Properties

Label 72.4.l.b.11.31
Level $72$
Weight $4$
Character 72.11
Analytic conductor $4.248$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,4,Mod(11,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.11");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24813752041\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.31
Character \(\chi\) \(=\) 72.11
Dual form 72.4.l.b.59.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.82386 + 0.160583i) q^{2} +(-5.18814 - 0.288534i) q^{3} +(7.94843 + 0.906929i) q^{4} +(5.34568 + 9.25900i) q^{5} +(-14.6043 - 1.64791i) q^{6} +(15.5169 + 8.95867i) q^{7} +(22.2996 + 3.83743i) q^{8} +(26.8335 + 2.99391i) q^{9} +O(q^{10})\) \(q+(2.82386 + 0.160583i) q^{2} +(-5.18814 - 0.288534i) q^{3} +(7.94843 + 0.906929i) q^{4} +(5.34568 + 9.25900i) q^{5} +(-14.6043 - 1.64791i) q^{6} +(15.5169 + 8.95867i) q^{7} +(22.2996 + 3.83743i) q^{8} +(26.8335 + 2.99391i) q^{9} +(13.6087 + 27.0046i) q^{10} +(-19.0639 - 11.0065i) q^{11} +(-40.9758 - 6.99866i) q^{12} +(17.9061 - 10.3381i) q^{13} +(42.3789 + 27.7898i) q^{14} +(-25.0626 - 49.5793i) q^{15} +(62.3550 + 14.4173i) q^{16} +36.2107i q^{17} +(75.2934 + 12.7634i) q^{18} -125.564 q^{19} +(34.0925 + 78.4426i) q^{20} +(-77.9188 - 50.9559i) q^{21} +(-52.0663 - 34.1423i) q^{22} +(-88.1103 - 152.612i) q^{23} +(-114.586 - 26.3433i) q^{24} +(5.34734 - 9.26186i) q^{25} +(52.2246 - 26.3180i) q^{26} +(-138.352 - 23.2752i) q^{27} +(115.210 + 85.2800i) q^{28} +(-77.3286 + 133.937i) q^{29} +(-62.8118 - 144.030i) q^{30} +(243.700 - 140.701i) q^{31} +(173.767 + 50.7257i) q^{32} +(95.7301 + 62.6039i) q^{33} +(-5.81483 + 102.254i) q^{34} +191.561i q^{35} +(210.569 + 48.1329i) q^{36} -223.656i q^{37} +(-354.576 - 20.1634i) q^{38} +(-95.8823 + 48.4690i) q^{39} +(83.6761 + 226.986i) q^{40} +(47.3067 - 27.3125i) q^{41} +(-211.849 - 156.405i) q^{42} +(157.422 - 272.663i) q^{43} +(-141.545 - 104.774i) q^{44} +(115.723 + 264.456i) q^{45} +(-224.305 - 445.103i) q^{46} +(-230.270 + 398.839i) q^{47} +(-319.346 - 92.7905i) q^{48} +(-10.9844 - 19.0256i) q^{49} +(16.5874 - 25.2955i) q^{50} +(10.4480 - 187.866i) q^{51} +(151.701 - 65.9321i) q^{52} -158.027 q^{53} +(-386.950 - 87.9430i) q^{54} -235.349i q^{55} +(311.643 + 259.320i) q^{56} +(651.443 + 36.2295i) q^{57} +(-239.874 + 365.803i) q^{58} +(-403.976 + 233.236i) q^{59} +(-154.243 - 416.808i) q^{60} +(382.288 + 220.714i) q^{61} +(710.771 - 358.185i) q^{62} +(389.550 + 286.849i) q^{63} +(482.548 + 171.146i) q^{64} +(191.441 + 110.529i) q^{65} +(260.276 + 192.158i) q^{66} +(-193.518 - 335.182i) q^{67} +(-32.8406 + 287.818i) q^{68} +(413.095 + 817.192i) q^{69} +(-30.7614 + 540.942i) q^{70} -20.3800 q^{71} +(586.889 + 169.735i) q^{72} -370.437 q^{73} +(35.9154 - 631.576i) q^{74} +(-30.4151 + 46.5089i) q^{75} +(-998.036 - 113.878i) q^{76} +(-197.208 - 341.574i) q^{77} +(-278.542 + 121.473i) q^{78} +(562.808 + 324.937i) q^{79} +(199.840 + 654.415i) q^{80} +(711.073 + 160.674i) q^{81} +(137.974 - 69.5302i) q^{82} +(516.463 + 298.180i) q^{83} +(-573.118 - 475.686i) q^{84} +(-335.275 + 193.571i) q^{85} +(488.324 - 744.685i) q^{86} +(439.837 - 672.572i) q^{87} +(-382.880 - 318.598i) q^{88} -1210.30i q^{89} +(284.318 + 765.370i) q^{90} +370.463 q^{91} +(-561.931 - 1292.93i) q^{92} +(-1304.95 + 659.657i) q^{93} +(-714.297 + 1089.29i) q^{94} +(-671.225 - 1162.60i) q^{95} +(-886.890 - 313.309i) q^{96} +(-794.702 + 1376.46i) q^{97} +(-27.9634 - 55.4897i) q^{98} +(-478.597 - 352.419i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9} + 12 q^{10} + 48 q^{11} + 318 q^{12} + 72 q^{14} + 127 q^{16} + 330 q^{18} - 220 q^{19} - 234 q^{20} - 217 q^{22} + 189 q^{24} - 902 q^{25} - 252 q^{27} - 132 q^{28} + 420 q^{30} - 693 q^{32} - 660 q^{33} + 509 q^{34} - 537 q^{36} - 1977 q^{38} - 36 q^{40} + 1620 q^{41} + 72 q^{42} - 292 q^{43} + 48 q^{46} + 765 q^{48} + 1762 q^{49} - 1227 q^{50} - 1794 q^{51} + 330 q^{52} - 645 q^{54} + 942 q^{56} - 294 q^{57} - 282 q^{58} + 5592 q^{59} + 1236 q^{60} + 1090 q^{64} - 6 q^{65} + 3522 q^{66} + 68 q^{67} - 2025 q^{68} + 600 q^{70} + 1875 q^{72} - 868 q^{73} - 420 q^{74} - 4254 q^{75} - 1471 q^{76} + 3228 q^{78} + 498 q^{81} + 362 q^{82} + 3654 q^{83} - 2028 q^{84} - 4119 q^{86} + 3155 q^{88} + 2958 q^{90} - 1380 q^{91} - 744 q^{92} - 138 q^{94} - 4782 q^{96} - 1912 q^{97} - 2118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82386 + 0.160583i 0.998387 + 0.0567746i
\(3\) −5.18814 0.288534i −0.998457 0.0555285i
\(4\) 7.94843 + 0.906929i 0.993553 + 0.113366i
\(5\) 5.34568 + 9.25900i 0.478132 + 0.828150i 0.999686 0.0250690i \(-0.00798055\pi\)
−0.521553 + 0.853219i \(0.674647\pi\)
\(6\) −14.6043 1.64791i −0.993694 0.112126i
\(7\) 15.5169 + 8.95867i 0.837832 + 0.483723i 0.856527 0.516103i \(-0.172618\pi\)
−0.0186945 + 0.999825i \(0.505951\pi\)
\(8\) 22.2996 + 3.83743i 0.985514 + 0.169592i
\(9\) 26.8335 + 2.99391i 0.993833 + 0.110886i
