62 −0.136685
\(576\) 0 0
\(577\) −4892.69 −0.353008 −0.176504 0.984300i \(-0.556479\pi\)
−0.176504 + 0.984300i \(0.556479\pi\)
\(578\) 0 0
\(579\) 3784.89 7487.35i 0.271666 0.537416i
\(580\) 0 0
\(581\) −5342.59 + 9253.64i −0.381494 + 0.660767i
\(582\) 0 0
\(583\) 3012.60 1739.33i 0.214012 0.123560i
\(584\) 0 0
\(585\) 4806.12 3539.02i 0.339673 0.250121i
\(586\) 0 0
\(587\) 8416.04 4859.01i 0.591767 0.341657i −0.174029 0.984741i \(-0.555679\pi\)
0.765796 + 0.643084i \(0.222345\pi\)
\(588\) 0 0
\(589\) 30600.0 + 17666.9i 2.14066 + 1.23591i
\(590\) 0 0
\(591\) −18002.0 + 1001.17i −1.25297 + 0.0696830i
\(592\) 0 0
\(593\) 8952.48i 0.619957i −0.950744 0.309978i \(-0.899678\pi\)
0.950744 0.309978i \(-0.100322\pi\)
\(594\) 0 0
\(595\) 6936.56 0.477935
\(596\) 0 0
\(597\) −381.908 6867.08i −0.0261816 0.470772i
\(598\) 0 0
\(599\) 1335.01 2312.30i 0.0910634 0.157726i −0.816895 0.576786i \(-0.804307\pi\)
0.907959 + 0.419059i \(0.137640\pi\)
\(600\) 0 0
\(601\) 10279.6 + 17804.8i 0.697692 + 1.20844i 0.969265 + 0.246021i \(0.0791231\pi\)
−0.271572 + 0.962418i \(0.587544\pi\)
\(602\) 0 0
\(603\) 4189.25 9573.49i 0.282918 0.646539i
\(604\) 0 0
\(605\) −4524.73 7837.06i −0.304060 0.526647i
\(606\) 0 0
\(607\) 10811.7 + 6242.12i 0.722952 + 0.417396i 0.815838 0.578280i \(-0.196276\pi\)
−0.0928863 + 0.995677i \(0.529609\pi\)
\(608\) 0 0
\(609\) 12850.2 + 6495.86i 0.855038 + 0.432226i
\(610\) 0 0
\(611\) 9522.21i 0.630487i
\(612\) 0 0
\(613\) 18300.4i 1.20579i 0.797822 + 0.602893i \(0.205985\pi\)
−0.797822 + 0.602893i \(0.794015\pi\)
\(614\) 0 0
\(615\) −2539.76 + 1660.91i −0.166526 + 0.108901i
\(616\) 0 0
\(617\) 10889.8 + 6287.22i 0.710545 + 0.410233i 0.811263 0.584682i \(-0.198781\pi\)
−0.100718 + 0.994915i \(0.532114\pi\)
\(618\) 0 0
\(619\) 604.640 + 1047.27i 0.0392610 + 0.0680020i 0.884988 0.465613i \(-0.154166\pi\)
−0.845727 + 0.533616i \(0.820833\pi\)
\(620\) 0 0
\(621\) −8638.17 + 23164.9i −0.558193 + 1.49690i
\(622\) 0 0
\(623\) 10842.7 + 18780.1i 0.697276 + 1.20772i
\(624\) 0 0
\(625\) 7086.90 12274.9i 0.453561 0.785591i
\(626\) 0 0
\(627\) 12020.3 7860.80i 0.765618 0.500686i
\(628\) 0 0
\(629\) −8098.76 −0.513385
\(630\) 0 0
\(631\) 9244.14i 0.583207i −0.956539 0.291603i \(-0.905811\pi\)
0.956539 0.291603i \(-0.0941888\pi\)
\(632\) 0 0
\(633\) 345.463 683.402i 0.0216918 0.0429112i
\(634\) 0 0
\(635\) −2463.58 1422.35i −0.153960 0.0888886i
\(636\) 0 0
\(637\) 393.378 227.117i 0.0244681 0.0141267i
\(638\) 0 0
\(639\) −546.867 + 61.0159i −0.0338556 + 0.00377739i