\(10\) 13.6087 + 27.0046i 0.430343 + 0.853960i
\(11\) −19.0639 11.0065i −0.522543 0.301690i 0.215432 0.976519i \(-0.430884\pi\)
−0.737974 + 0.674829i \(0.764217\pi\)
\(12\) −40.9758 6.99866i −0.985725 0.168362i
\(13\) 17.9061 10.3381i 0.382021 0.220560i −0.296676 0.954978i \(-0.595878\pi\)
0.678697 + 0.734418i \(0.262545\pi\)
\(14\) 42.3789 + 27.7898i 0.809018 + 0.530510i
\(15\) −25.0626 49.5793i −0.431409 0.853422i
\(16\) 62.3550 + 14.4173i 0.974296 + 0.225271i
\(17\) 36.2107i 0.516611i 0.966063 + 0.258306i \(0.0831642\pi\)
−0.966063 + 0.258306i \(0.916836\pi\)
\(18\) 75.2934 + 12.7634i 0.985935 + 0.167131i
\(19\) −125.564 −1.51612 −0.758062 0.652182i \(-0.773854\pi\)
−0.758062 + 0.652182i \(0.773854\pi\)
\(20\) 34.0925 + 78.4426i 0.381166 + 0.877015i
\(21\) −77.9188 50.9559i −0.809679 0.529500i
\(22\) −52.0663 34.1423i −0.504571 0.330871i
\(23\) −88.1103 152.612i −0.798794 1.38355i −0.920402 0.390974i \(-0.872138\pi\)
0.121607 0.992578i \(-0.461195\pi\)
\(24\) −114.586 26.3433i −0.974577 0.224054i
\(25\) 5.34734 9.26186i 0.0427787 0.0740949i
\(26\) 52.2246 26.3180i 0.393927 0.198515i
\(27\) −138.352 23.2752i −0.986142 0.165900i
\(28\) 115.210 + 85.2800i 0.777593 + 0.575586i
\(29\) −77.3286 + 133.937i −0.495157 + 0.857638i −0.999984 0.00558276i \(-0.998223\pi\)
0.504827 + 0.863221i \(0.331556\pi\)
\(30\) −62.8118 144.030i −0.382260 0.876538i
\(31\) 243.700 140.701i 1.41193 0.815179i 0.416362 0.909199i \(-0.363305\pi\)
0.995570 + 0.0940195i \(0.0299716\pi\)
\(32\) 173.767 + 50.7257i 0.959935 + 0.280222i
\(33\) 95.7301 + 62.6039i 0.504984 + 0.330241i
\(34\) −5.81483 + 102.254i −0.0293304 + 0.515778i
\(35\) 191.561i 0.925134i
\(36\) 210.569 + 48.1329i 0.974856 + 0.222838i
\(37\) 223.656i 0.993754i −0.867821 0.496877i \(-0.834480\pi\)
0.867821 0.496877i \(-0.165520\pi\)
\(38\) −354.576 20.1634i −1.51368 0.0860774i
\(39\) −95.8823 + 48.4690i −0.393678 + 0.199006i
\(40\) 83.6761 + 226.986i 0.330759 + 0.897241i
\(41\) 47.3067 27.3125i 0.180197 0.104037i −0.407188 0.913344i \(-0.633491\pi\)
0.587385 + 0.809308i \(0.300157\pi\)
\(42\) −211.849 156.405i −0.778311 0.574615i
\(43\) 157.422 272.663i 0.558294 0.966994i −0.439345 0.898319i \(-0.644789\pi\)
0.997639 0.0686756i \(-0.0218774\pi\)
\(44\) −141.545 104.774i −0.484972 0.358984i
\(45\) 115.723 + 264.456i 0.383354 + 0.876061i
\(46\) −224.305 445.103i −0.718955 1.42667i
\(47\) −230.270 + 398.839i −0.714644 + 1.23780i 0.248453 + 0.968644i \(0.420078\pi\)
−0.963097 + 0.269156i \(0.913255\pi\)
\(48\) −319.346 92.7905i −0.960284 0.279024i
\(49\) −10.9844 19.0256i −0.0320246 0.0554683i
\(50\) 16.5874 25.2955i 0.0469164 0.0715466i
\(51\) 10.4480 187.866i 0.0286866 0.515814i
\(52\) 151.701 65.9321i 0.404562 0.175830i
\(53\) −158.027 −0.409560 −0.204780 0.978808i \(-0.565648\pi\)
−0.204780 + 0.978808i \(0.565648\pi\)
\(54\) −386.950 87.9430i −0.975133 0.221621i
\(55\) 235.349i 0.576991i
\(56\) 311.643 + 259.320i 0.743660 + 0.618805i
\(57\) 651.443 + 36.2295i 1.51379 + 0.0841880i
\(58\) −239.874 + 365.803i −0.543051 + 0.828142i
\(59\) −403.976 + 233.236i −0.891410 + 0.514656i −0.874403 0.485200i \(-0.838747\pi\)
−0.0170066 + 0.999855i \(0.505414\pi\)
\(60\) −154.243 416.808i −0.331879 0.896827i
\(61\) 382.288 + 220.714i 0.802409 + 0.463271i 0.844313 0.535851i \(-0.180009\pi\)
−0.0419039 + 0.999122i \(0.513342\pi\)
\(62\) 710.771 358.185i 1.45594 0.733703i
\(63\) 389.550 + 286.849i 0.779028 + 0.573643i
\(64\) 482.548 + 171.146i 0.942477 + 0.334270i
\(65\) 191.441 + 110.529i 0.365313 + 0.210913i
\(66\) 260.276 + 192.158i 0.485420 + 0.358378i
\(67\) −193.518 335.182i −0.352865 0.611180i 0.633885 0.773427i \(-0.281459\pi\)
−0.986750 + 0.162247i \(0.948126\pi\)
\(68\) −32.8406 + 287.818i −0.0585662 + 0.513281i
\(69\) 413.095 + 817.192i 0.720735 + 1.42577i
\(70\) −30.7614 + 540.942i −0.0525242 + 0.923642i
\(71\) −20.3800 −0.0340657 −0.0170328 0.999855i \(-0.505422\pi\)
−0.0170328 + 0.999855i \(0.505422\pi\)
\(72\) 586.889 + 169.735i 0.960632 + 0.277825i
\(73\) −370.437 −0.593922 −0.296961 0.954890i \(-0.595973\pi\)
−0.296961 + 0.954890i \(0.595973\pi\)
\(74\) 35.9154 631.576i 0.0564200 0.992151i
\(75\) −30.4151 + 46.5089i −0.0468271 + 0.0716051i
\(76\) −998.036 113.878i −1.50635 0.171877i
\(77\) −197.208 341.574i −0.291869 0.505531i
\(78\) −278.542 + 121.473i −0.404342 + 0.176334i
\(79\) 562.808 + 324.937i 0.801530 + 0.462763i 0.844006 0.536334i \(-0.180191\pi\)
−0.0424761 + 0.999097i \(0.513525\pi\)
\(80\) 199.840 + 654.415i 0.279285 + 0.914572i
\(81\) 711.073 + 160.674i 0.975409 + 0.220403i
\(82\) 137.974 69.5302i 0.185813 0.0936382i
\(83\) 516.463 + 298.180i 0.683002 + 0.394331i 0.800985 0.598684i \(-0.204310\pi\)
−0.117983 + 0.993016i \(0.537643\pi\)
\(84\) −573.118 475.686i −0.744432 0.617877i
\(85\) −335.275 + 193.571i −0.427832 + 0.247009i
\(86\) 488.324 744.685i 0.612295 0.933738i
\(87\) 439.837 672.572i 0.542017 0.828819i
\(88\) −382.880 318.598i −0.463809 0.385939i
\(89\) 1210.30i 1.44148i −0.693206 0.720739i \(-0.743803\pi\)
0.693206 0.720739i \(-0.256197\pi\)
\(90\) 284.318 + 765.370i 0.332998 + 0.896412i
\(91\) 370.463 0.426759
\(92\) −561.931 1292.93i −0.636797 1.46519i
\(93\) −1304.95 + 659.657i −1.45502 + 0.735519i
\(94\) −714.297 + 1089.29i −0.783767 + 1.19523i
\(95\) −671.225 1162.60i −0.724908 1.25558i
\(96\) −886.890 313.309i −0.942894 0.333094i
\(97\) −794.702 + 1376.46i −0.831853 + 1.44081i 0.0647144 + 0.997904i \(0.479386\pi\)
−0.896567 + 0.442908i \(0.853947\pi\)
\(98\) −27.9634 55.4897i −0.0288238 0.0571970i
\(99\) −478.597 352.419i −0.485867 0.357772i
\(100\) 50.9027 68.7675i 0.0509027 0.0687675i
\(101\) 636.447 1102.36i 0.627018 1.08603i −0.361129 0.932516i \(-0.617609\pi\)
0.988147 0.153511i \(-0.0490580\pi\)
\(102\) 59.6720 528.831i 0.0579255 0.513354i
\(103\) −1190.34 + 687.241i −1.13871 + 0.657436i −0.946111 0.323841i \(-0.895026\pi\)
−0.192601 + 0.981277i \(0.561692\pi\)
\(104\) 438.972 161.823i 0.413892 0.152577i
\(105\) 55.2719 993.844i 0.0513713 0.923707i
\(106\) −446.246 25.3764i −0.408899 0.0232526i
\(107\) 1612.72i 1.45708i 0.685004 + 0.728540i \(0.259801\pi\)
−0.685004 + 0.728540i \(0.740199\pi\)
\(108\) −1078.57 310.477i −0.960978 0.276626i
\(109\) 1546.65i 1.35911i −0.733626 0.679554i \(-0.762174\pi\)
0.733626 0.679554i \(-0.237826\pi\)
\(110\) 37.7931 664.595i 0.0327585 0.576061i
\(111\) −64.5326 + 1160.36i −0.0551816 + 0.992221i
\(112\) 838.394 + 782.329i 0.707328 + 0.660028i
\(113\) −1193.12 + 688.848i −0.993267 + 0.573463i −0.906249 0.422744i \(-0.861067\pi\)
−0.0870178 + 0.996207i \(0.527734\pi\)
\(114\) 1833.77 + 206.918i 1.50656 + 0.169997i
\(115\) 942.020 1631.63i 0.763859 1.32304i
\(116\) −736.112 + 994.458i −0.589192 + 0.795975i
\(117\) 511.435 223.798i 0.404122 0.176839i
\(118\) −1178.23 + 593.754i −0.919192 + 0.463216i
\(119\) −324.400 + 561.877i −0.249897 + 0.432834i
\(120\) −368.630 1201.78i −0.280426 0.914223i
\(121\) −423.213 733.026i −0.317966 0.550734i
\(122\) 1044.09 + 684.655i 0.774813 + 0.508080i
\(123\) −253.314 + 128.051i −0.185696 + 0.0938700i
\(124\) 2064.64 897.329i 1.49524 0.649859i
\(125\) 1450.76 1.03808
\(126\) 1053.97 + 872.577i 0.745203 + 0.616947i
\(127\) 266.075i 0.185908i −0.995670 0.0929539i \(-0.970369\pi\)
0.995670 0.0929539i \(-0.0296309\pi\)
\(128\) 1335.17 + 560.784i 0.921979 + 0.387240i
\(129\) −895.400 + 1369.19i −0.611129 + 0.934501i
\(130\) 522.855 + 342.860i 0.352749 + 0.231314i
\(131\) 284.037 163.989i 0.189438 0.109372i −0.402281 0.915516i \(-0.631783\pi\)
0.591720 + 0.806144i \(0.298449\pi\)
\(132\) 704.126 + 584.423i 0.464290 + 0.385360i
\(133\) −1948.36 1124.89i −1.27026 0.733384i
\(134\) −492.643 977.586i −0.317596 0.630228i
\(135\) −524.081 1405.42i −0.334116 0.895996i
\(136\) −138.956 + 807.487i −0.0876131 + 0.509128i
\(137\) −1793.30 1035.36i −1.11833 0.645671i −0.177359 0.984146i \(-0.556755\pi\)
−0.940975 + 0.338476i \(0.890089\pi\)
\(138\) 1035.30 + 2373.98i 0.638625 + 1.46439i
\(139\) 874.266 + 1514.27i 0.533484 + 0.924022i 0.999235 + 0.0391059i \(0.0124510\pi\)
−0.465751 + 0.884916i \(0.654216\pi\)
\(140\) −173.732 + 1522.61i −0.104879 + 0.919170i
\(141\) 1309.75 2002.79i 0.782274 1.19621i
\(142\) −57.5504 3.27268i −0.0340107 0.00193407i
\(143\) −455.146 −0.266163
\(144\) 1630.04 + 573.552i 0.943309 + 0.331917i
\(145\) −1653.50 −0.947003
\(146\) −1046.06 59.4858i −0.592964 0.0337197i
\(147\) 51.4992 + 101.877i 0.0288951 + 0.0571610i
\(148\) 202.840 1777.72i 0.112658 0.987347i
\(149\) 51.5884 + 89.3538i 0.0283644 + 0.0491285i 0.879859 0.475235i \(-0.157637\pi\)
−0.851495 + 0.524363i \(0.824303\pi\)
\(150\) −93.3566 + 126.451i −0.0508169 + 0.0688310i
\(151\) 2205.07 + 1273.10i 1.18838 + 0.686114i 0.957939 0.286971i \(-0.0926483\pi\)
0.230446 + 0.973085i \(0.425982\pi\)
\(152\) −2800.03 481.843i −1.49416 0.257122i
\(153\) −108.412 + 971.661i −0.0572847 + 0.513426i
\(154\) −502.037 996.226i −0.262697 0.521287i
\(155\) 2605.49 + 1504.28i 1.35018 + 0.779528i
\(156\) −806.071 + 298.294i −0.413701 + 0.153094i
\(157\) 154.698 89.3150i 0.0786386 0.0454020i −0.460165 0.887833i \(-0.652210\pi\)
0.538804 + 0.842431i \(0.318876\pi\)
\(158\) 1537.11 + 1007.96i 0.773964 + 0.507524i
\(159\) 819.865 + 45.5962i 0.408928 + 0.0227422i
\(160\) 459.233 + 1880.07i 0.226910 + 0.928953i
\(161\) 3157.41i 1.54558i
\(162\) 1982.17 + 567.908i 0.961322 + 0.275426i
\(163\) 2230.94 1.07203 0.536014 0.844209i \(-0.319929\pi\)
0.536014 + 0.844209i \(0.319929\pi\)
\(164\) 400.784 174.188i 0.190829 0.0829377i
\(165\) −67.9064 + 1221.03i −0.0320394 + 0.576101i
\(166\) 1410.54 + 924.955i 0.659512 + 0.432472i
\(167\) 922.538 + 1597.88i 0.427474 + 0.740406i 0.996648 0.0818106i \(-0.0260703\pi\)
−0.569174 + 0.822217i \(0.692737\pi\)
\(168\) −1542.02 1435.31i −0.708152 0.659145i
\(169\) −884.747 + 1532.43i −0.402707 + 0.697509i
\(170\) −977.856 + 492.779i −0.441165 + 0.222320i