\(640\) 0 0
\(641\) 13346.5 7705.58i 0.822392 0.474808i −0.0288488 0.999584i \(-0.509184\pi\)
0.851241 + 0.524776i \(0.175851\pi\)
\(642\) 0 0
\(643\) −2947.93 + 5105.96i −0.180801 + 0.313156i −0.942154 0.335182i \(-0.891202\pi\)
0.761353 + 0.648338i \(0.224536\pi\)
\(644\) 0 0
\(645\) 17463.9 971.240i 1.06611 0.0592908i
\(646\) 0 0
\(647\) 30355.3 1.84450 0.922249 0.386596i \(-0.126349\pi\)
0.922249 + 0.386596i \(0.126349\pi\)
\(648\) 0 0
\(649\) 10268.5 0.621066
\(650\) 0 0
\(651\) 26158.4 1454.78i 1.57485 0.0875841i
\(652\) 0 0
\(653\) −3997.18 + 6923.31i −0.239543 + 0.414901i −0.960583 0.277993i \(-0.910331\pi\)
0.721040 + 0.692893i \(0.243664\pi\)
\(654\) 0 0
\(655\) 3036.74 1753.26i 0.181153 0.104589i
\(656\) 0 0
\(657\) −9940.11 + 1109.05i −0.590260 + 0.0658574i
\(658\) 0 0
\(659\) −7708.70 + 4450.62i −0.455673 + 0.263083i −0.710223 0.703977i \(-0.751406\pi\)
0.254550 + 0.967060i \(0.418073\pi\)
\(660\) 0 0
\(661\) 5648.33 + 3261.07i 0.332367 + 0.191892i 0.656892 0.753985i \(-0.271871\pi\)
−0.324524 + 0.945877i \(0.605204\pi\)
\(662\) 0 0
\(663\) −1755.10 + 3471.97i −0.102809 + 0.203379i
\(664\) 0 0
\(665\) 24053.2i 1.40262i
\(666\) 0 0
\(667\) −27253.8 −1.58212
\(668\) 0 0
\(669\) −5249.31 + 3432.85i −0.303363 + 0.198388i
\(670\) 0 0
\(671\) −4858.59 + 8415.32i −0.279529 + 0.484158i
\(672\) 0 0
\(673\) −13331.6 23091.1i −0.763591 1.32258i −0.940988 0.338440i \(-0.890101\pi\)
0.177397 0.984139i \(-0.443232\pi\)
\(674\) 0 0
\(675\) 955.386 + 1156.94i 0.0544783 + 0.0659711i
\(676\) 0 0
\(677\) −4565.23 7907.21i −0.259167 0.448890i 0.706852 0.707361i \(-0.250115\pi\)
−0.966019 + 0.258471i \(0.916781\pi\)
\(678\) 0 0
\(679\) −24662.6 14238.9i −1.39391 0.804772i
\(680\) 0 0
\(681\) 2317.11 1515.31i 0.130385 0.0852667i
\(682\) 0 0
\(683\) 4081.15i 0.228640i 0.993444 + 0.114320i \(0.0364689\pi\)
−0.993444 + 0.114320i \(0.963531\pi\)
\(684\) 0 0
\(685\) 22138.9i 1.23486i
\(686\) 0 0
\(687\) −2349.68 1187.77i −0.130489 0.0659628i
\(688\) 0 0
\(689\) −2829.65 1633.70i −0.156460 0.0903323i
\(690\) 0 0
\(691\) −3245.02 5620.54i −0.178649 0.309429i 0.762769 0.646671i \(-0.223839\pi\)
−0.941418 + 0.337242i \(0.890506\pi\)
\(692\) 0 0
\(693\) 4269.13 9756.03i 0.234013 0.534778i
\(694\) 0 0
\(695\) −9347.10 16189.7i −0.510152 0.883610i
\(696\) 0 0
\(697\) 989.007 1713.01i 0.0537465 0.0930916i
\(698\) 0 0
\(699\) −115.975 2085.34i −0.00627550 0.112840i
\(700\) 0 0
\(701\) −29971.5 −1.61485 −0.807424 0.589971i \(-0.799139\pi\)