\(171\) −3369.32 375.927i −1.50677 0.168116i
\(172\) 1498.54 2024.47i 0.664320 0.897469i
\(173\) −1557.87 + 2698.32i −0.684642 + 1.18583i 0.288908 + 0.957357i \(0.406708\pi\)
−0.973549 + 0.228477i \(0.926625\pi\)
\(174\) 1350.04 1828.62i 0.588198 0.796710i
\(175\) 165.948 95.8100i 0.0716827 0.0413860i
\(176\) −1030.04 961.161i −0.441149 0.411649i
\(177\) 2163.18 1093.50i 0.918613 0.464363i
\(178\) 194.354 3417.72i 0.0818394 1.43915i
\(179\) 2456.16i 1.02560i −0.858509 0.512799i \(-0.828609\pi\)
0.858509 0.512799i \(-0.171391\pi\)
\(180\) 679.971 + 2206.96i 0.281567 + 0.913872i
\(181\) 3026.42i 1.24283i 0.783482 + 0.621415i \(0.213442\pi\)
−0.783482 + 0.621415i \(0.786558\pi\)
\(182\) 1046.14 + 59.4900i 0.426071 + 0.0242291i
\(183\) −1919.68 1255.40i −0.775446 0.507113i
\(184\) −1379.19 3741.30i −0.552584 1.49898i
\(185\) 2070.83 1195.60i 0.822977 0.475146i
\(186\) −3790.93 + 1653.23i −1.49443 + 0.651725i
\(187\) 398.554 690.316i 0.155857 0.269951i
\(188\) −2192.00 + 2961.30i −0.850361 + 1.14880i
\(189\) −1938.27 1600.61i −0.745972 0.616016i
\(190\) −1708.76 3390.80i −0.652454 1.29471i
\(191\) −976.763 + 1691.80i −0.370032 + 0.640914i −0.989570 0.144052i \(-0.953987\pi\)
0.619538 + 0.784967i \(0.287320\pi\)
\(192\) −2454.14 1027.16i −0.922462 0.386089i
\(193\) 807.292 + 1398.27i 0.301089 + 0.521501i 0.976383 0.216047i \(-0.0693165\pi\)
−0.675294 + 0.737549i \(0.735983\pi\)
\(194\) −2465.17 + 3759.33i −0.912313 + 1.39126i
\(195\) −961.331 628.674i −0.353037 0.230873i
\(196\) −70.0542 161.186i −0.0255299 0.0587412i
\(197\) 3469.85 1.25491 0.627453 0.778654i \(-0.284097\pi\)
0.627453 + 0.778654i \(0.284097\pi\)
\(198\) −1294.90 1072.04i −0.464771 0.384780i
\(199\) 1323.61i 0.471500i 0.971814 + 0.235750i \(0.0757546\pi\)
−0.971814 + 0.235750i \(0.924245\pi\)
\(200\) 154.785 186.016i 0.0547249 0.0657666i
\(201\) 907.284 + 1794.81i 0.318383 + 0.629831i
\(202\) 1974.26 3010.71i 0.687665 1.04868i
\(203\) −2399.80 + 1385.52i −0.829718 + 0.479038i
\(204\) 253.427 1483.77i 0.0869776 0.509237i
\(205\) 505.773 + 292.008i 0.172316 + 0.0994865i
\(206\) −3471.71 + 1749.53i −1.17420 + 0.591726i
\(207\) −1907.40 4358.90i −0.640452 1.46360i
\(208\) 1265.58 386.474i 0.421887 0.128832i
\(209\) 2393.73 + 1382.02i 0.792239 + 0.457400i
\(210\) 315.675 2797.60i 0.103732 0.919300i
\(211\) −73.6849 127.626i −0.0240411 0.0416405i 0.853755 0.520676i \(-0.174320\pi\)
−0.877796 + 0.479035i \(0.840987\pi\)
\(212\) −1256.06 143.319i −0.406919 0.0464302i
\(213\) 105.734 + 5.88033i 0.0340131 + 0.00189161i
\(214\) −258.975 + 4554.10i −0.0827251 + 1.45473i
\(215\) 3366.12 1.06775
\(216\) −2995.88 1049.94i −0.943722 0.330739i
\(217\) 5041.96 1.57728
\(218\) 248.366 4367.54i 0.0771628 1.35691i
\(219\) 1921.88 + 106.884i 0.593006 + 0.0329796i
\(220\) 213.445 1870.66i 0.0654113 0.573272i
\(221\) 374.351 + 648.394i 0.113944 + 0.197356i
\(222\) −368.565 + 3266.34i −0.111426 + 0.987487i
\(223\) −1045.36 603.537i −0.313911 0.181237i 0.334764 0.942302i \(-0.391343\pi\)
−0.648675 + 0.761065i \(0.724677\pi\)
\(224\) 2241.88 + 2343.82i 0.668715 + 0.699122i
\(225\) 171.217 232.519i 0.0507309 0.0688944i
\(226\) −3479.82 + 1753.62i −1.02422 + 0.516146i
\(227\) −461.434 266.409i −0.134918 0.0778951i 0.431022 0.902342i \(-0.358153\pi\)
−0.565940 + 0.824447i \(0.691487\pi\)
\(228\) 5145.09 + 878.780i 1.49448 + 0.255257i
\(229\) 438.805 253.344i 0.126625 0.0731069i −0.435350 0.900261i \(-0.643375\pi\)
0.561974 + 0.827155i \(0.310042\pi\)
\(230\) 2922.15 4456.22i 0.837742 1.27754i
\(231\) 924.584 + 1829.03i 0.263347 + 0.520958i
\(232\) −2238.37 + 2690.01i −0.633433 + 0.761240i
\(233\) 401.945i 0.113014i 0.998402 + 0.0565070i \(0.0179963\pi\)
−0.998402 + 0.0565070i \(0.982004\pi\)
\(234\) 1480.16 549.848i 0.413510 0.153610i
\(235\) −4923.79 −1.36678
\(236\) −3422.50 + 1487.48i −0.944008 + 0.410282i
\(237\) −2826.17 1848.21i −0.774596 0.506557i
\(238\) −1006.29 + 1534.57i −0.274068 + 0.417948i
\(239\) −437.215 757.279i −0.118331 0.204955i 0.800775 0.598965i \(-0.204421\pi\)
−0.919106 + 0.394010i \(0.871088\pi\)
\(240\) −847.976 3452.85i −0.228069 0.928670i
\(241\) −479.685 + 830.839i −0.128213 + 0.222071i −0.922984 0.384838i \(-0.874257\pi\)
0.794772 + 0.606909i \(0.207591\pi\)
\(242\) −1077.38 2137.93i −0.286186 0.567898i
\(243\) −3642.78 1038.77i −0.961665 0.274226i
\(244\) 2838.41 + 2101.04i 0.744717 + 0.551250i
\(245\) 117.439 203.410i 0.0306240 0.0530424i
\(246\) −735.887 + 320.922i −0.190725 + 0.0831758i
\(247\) −2248.37 + 1298.09i −0.579191 + 0.334396i
\(248\) 5974.36 2202.39i 1.52973 0.563919i
\(249\) −2593.44 1696.01i −0.660051 0.431649i
\(250\) 4096.75 + 232.967i 1.03641 + 0.0589366i
\(251\) 1486.12i 0.373719i −0.982387 0.186859i \(-0.940169\pi\)
0.982387 0.186859i \(-0.0598308\pi\)
\(252\) 2836.16 + 2633.29i 0.708974 + 0.658260i
\(253\) 3879.15i 0.963953i
\(254\) 42.7270 751.359i 0.0105549 0.185608i
\(255\) 1795.30 907.535i 0.440888 0.222871i
\(256\) 3680.28 + 1797.98i 0.898506 + 0.438960i
\(257\) 810.352 467.857i 0.196686 0.113557i −0.398423 0.917202i \(-0.630442\pi\)
0.595109 + 0.803645i \(0.297109\pi\)
\(258\) −2748.36 + 3722.63i −0.663199 + 0.898297i
\(259\) 2003.66 3470.45i 0.480701 0.832599i
\(260\) 1421.41 + 1052.15i 0.339047 + 0.250968i
\(261\) −2475.99 + 3362.49i −0.587203 + 0.797443i
\(262\) 828.415 417.470i 0.195342 0.0984405i
\(263\) 723.768 1253.60i 0.169694 0.293918i −0.768619 0.639707i \(-0.779056\pi\)
0.938312 + 0.345789i \(0.112389\pi\)
\(264\) 1894.51 + 1763.40i 0.441663 + 0.411098i
\(265\) −844.762 1463.17i −0.195824 0.339177i
\(266\) −5321.27 3489.40i −1.22657 0.804319i
\(267\) −349.213 + 6279.20i −0.0800431 + 1.43925i
\(268\) −1234.17 2839.68i −0.281303 0.647243i
\(269\) 2458.16 0.557161 0.278581 0.960413i \(-0.410136\pi\)
0.278581 + 0.960413i \(0.410136\pi\)
\(270\) −1254.25 4052.88i −0.282708 0.913520i
\(271\) 484.315i 0.108561i −0.998526 0.0542806i \(-0.982713\pi\)
0.998526 0.0542806i \(-0.0172865\pi\)
\(272\) −522.062 + 2257.92i −0.116377 + 0.503333i
\(273\) −1922.01 106.891i −0.426100 0.0236973i
\(274\) −4897.77 3211.69i −1.07987 0.708122i
\(275\) −203.882 + 117.711i −0.0447074 + 0.0258118i
\(276\) 2542.32 + 6870.04i 0.554455 + 1.49829i
\(277\) −3576.88 2065.11i −0.775862 0.447944i 0.0590999 0.998252i \(-0.481177\pi\)
−0.834962 + 0.550308i \(0.814510\pi\)
\(278\) 2225.64 + 4416.50i 0.480163 + 0.952820i
\(279\) 6960.58 3045.87i 1.49362 0.653589i
\(280\) −735.101 + 4271.74i −0.156895 + 0.911733i
\(281\) 734.232 + 423.909i 0.155874 + 0.0899939i 0.575908 0.817514i \(-0.304649\pi\)
−0.420034 + 0.907508i \(0.637982\pi\)
\(282\) 4020.17 5445.28i 0.848927 1.14986i
\(283\) 2706.55 + 4687.88i 0.568507 + 0.984683i 0.996714 + 0.0810026i \(0.0258122\pi\)
−0.428207 + 0.903681i \(0.640854\pi\)
\(284\) −161.989 18.4832i −0.0338461 0.00386189i
\(285\) 3146.96 + 6225.38i 0.654069 + 1.29389i
\(286\) −1285.27 73.0887i −0.265733 0.0151113i
\(287\) 978.735 0.201299
\(288\) 4510.90 + 1881.39i 0.922943 + 0.384937i
\(289\) 3601.78 0.733113
\(290\) −4669.25 265.523i −0.945476 0.0537658i
\(291\) 4520.18 6911.98i 0.910575 1.39240i
\(292\) −2944.39 335.960i −0.590094 0.0673307i
\(293\) −4158.79 7203.24i −0.829213 1.43624i −0.898657 0.438653i \(-0.855456\pi\)
0.0694441 0.997586i \(-0.477877\pi\)
\(294\) 129.067 + 295.956i 0.0256032 + 0.0587093i
\(295\) −4319.06 2493.61i −0.852424 0.492147i
\(296\) 858.265 4987.46i 0.168533 0.979359i
\(297\) 2381.34 + 1966.49i 0.465251 + 0.384199i
\(298\) 131.330 + 260.607i 0.0255294 + 0.0506596i
\(299\) −3155.43 1821.79i −0.610312 0.352364i
\(300\) −283.932 + 342.088i −0.0546428 + 0.0658349i
\(301\) 4885.40 2820.59i 0.935514 0.540119i
\(302\) 6022.38 + 3949.15i 1.14751 + 0.752478i
\(303\) −3620.04 + 5535.54i −0.686356 + 1.04953i
\(304\) −7829.54 1810.30i −1.47715 0.341538i
\(305\) 4719.47i 0.886020i
\(306\) −462.172 + 2726.43i −0.0863419 + 0.509345i
\(307\) −7799.02 −1.44988 −0.724940 0.688812i \(-0.758133\pi\)
−0.724940 + 0.688812i \(0.758133\pi\)
\(308\) −1257.71 2893.83i −0.232677 0.535360i
\(309\) 6373.92 3222.05i 1.17346 0.593191i
\(310\) 7115.99 + 4666.28i 1.30375 + 0.854926i
\(311\) −2762.34 4784.52i −0.503660 0.872364i −0.999991 0.00423108i \(-0.998653\pi\)
0.496331 0.868133i \(-0.334680\pi\)
\(312\) −2324.14 + 712.900i −0.421726 + 0.129359i
\(313\) −1521.85 + 2635.91i −0.274824 + 0.476008i −0.970091 0.242743i \(-0.921953\pi\)
0.695267 + 0.718752i \(0.255286\pi\)
\(314\) 451.189 227.372i 0.0810894 0.0408641i
\(315\) −573.516 + 5140.25i −0.102584 + 0.919429i
\(316\) 4178.74 + 3093.17i 0.743901 + 0.550646i
\(317\) −3235.14 + 5603.42i −0.573197 + 0.992806i 0.423038 + 0.906112i \(0.360964\pi\)
−0.996235 + 0.0866940i \(0.972370\pi\)
\(318\) 2307.87 + 260.414i 0.406977 + 0.0459222i
\(319\) 2948.36 1702.24i 0.517482 0.298768i
\(320\) 994.906 + 5382.81i 0.173803 + 0.940338i
\(321\) 465.325 8367.01i 0.0809094 1.45483i
\(322\) 507.025 8916.09i 0.0877497 1.54309i
\(323\) 4546.77i 0.783247i
\(324\) 5506.19 + 1922.00i 0.944134 + 0.329561i
\(325\) 221.125i 0.0377410i
\(326\) 6299.87 + 358.251i 1.07030 + 0.0608640i
\(327\) −446.263 + 8024.26i −0.0754691 + 1.35701i
\(328\) 1159.73 427.524i 0.195230 0.0719696i
\(329\) −7146.13 + 4125.82i −1.19750 + 0.691379i
\(330\) −387.834 + 3437.11i −0.0646957 + 0.573353i
\(331\) −3283.78 + 5687.67i −0.545295 + 0.944479i 0.453293 + 0.891361i \(0.350249\pi\)
−0.998588 + 0.0531172i \(0.983084\pi\)
\(332\) 3834.64 + 2838.46i 0.633895 + 0.469218i
\(333\) 669.607 6001.48i 0.110193 0.987625i
\(334\) 2348.53 + 4660.35i 0.384748 + 0.763482i
\(335\) 2068.97 3583.56i 0.337432 0.584450i
\(336\) −4123.97 4300.74i −0.669587 0.698287i
\(337\) −5965.59 10332.7i −0.964292 1.67020i −0.711506 0.702680i \(-0.751986\pi\)
−0.252786 0.967522i \(-0.581347\pi\)
\(338\) −2744.49 + 4185.29i −0.441658 + 0.673520i
\(339\) 6388.82 3229.58i 1.02358 0.517424i