−0.807424 + 0.589971i \(0.799139\pi\)
\(702\) 0 0
\(703\) 28083.2i 1.50665i
\(704\) 0 0
\(705\) 25545.3 1420.68i 1.36467 0.0758951i
\(706\) 0 0
\(707\) −19751.3 11403.4i −1.05067 0.606606i
\(708\) 0 0
\(709\) −2923.29 + 1687.77i −0.154847 + 0.0894011i −0.575421 0.817857i \(-0.695162\pi\)
0.420574 + 0.907258i \(0.361829\pi\)
\(710\) 0 0
\(711\) 14129.3 10404.2i 0.745273 0.548788i
\(712\) 0 0
\(713\) −42945.1 + 24794.3i −2.25569 + 1.30232i
\(714\) 0 0
\(715\) 2433.07 4214.20i 0.127261 0.220422i
\(716\) 0 0
\(717\) −2049.83 + 4055.02i −0.106768 + 0.211210i
\(718\) 0 0
\(719\) −36696.4 −1.90340 −0.951701 0.307025i \(-0.900666\pi\)
−0.951701 + 0.307025i \(0.900666\pi\)
\(720\) 0 0
\(721\) −24627.1 −1.27207
\(722\) 0 0
\(723\) −2728.40 4172.10i −0.140346 0.214609i
\(724\) 0 0
\(725\) −827.004 + 1432.41i −0.0423644 + 0.0733772i
\(726\) 0 0
\(727\) 18148.3 10477.9i 0.925834 0.534531i 0.0403426 0.999186i \(-0.487155\pi\)
0.885492 + 0.464655i \(0.153822\pi\)
\(728\) 0 0
\(729\) 18599.5 6440.34i 0.944954 0.327203i
\(730\) 0 0
\(731\) −9873.34 + 5700.37i −0.499560 + 0.288421i
\(732\) 0 0
\(733\) 11601.1 + 6697.91i 0.584580 + 0.337508i 0.762952 0.646456i \(-0.223749\pi\)
−0.178371 + 0.983963i \(0.557083\pi\)
\(734\) 0 0
\(735\) −667.979 1021.43i −0.0335221 0.0512600i
\(736\) 0 0
\(737\) 8519.83i 0.425823i
\(738\) 0 0
\(739\) −5570.50 −0.277286 −0.138643 0.990342i \(-0.544274\pi\)
−0.138643 + 0.990342i \(0.544274\pi\)
\(740\) 0 0
\(741\) −12039.4 6085.96i −0.596865 0.301718i
\(742\) 0 0
\(743\) 2503.74 4336.60i 0.123625 0.214124i −0.797570 0.603227i \(-0.793881\pi\)
0.921195 + 0.389102i \(0.127215\pi\)
\(744\) 0 0
\(745\) −551.551 955.314i −0.0271238 0.0469799i
\(746\) 0 0
\(747\) −12965.8 + 9547.45i −0.635064 + 0.467634i
\(748\) 0 0
\(749\) 14447.8 + 25024.4i 0.704822 + 1.22079i
\(750\) 0 0
\(751\) 14755.0 + 8518.83i 0.716936 + 0.413923i 0.813624 0.581391i \(-0.197491\pi\)
−0.0966876 + 0.995315i \(0.530825\pi\)
\(752\) 0 0
\(753\) −428.798 7710.22i −0.0207520 0.373142i
\(754\) 0 0
\(755\) 27222.3i 1.31221i
\(756\) 0 0
\(757\) 19829.1i 0.952049i −0.879432 0.476024i \(-0.842077\pi\)
0.879432 0.476024i \(-0.157923\pi\)
\(758\) 0 0
\(759\) 1119.27 + 20125.6i 0.0535268 + 0.962466i
\(760\) 0 0
\(761\) 14809.3 + 8550.18i 0.705438 + 0.407285i 0.809370 0.587300i \(-0.199809\pi\)
−0.103932 + 0.994584i \(0.533142\pi\)
\(762\) 0 0
\(763\) −13856.0 23999.2i −0.657431 1.13870i
\(764\) 0 0
\(765\) 9576.14 + 4190.41i 0.452583 + 0.198045i
\(766\) 0 0
\(767\) −4822.43 8352.70i −0.227025 0.393218i
\(768\) 0 0
\(769\) −11253.2 + 19491.1i −0.527699 + 0.914002i 0.471779 + 0.881717i \(0.343612\pi\)
−0.999479 + 0.0322854i \(0.989721\pi\)
\(770\) 0 0
\(771\) 4339.21 + 2193.49i 0.202688 + 0.102460i
\(772\) 0 0
\(773\) 5523.17 0.256992 0.128496 0.991710i \(-0.458985\pi\)
0.128496 + 0.991710i \(0.458985\pi\)
\(774\) 0 0
\(775\) 3009.49i 0.139489i
\(776\) 0 0
\(777\) −11396.6 17427.0i −0.526193 0.804622i
\(778\) 0 0
\(779\) 5940.02 + 3429.47i 0.273200 + 0.157732i
\(780\) 0 0
\(781\) −388.522 + 224.313i −0.0178008 + 0.0102773i
\(782\) 0 0
\(783\) 13816.0 + 16730.6i 0.630578 + 0.763606i
\(784\) 0 0
\(785\) 1653.93 954.899i 0.0751993 0.0434163i
\(786\) 0 0
\(787\) 3299.97 5715.72i 0.149468 0.258886i −0.781563 0.623826i \(-0.785577\pi\)
0.931031 + 0.364940i \(0.118911\pi\)
\(788\) 0 0
\(789\) 4116.71 + 6295.03i 0.185753 + 0.284042i
\(790\) 0 0
\(791\) −24684.6 −1.10959
\(792\) 0 0
\(793\) 9127.06 0.408716
\(794\) 0 0
\(795\) −3960.56 + 7834.87i −0.176688 + 0.349527i
\(796\) 0 0
\(797\) 9315.82 16135.5i 0.414032 0.717124i −0.581294 0.813693i \(-0.697454\pi\)
0.995326 + 0.0965692i \(0.0307869\pi\)
\(798\) 0 0
\(799\) −14442.2 + 8338.23i −0.639461 + 0.369193i
\(800\) 0 0
\(801\) 3623.53 + 32476.6i 0.159839 + 1.43259i
\(802\) 0 0
\(803\) −7061.95 + 4077.22i −0.310350 + 0.179180i
\(804\) 0 0
\(805\) −29234.4 16878.5i −1.27997 0.738992i
\(806\) 0 0
\(807\) −12753.2 + 709.262i −0.556302 + 0.0309383i
\(808\) 0 0
\(809\) 9731.56i 0.422921i 0.977387 + 0.211461i \(0.0678220\pi\)
−0.977387 + 0.211461i \(0.932178\pi\)
\(810\) 0 0
\(811\) −12468.7 −0.539872 −0.269936 0.962878i \(-0.587003\pi\)
−0.269936 + 0.962878i \(0.587003\pi\)
\(812\) 0 0
\(813\) 139.742 + 2512.69i 0.00602823 + 0.108394i
\(814\) 0 0
\(815\) 11925.9 20656.3i 0.512572 0.887800i
\(816\) 0 0
\(817\) −19766.6 34236.7i −0.846444 1.46608i
\(818\) 0 0
\(819\) −9940.81 + 1109.13i −0.424127 + 0.0473214i
\(820\) 0 0
\(821\) 3801.24 + 6583.94i 0.161589 + 0.279880i 0.935439 0.353489i \(-0.115005\pi\)
−0.773850 + 0.633369i \(0.781672\pi\)
\(822\) 0 0
\(823\) 30246.1 + 17462.6i 1.28106 + 0.739622i 0.977043 0.213044i \(-0.0683377\pi\)
0.304020 + 0.952666i \(0.401671\pi\)
\(824\) 0 0
\(825\) 1091.73 + 551.874i 0.0460717 + 0.0232895i
\(826\) 0 0
\(827\) 8660.10i 0.364137i −0.983286 0.182068i \(-0.941721\pi\)
0.983286 0.182068i \(-0.0582792\pi\)
\(828\) 0 0
\(829\) 15475.5i 0.648353i −0.945997 0.324177i \(-0.894913\pi\)
0.945997 0.324177i \(-0.105087\pi\)
\(830\) 0 0