\(340\) −2840.46 + 1234.52i −0.453076 + 0.196915i
\(341\) −6194.49 −0.983726
\(342\) −9454.14 1602.62i −1.49480 0.253392i
\(343\) 6539.27i 1.02941i
\(344\) 4556.78 5476.20i 0.714201 0.858305i
\(345\) −5358.11 + 8193.29i −0.836147 + 1.27859i
\(346\) −4832.53 + 7369.52i −0.750863 + 1.14505i
\(347\) −1257.88 + 726.237i −0.194601 + 0.112353i −0.594135 0.804366i \(-0.702505\pi\)
0.399534 + 0.916718i \(0.369172\pi\)
\(348\) 4105.99 4946.99i 0.632482 0.762030i
\(349\) −2775.33 1602.34i −0.425673 0.245763i 0.271828 0.962346i \(-0.412372\pi\)
−0.697502 + 0.716583i \(0.745705\pi\)
\(350\) 484.000 243.906i 0.0739168 0.0372495i
\(351\) −2717.97 + 1013.53i −0.413318 + 0.154126i
\(352\) −2754.35 2879.59i −0.417067 0.436031i
\(353\) 3481.39 + 2009.98i 0.524917 + 0.303061i 0.738944 0.673767i \(-0.235325\pi\)
−0.214027 + 0.976828i \(0.568658\pi\)
\(354\) 6284.12 2740.52i 0.943495 0.411460i
\(355\) −108.945 188.698i −0.0162879 0.0282115i
\(356\) 1097.66 9619.98i 0.163415 1.43219i
\(357\) 1845.15 2821.50i 0.273546 0.418290i
\(358\) 394.417 6935.86i 0.0582279 1.02394i
\(359\) −4423.07 −0.650253 −0.325126 0.945671i \(-0.605407\pi\)
−0.325126 + 0.945671i \(0.605407\pi\)
\(360\) 1565.75 + 6341.35i 0.229228 + 0.928384i
\(361\) 8907.32 1.29863
\(362\) −485.992 + 8546.21i −0.0705612 + 1.24082i
\(363\) 1984.18 + 3925.15i 0.286894 + 0.567540i
\(364\) 2944.60 + 335.983i 0.424008 + 0.0483800i
\(365\) −1980.24 3429.87i −0.283974 0.491857i
\(366\) −5219.31 3853.34i −0.745404 0.550320i
\(367\) −1037.58 599.048i −0.147579 0.0852045i 0.424392 0.905478i \(-0.360488\pi\)
−0.571971 + 0.820274i \(0.693821\pi\)
\(368\) −3293.87 10786.4i −0.466589 1.52793i
\(369\) 1351.17 591.258i 0.190622 0.0834138i
\(370\) 6039.75 3043.66i 0.848626 0.427655i
\(371\) −2452.08 1415.71i −0.343142 0.198113i
\(372\) −10970.5 + 4059.74i −1.52902 + 0.565828i
\(373\) −1831.97 + 1057.69i −0.254305 + 0.146823i −0.621734 0.783229i \(-0.713571\pi\)
0.367429 + 0.930052i \(0.380238\pi\)
\(374\) 1236.32 1885.36i 0.170932 0.260667i
\(375\) −7526.75 418.594i −1.03648 0.0576430i
\(376\) −6665.44 + 8010.32i −0.914213 + 1.09867i
\(377\) 3197.73i 0.436847i
\(378\) −5216.40 4831.15i −0.709795 0.657375i
\(379\) −4201.28 −0.569406 −0.284703 0.958616i \(-0.591895\pi\)
−0.284703 + 0.958616i \(0.591895\pi\)
\(380\) −4280.79 9849.57i −0.577895 1.32966i
\(381\) −76.7716 + 1380.43i −0.0103232 + 0.185621i
\(382\) −3029.92 + 4620.57i −0.405823 + 0.618872i
\(383\) 1040.16 + 1801.61i 0.138772 + 0.240360i 0.927032 0.374982i \(-0.122351\pi\)
−0.788260 + 0.615342i \(0.789018\pi\)
\(384\) −6765.23 3294.66i −0.899054 0.437839i
\(385\) 2108.42 3651.89i 0.279104 0.483422i
\(386\) 2055.15 + 4078.17i 0.270995 + 0.537754i
\(387\) 5040.52 6845.20i 0.662077 0.899124i
\(388\) −7564.98 + 10220.0i −0.989829 + 1.33722i
\(389\) 1695.86 2937.32i 0.221038 0.382848i −0.734086 0.679057i \(-0.762389\pi\)
0.955123 + 0.296208i \(0.0957223\pi\)
\(390\) −2613.71 1929.66i −0.339360 0.250544i
\(391\) 5526.18 3190.54i 0.714759 0.412666i
\(392\) −171.940 466.416i −0.0221538 0.0600959i
\(393\) −1520.94 + 768.841i −0.195219 + 0.0986842i
\(394\) 9798.38 + 557.198i 1.25288 + 0.0712468i
\(395\) 6948.05i 0.885049i
\(396\) −3484.48 3235.23i −0.442176 0.410546i
\(397\) 2852.23i 0.360577i 0.983614 + 0.180289i \(0.0577031\pi\)
−0.983614 + 0.180289i \(0.942297\pi\)
\(398\) −212.550 + 3737.70i −0.0267692 + 0.470739i
\(399\) 9783.79 + 6398.23i 1.22757 + 0.802788i
\(400\) 466.964 500.428i 0.0583705 0.0625536i
\(401\) 784.032 452.661i 0.0976376 0.0563711i −0.450386 0.892834i \(-0.648714\pi\)
0.548024 + 0.836463i \(0.315380\pi\)
\(402\) 2273.83 + 5213.99i 0.282111 + 0.646891i
\(403\) 2909.15 5038.80i 0.359591 0.622831i
\(404\) 6058.51 8184.80i 0.746094 1.00794i
\(405\) 2313.49 + 7442.73i 0.283848 + 0.913167i
\(406\) −6999.19 + 3527.16i −0.855577 + 0.431158i
\(407\) −2461.68 + 4263.75i −0.299806 + 0.519279i
\(408\) 953.910 4149.26i 0.115749 0.503477i
\(409\) −3943.23 6829.88i −0.476724 0.825711i 0.522920 0.852382i \(-0.324843\pi\)
−0.999644 + 0.0266709i \(0.991509\pi\)
\(410\) 1381.34 + 905.810i 0.166389 + 0.109109i
\(411\) 9005.14 + 5889.02i 1.08076 + 0.706774i
\(412\) −10084.6 + 4382.94i −1.20590 + 0.524106i
\(413\) −8357.93 −0.995803
\(414\) −4686.28 12615.2i −0.556324 1.49760i
\(415\) 6375.90i 0.754170i
\(416\) 3635.90 888.119i 0.428521 0.104672i
\(417\) −4098.89 8108.51i −0.481352 0.952220i
\(418\) 6537.65 + 4287.04i 0.764993 + 0.501641i
\(419\) 12290.9 7096.16i 1.43306 0.827375i 0.435703 0.900091i \(-0.356500\pi\)
0.997353 + 0.0727158i \(0.0231666\pi\)
\(420\) 1340.67 7849.37i 0.155757 0.911928i
\(421\) 13997.7 + 8081.57i 1.62044 + 0.935562i 0.986802 + 0.161935i \(0.0517733\pi\)
0.633640 + 0.773628i \(0.281560\pi\)
\(422\) −187.582 372.231i −0.0216382 0.0429382i
\(423\) −7373.02 + 10012.8i −0.847491 + 1.15092i
\(424\) −3523.94 606.416i −0.403627 0.0694580i
\(425\) 335.379 + 193.631i 0.0382782 + 0.0221000i