\(831\) 17961.5 11746.1i 0.749791 0.490335i
\(832\) 0 0
\(833\) 688.932 + 397.755i 0.0286555 + 0.0165443i
\(834\) 0 0
\(835\) 9863.19 + 17083.6i 0.408778 + 0.708025i
\(836\) 0 0
\(837\) 36991.3 + 13794.0i 1.52761 + 0.569643i
\(838\) 0 0
\(839\) −4487.20 7772.06i −0.184643 0.319811i 0.758813 0.651308i \(-0.225780\pi\)
−0.943456 + 0.331497i \(0.892446\pi\)
\(840\) 0 0
\(841\) 235.069 407.151i 0.00963831 0.0166940i
\(842\) 0 0
\(843\) 3686.98 2411.15i 0.150636 0.0985105i
\(844\) 0 0
\(845\) 18918.3 0.770189
\(846\) 0 0
\(847\) 15165.7i 0.615230i
\(848\) 0 0
\(849\) −12689.3 + 25102.3i −0.512952 + 1.01473i
\(850\) 0 0
\(851\) 34132.6 + 19706.4i 1.37491 + 0.793805i
\(852\) 0 0
\(853\) −11129.3 + 6425.49i −0.446728 + 0.257919i −0.706447 0.707766i \(-0.749703\pi\)
0.259719 + 0.965684i \(0.416370\pi\)
\(854\) 0 0
\(855\) −14530.6 + 33206.1i −0.581212 + 1.32822i
\(856\) 0 0
\(857\) −23236.8 + 13415.7i −0.926199 + 0.534741i −0.885607 0.464435i \(-0.846258\pi\)
−0.0405914 + 0.999176i \(0.512924\pi\)
\(858\) 0 0
\(859\) 13594.8 23546.9i 0.539987 0.935284i −0.458918 0.888479i \(-0.651763\pi\)
0.998904 0.0468052i \(-0.0149040\pi\)
\(860\) 0 0
\(861\) 5077.81 282.399i 0.200989 0.0111778i
\(862\) 0 0
\(863\) −10963.4 −0.432441 −0.216221 0.976345i \(-0.569373\pi\)
−0.216221 + 0.976345i \(0.569373\pi\)
\(864\) 0 0
\(865\) −33311.6 −1.30940
\(866\) 0 0
\(867\) 18686.5 1039.24i 0.731982 0.0407086i
\(868\) 0 0
\(869\) 7152.86 12389.1i 0.279222 0.483627i
\(870\) 0 0
\(871\) −6930.31 + 4001.21i −0.269603 + 0.155656i
\(872\) 0 0
\(873\) −25445.6 34556.1i −0.986488 1.33969i
\(874\) 0 0
\(875\) −22511.3 + 12996.9i −0.869737 + 0.502143i
\(876\) 0 0
\(877\) −23926.8 13814.2i −0.921268 0.531894i −0.0372287 0.999307i \(-0.511853\pi\)
−0.884039 + 0.467412i \(0.845186\pi\)
\(878\) 0 0
\(879\) 19498.0 38571.3i 0.748181 1.48007i
\(880\) 0 0
\(881\) 3160.30i 0.120855i −0.998173 0.0604275i \(-0.980754\pi\)
0.998173 0.0604275i \(-0.0192464\pi\)
\(882\) 0 0
\(883\) −25009.6 −0.953161 −0.476581 0.879131i \(-0.658124\pi\)
−0.476581 + 0.879131i \(0.658124\pi\)
\(884\) 0 0
\(885\) −21688.4 + 14183.4i −0.823781 + 0.538722i
\(886\) 0 0
\(887\) 482.657 835.987i 0.0182706 0.0316457i −0.856746 0.515739i \(-0.827517\pi\)
0.875016 + 0.484094i \(0.160851\pi\)
\(888\) 0 0
\(889\) 2383.67 + 4128.64i 0.0899279 + 0.155760i
\(890\) 0 0
\(891\) 11787.3 10889.5i 0.443199 0.409441i
\(892\) 0 0
\(893\) −28913.6 50079.8i −1.08349 1.87666i
\(894\) 0 0
\(895\) 22741.6 + 13129.9i 0.849348 + 0.490372i
\(896\) 0 0
\(897\) 15845.1 10362.1i 0.589804 0.385710i
\(898\) 0 0
\(899\) 43520.7i 1.61457i
\(900\) 0 0
\(901\) 5722.27i 0.211583i
\(902\) 0 0
\(903\) −26160.0 13224.0i −0.964063 0.487338i
\(904\) 0 0
\(905\) −28021.6 16178.3i −1.02925 0.594237i
\(906\) 0 0
\(907\) −14900.6 25808.6i −0.545498 0.944830i −0.998575 0.0533589i \(-0.983007\pi\)
0.453078 0.891471i \(-0.350326\pi\)
\(908\) 0 0
\(909\) −20378.4 27674.6i −0.743576 1.00980i
\(910\) 0 0
\(911\) −4525.83 7838.97i −0.164597 0.285090i 0.771915 0.635725i \(-0.219299\pi\)
−0.936512 + 0.350636i \(0.885966\pi\)
\(912\) 0 0
\(913\) −6563.84 + 11368.9i −0.237932 + 0.412110i
\(914\) 0 0
\(915\) −1361.73 24485.2i −0.0491993 0.884653i
\(916\) 0 0
\(917\) −5876.48 −0.211623
\(918\) 0 0
\(919\) 25649.5i 0.920674i −0.887744 0.460337i \(-0.847729\pi\)
0.887744 0.460337i \(-0.152271\pi\)
\(920\) 0 0
\(921\) 40462.3 2250.28i 1.44764 0.0805096i
\(922\) 0 0
\(923\) 364.927 + 210.691i 0.0130138 + 0.00751351i
\(924\) 0 0
\(925\) 2071.47 1195.97i 0.0736320 0.0425115i
\(926\) 0 0
\(927\) −33998.4 14877.3i −1.20459 0.527115i
\(928\) 0 0
\(929\) 48149.3 27799.0i 1.70046 0.981762i 0.755174 0.655525i \(-0.227553\pi\)
0.945288 0.326237i \(-0.105781\pi\)
\(930\) 0 0
\(931\) −1379.25 + 2388.93i −0.0485533 + 0.0840968i
\(932\) 0 0
\(933\) −12950.9 + 25619.8i −0.454442 + 0.898986i
\(934\) 0 0
\(935\) 8522.18 0.298080
\(936\) 0 0
\(937\) −24617.9 −0.858304 −0.429152 0.903232i \(-0.641187\pi\)
−0.429152 + 0.903232i \(0.641187\pi\)
\(938\) 0 0
\(939\) −8656.09 13236.4i −0.300832 0.460014i
\(940\) 0 0
\(941\) −5553.99 + 9619.80i −0.192407 + 0.333259i −0.946047 0.324028i \(-0.894963\pi\)
0.753640 + 0.657287i \(0.228296\pi\)
\(942\) 0 0
\(943\) −8336.41 + 4813.03i −0.287880 + 0.166208i
\(944\) 0 0
\(945\) 4458.62 + 26502.8i 0.153480 + 0.912314i
\(946\) 0 0
\(947\) −17487.0 + 10096.1i −0.600055 + 0.346442i −0.769063 0.639173i \(-0.779277\pi\)
0.169008 + 0.985615i \(0.445943\pi\)
\(948\) 0 0
\(949\) 6633.09 + 3829.61i 0.226891 + 0.130995i
\(950\) 0 0
\(951\) 18401.1 + 28137.9i 0.627441 + 0.959445i
\(952\) 0 0
\(953\) 18808.4i 0.639310i 0.947534 + 0.319655i \(0.103567\pi\)
−0.947534 + 0.319655i \(0.896433\pi\)
\(954\) 0 0
\(955\) 20885.9 0.707697
\(956\) 0 0
\(957\) 15787.7 + 7980.74i 0.533273 + 0.269572i
\(958\) 0 0
\(959\) −18550.9 + 32131.1i −0.624651 + 1.08193i
\(960\) 0 0
\(961\) 24697.8 + 42777.8i 0.829035 + 1.43593i
\(962\) 0 0
\(963\) 4828.34 + 43274.9i 0.161569 + 1.44809i
\(964\) 0 0
\(965\) 8631.06 + 14949.4i 0.287921 + 0.498694i