\(426\) 297.635 + 33.5844i 0.0338509 + 0.00381965i
\(427\) 3954.61 + 6849.58i 0.448189 + 0.776287i
\(428\) −1462.62 + 12818.6i −0.165183 + 1.44769i
\(429\) 2361.36 + 131.325i 0.265752 + 0.0147796i
\(430\) 9505.46 + 540.541i 1.06603 + 0.0606214i
\(431\) 9955.69 1.11264 0.556321 0.830968i \(-0.312213\pi\)
0.556321 + 0.830968i \(0.312213\pi\)
\(432\) −8291.37 3445.99i −0.923422 0.383785i
\(433\) −3785.69 −0.420158 −0.210079 0.977684i \(-0.567372\pi\)
−0.210079 + 0.977684i \(0.567372\pi\)
\(434\) 14237.8 + 809.652i 1.57474 + 0.0895497i
\(435\) 8578.57 + 477.091i 0.945542 + 0.0525856i
\(436\) 1402.71 12293.5i 0.154077 1.35035i
\(437\) 11063.5 + 19162.5i 1.21107 + 2.09764i
\(438\) 5409.95 + 610.446i 0.590177 + 0.0665941i
\(439\) 13629.0 + 7868.72i 1.48173 + 0.855475i 0.999785 0.0207289i \(-0.00659870\pi\)
0.481941 + 0.876204i \(0.339932\pi\)
\(440\) 903.136 5248.21i 0.0978530 0.568633i
\(441\) −237.790 543.410i −0.0256765 0.0586773i
\(442\) 952.994 + 1891.09i 0.102555 + 0.203507i
\(443\) 5151.93 + 2974.47i 0.552541 + 0.319010i 0.750146 0.661272i \(-0.229983\pi\)
−0.197605 + 0.980282i \(0.563316\pi\)
\(444\) −1565.30 + 9164.51i −0.167310 + 0.979568i
\(445\) 11206.2 6469.88i 1.19376 0.689218i
\(446\) −2855.03 1872.17i −0.303115 0.198767i
\(447\) −241.866 478.465i −0.0255926 0.0506277i
\(448\) 5954.40 + 6978.65i 0.627944 + 0.735960i
\(449\) 15116.6i 1.58886i 0.607356 + 0.794430i \(0.292230\pi\)
−0.607356 + 0.794430i \(0.707770\pi\)
\(450\) 520.832 629.106i 0.0545605 0.0659030i
\(451\) −1202.46 −0.125547
\(452\) −10108.2 + 4393.18i −1.05188 + 0.457163i
\(453\) −11072.9 7241.24i −1.14845 0.751045i
\(454\) −1260.25 826.401i −0.130278 0.0854294i
\(455\) 1980.38 + 3430.11i 0.204047 + 0.353420i
\(456\) 14387.9 + 3307.77i 1.47758 + 0.339694i
\(457\) 1777.87 3079.37i 0.181981 0.315201i −0.760574 0.649251i \(-0.775082\pi\)
0.942555 + 0.334051i \(0.108416\pi\)
\(458\) 1279.81 644.946i 0.130571 0.0657999i
\(459\) 842.812 5009.83i 0.0857061 0.509452i
\(460\) 8967.34 12114.5i 0.908923 1.22792i
\(461\) 4424.78 7663.95i 0.447034 0.774286i −0.551157 0.834401i \(-0.685814\pi\)
0.998191 + 0.0601155i \(0.0191469\pi\)
\(462\) 2317.19 + 5313.41i 0.233345 + 0.535070i
\(463\) −11428.3 + 6598.13i −1.14712 + 0.662292i −0.948185 0.317720i \(-0.897083\pi\)
−0.198939 + 0.980012i \(0.563750\pi\)
\(464\) −6752.84 + 7236.77i −0.675631 + 0.724049i
\(465\) −13083.6 8556.19i −1.30481 0.853298i
\(466\) −64.5455 + 1135.04i −0.00641633 + 0.112832i
\(467\) 8917.23i 0.883598i −0.897114 0.441799i \(-0.854340\pi\)
0.897114 0.441799i \(-0.145660\pi\)
\(468\) 4268.08 1315.01i 0.421564 0.129885i
\(469\) 6934.64i 0.682755i
\(470\) −13904.1 790.677i −1.36457 0.0775983i
\(471\) −828.365 + 418.743i −0.0810383 + 0.0409653i
\(472\) −9903.55 + 3650.84i −0.965779 + 0.356025i
\(473\) −6002.15 + 3465.34i −0.583465 + 0.336864i
\(474\) −7683.93 5672.93i −0.744587 0.549717i
\(475\) −671.433 + 1162.96i −0.0648578 + 0.112337i
\(476\) −3088.05 + 4171.83i −0.297354 + 0.401714i
\(477\) −4240.41 473.118i −0.407034 0.0454142i
\(478\) −1113.03 2208.66i −0.106504 0.211343i
\(479\) −3252.43 + 5633.38i −0.310245 + 0.537360i −0.978415 0.206648i \(-0.933744\pi\)
0.668170 + 0.744009i \(0.267078\pi\)
\(480\) −1840.10 9886.56i −0.174977 0.940120i
\(481\) −2312.18 4004.82i −0.219182 0.379634i
\(482\) −1487.99 + 2269.15i −0.140614 + 0.214433i
\(483\) −911.020 + 16381.0i −0.0858237 + 1.54320i
\(484\) −2699.07 6210.23i −0.253482 0.583230i
\(485\) −16992.9 −1.59094
\(486\) −10119.9 3518.31i −0.944545 0.328382i
\(487\) 20850.6i 1.94010i −0.242898 0.970052i \(-0.578098\pi\)
0.242898 0.970052i \(-0.421902\pi\)
\(488\) 7677.91 + 6388.84i 0.712219 + 0.592642i
\(489\) −11574.4 643.703i −1.07037 0.0595281i
\(490\) 364.295 555.543i 0.0335861 0.0512181i
\(491\) −3316.39 + 1914.72i −0.304820 + 0.175988i −0.644606 0.764515i \(-0.722979\pi\)
0.339786 + 0.940503i \(0.389645\pi\)
\(492\) −2129.58 + 788.070i −0.195140 + 0.0722133i
\(493\) −4849.96 2800.13i −0.443065 0.255804i
\(494\) −6557.53 + 3304.59i −0.597242 + 0.300973i
\(495\) 704.615 6315.25i 0.0639800 0.573433i
\(496\) 17224.5 5259.87i 1.55928 0.476160i
\(497\) −316.234 182.578i −0.0285413 0.0164783i
\(498\) −7051.18 5205.78i −0.634480 0.468427i
\(499\) 1634.90 + 2831.73i 0.146670 + 0.254040i 0.929995 0.367573i \(-0.119811\pi\)
−0.783325 + 0.621613i \(0.786478\pi\)
\(500\) 11531.3 + 1315.74i 1.03139 + 0.117683i
\(501\) −4325.21 8556.22i −0.385701 0.763001i
\(502\) 238.646 4196.62i 0.0212177 0.373116i
\(503\) −15404.4 −1.36550 −0.682750 0.730652i \(-0.739216\pi\)
−0.682750 + 0.730652i \(0.739216\pi\)
\(504\) 7586.08 + 7891.49i 0.670458 + 0.697450i
\(505\) 13609.0 1.19919
\(506\) −622.926 + 10954.2i −0.0547281 + 0.962399i
\(507\) 5032.34 7695.16i 0.440817 0.674071i
\(508\) 241.311 2114.87i 0.0210757 0.184709i
\(509\) −4493.67 7783.27i −0.391314 0.677775i 0.601309 0.799016i \(-0.294646\pi\)