\(966\) 0 0
\(967\) −590.535 340.946i −0.0196384 0.0113382i 0.490149 0.871639i \(-0.336942\pi\)
−0.509787 + 0.860301i \(0.670276\pi\)
\(968\) 0 0
\(969\) −1311.90 23589.2i −0.0434925 0.782039i
\(970\) 0 0
\(971\) 54483.2i 1.80067i −0.435197 0.900335i \(-0.643321\pi\)
0.435197 0.900335i \(-0.356679\pi\)
\(972\) 0 0
\(973\) 31329.1i 1.03223i
\(974\) 0 0
\(975\) −63.8022 1147.23i −0.00209570 0.0376828i
\(976\) 0 0
\(977\) −26948.6 15558.8i −0.882458 0.509487i −0.0109896 0.999940i \(-0.503498\pi\)
−0.871468 + 0.490452i \(0.836832\pi\)
\(978\) 0 0
\(979\) 13321.2 + 23073.0i 0.434880 + 0.753234i
\(980\) 0 0
\(981\) −4630.55 41502.2i −0.150705 1.35073i
\(982\) 0 0
\(983\) 5791.66 + 10031.4i 0.187920 + 0.325487i 0.944557 0.328349i \(-0.106492\pi\)
−0.756637 + 0.653836i \(0.773159\pi\)
\(984\) 0 0
\(985\) 18548.7 32127.3i 0.600011 1.03925i
\(986\) 0 0
\(987\) −38265.5 19343.4i −1.23405 0.623817i
\(988\) 0 0
\(989\) 55482.1 1.78385
\(990\) 0 0
\(991\) 23086.5i 0.740028i −0.929026 0.370014i \(-0.879353\pi\)
0.929026 0.370014i \(-0.120647\pi\)
\(992\) 0 0
\(993\) 18677.8 + 28560.9i 0.596899 + 0.912742i
\(994\) 0 0
\(995\) 12255.3 + 7075.61i 0.390472 + 0.225439i
\(996\) 0 0
\(997\) 39030.9 22534.5i 1.23984 0.715822i 0.270779 0.962642i \(-0.412719\pi\)
0.969062 + 0.246819i \(0.0793854\pi\)
\(998\) 0 0
\(999\) −5205.65 30943.3i −0.164864 0.979983i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.4.p.b.239.31 64
3.2 odd 2 864.4.p.b.719.25 64
4.3 odd 2 72.4.l.b.59.23 yes 64
8.3 odd 2 inner 288.4.p.b.239.32 64
8.5 even 2 72.4.l.b.59.31 yes 64
9.2 odd 6 inner 288.4.p.b.47.32 64
9.7 even 3 864.4.p.b.143.8 64
12.11 even 2 216.4.l.b.179.10 64
24.5 odd 2 216.4.l.b.179.2 64
24.11 even 2 864.4.p.b.719.8 64
36.7 odd 6 216.4.l.b.35.2 64
36.11 even 6 72.4.l.b.11.31 yes 64
72.11 even 6 inner 288.4.p.b.47.31 64
72.29 odd 6 72.4.l.b.11.23 64
72.43 odd 6 864.4.p.b.143.25 64
72.61 even 6 216.4.l.b.35.10 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.23 64 72.29 odd 6
72.4.l.b.11.31 yes 64 36.11 even 6
72.4.l.b.59.23 yes 64 4.3 odd 2
72.4.l.b.59.31 yes 64 8.5 even 2
216.4.l.b.35.2 64 36.7 odd 6
216.4.l.b.35.10 64 72.61 even 6
216.4.l.b.179.2 64 24.5 odd 2
216.4.l.b.179.10 64 12.11 even 2
288.4.p.b.47.31 64 72.11 even 6 inner
288.4.p.b.47.32 64 9.2 odd 6 inner
288.4.p.b.239.31 64 1.1 even 1 trivial
288.4.p.b.239.32 64 8.3 odd 2 inner
864.4.p.b.143.8 64 9.7 even 3
864.4.p.b.143.25 64 72.43 odd 6
864.4.p.b.719.8 64 24.11 even 2
864.4.p.b.719.25 64 3.2 odd 2