−0.992623 + 0.121241i \(0.961313\pi\)
\(510\) 5215.43 2274.46i 0.452830 0.197480i
\(511\) −5748.02 3318.62i −0.497607 0.287294i
\(512\) 10103.9 + 5668.25i 0.872135 + 0.489265i
\(513\) 17372.0 + 2922.53i 1.49511 + 0.251526i
\(514\) 2363.46 1191.04i 0.202816 0.102207i
\(515\) −12726.3 7347.55i −1.08891 0.628683i
\(516\) −8358.78 + 10070.9i −0.713130 + 0.859195i
\(517\) 8779.65 5068.93i 0.746864 0.431202i
\(518\) 6215.37 9478.32i 0.527196 0.803964i
\(519\) 8861.02 13549.7i 0.749433 1.14599i
\(520\) 3844.92 + 3199.39i 0.324252 + 0.269812i
\(521\) 14007.5i 1.17789i −0.808175 0.588943i \(-0.799544\pi\)
0.808175 0.588943i \(-0.200456\pi\)
\(522\) −7531.83 + 9097.60i −0.631531 + 0.762819i
\(523\) −12759.6 −1.06681 −0.533403 0.845862i \(-0.679087\pi\)
−0.533403 + 0.845862i \(0.679087\pi\)
\(524\) 2406.37 1045.85i 0.200616 0.0871912i
\(525\) −888.604 + 449.194i −0.0738702 + 0.0373418i
\(526\) 2245.13 3423.78i 0.186107 0.283810i
\(527\) 5094.87 + 8824.57i 0.421131 + 0.729420i
\(528\) 5066.67 + 5283.83i 0.417610 + 0.435510i
\(529\) −9443.36 + 16356.4i −0.776145 + 1.34432i
\(530\) −2150.53 4267.45i −0.176251 0.349747i
\(531\) −11538.4 + 5049.06i −0.942981 + 0.412638i
\(532\) −14466.2 10708.1i −1.17893 0.872660i
\(533\) 564.720 978.123i 0.0458925 0.0794882i
\(534\) −1994.46 + 17675.5i −0.161627 + 1.43239i
\(535\) −14932.2 + 8621.09i −1.20668 + 0.696677i
\(536\) −3029.14 8217.06i −0.244102 0.662170i
\(537\) −708.686 + 12742.9i −0.0569499 + 1.02402i
\(538\) 6941.50 + 394.738i 0.556263 + 0.0316326i
\(539\) 483.602i 0.0386460i
\(540\) −2891.00 11646.2i −0.230387 0.928097i
\(541\) 11304.7i 0.898389i 0.893434 + 0.449194i \(0.148289\pi\)
−0.893434 + 0.449194i \(0.851711\pi\)
\(542\) 77.7728 1367.64i 0.00616352 0.108386i
\(543\) 873.227 15701.5i 0.0690124 1.24091i
\(544\) −1836.81 + 6292.22i −0.144766 + 0.495913i
\(545\) 14320.5 8267.93i 1.12554 0.649833i
\(546\) −5410.34 610.489i −0.424068 0.0478507i
\(547\) 4074.44 7057.14i 0.318484 0.551630i −0.661688 0.749779i \(-0.730160\pi\)
0.980172 + 0.198149i \(0.0634930\pi\)
\(548\) −13314.9 9855.89i −1.03793 0.768289i
\(549\) 9597.32 + 7067.06i 0.746091 + 0.549390i
\(550\) −594.637 + 299.660i −0.0461007 + 0.0232319i
\(551\) 9709.69 16817.7i 0.750720 1.30029i
\(552\) 6075.95 + 19808.3i 0.468496 + 1.52735i
\(553\) 5822.01 + 10084.0i 0.447698 + 0.775436i
\(554\) −9769.00 6405.98i −0.749178 0.491271i
\(555\) −11088.7 + 5605.41i −0.848091 + 0.428714i
\(556\) 5575.70 + 12829.0i 0.425292 + 0.978544i
\(557\) 9696.33 0.737607 0.368803 0.929507i \(-0.379768\pi\)
0.368803 + 0.929507i \(0.379768\pi\)
\(558\) 20144.9 7483.38i 1.52831 0.567736i
\(559\) 6509.79i 0.492549i
\(560\) −2761.79 + 11944.8i −0.208405 + 0.901355i
\(561\) −2266.93 + 3466.46i −0.170606 + 0.260880i
\(562\) 2005.30 + 1314.97i 0.150513 + 0.0986985i
\(563\) −4632.29 + 2674.46i −0.346763 + 0.200204i −0.663259 0.748390i \(-0.730827\pi\)
0.316495 + 0.948594i \(0.397494\pi\)
\(564\) 12226.8 14731.2i 0.912841 1.09981i
\(565\) −12756.1 7364.72i −0.949827 0.548383i
\(566\) 6890.13 + 13672.6i 0.511685 + 1.01537i
\(567\) 9594.20 + 8863.43i 0.710615 + 0.656489i
\(568\) −454.467 78.2068i −0.0335722 0.00577726i
\(569\) −6251.55 3609.33i −0.460595 0.265924i 0.251700 0.967805i \(-0.419011\pi\)
−0.712294 + 0.701881i \(0.752344\pi\)
\(570\) 7886.90 + 18085.0i 0.579554 + 1.32894i
\(571\) 1605.63 + 2781.03i 0.117677 + 0.203822i 0.918847 0.394615i \(-0.129122\pi\)
−0.801170 + 0.598437i \(0.795789\pi\)
\(572\) −3617.70 412.785i −0.264447 0.0301738i
\(573\) 5555.72 8495.48i 0.405050 0.619378i
\(574\) 2763.82 + 157.168i 0.200975 + 0.0114287i
\(575\) −1884.62 −0.136685
\(576\) 12436.1 + 6037.16i 0.899599 + 0.436716i
\(577\) −4892.69 −0.353008 −0.176504 0.984300i \(-0.556479\pi\)
−0.176504 + 0.984300i \(0.556479\pi\)
\(578\) 10170.9 + 578.385i 0.731930 + 0.0416222i
\(579\) −3784.89 7487.35i −0.271666 0.537416i
\(580\) −13142.7 1499.60i −0.940898 0.107358i
\(581\) 5342.59 + 9253.64i 0.381494 + 0.660767i
\(582\) 13874.3 18792.6i 0.988159 1.33845i
\(583\) 3012.60 + 1739.33i 0.214012 + 0.123560i
\(584\) −8260.61 1421.52i −0.585319 0.100724i
\(585\) 4806.12 + 3539.02i 0.339673 + 0.250121i
\(586\) −10587.2 21008.8i −0.746333 1.48100i
\(587\) −8416.04 4859.01i −0.591767 0.341657i 0.174029 0.984741i \(-0.444321\pi\)
−0.765796 + 0.643084i \(0.777655\pi\)
\(588\) 316.943 + 856.467i 0.0222287 + 0.0600682i
\(589\) −30600.0 + 17666.9i −2.14066 + 1.23591i
\(590\) −11796.0 7735.18i −0.823108 0.539750i
\(591\) −18002.0 1001.17i −1.25297 0.0696830i
\(592\) 3224.53 13946.1i 0.223863 0.968211i
\(593\) 8952.48i 0.619957i 0.950744 + 0.309978i \(0.100322\pi\)
−0.950744 + 0.309978i \(0.899678\pi\)
\(594\) 6408.80 + 5935.50i 0.442688 + 0.409994i
\(595\) −6936.56 −0.477935
\(596\) 329.009 + 757.009i 0.0226120 + 0.0520274i
\(597\) 381.908 6867.08i 0.0261816 0.470772i
\(598\) −8617.96 5651.19i −0.589322 0.386446i
\(599\) 1335.01 + 2312.30i 0.0910634 + 0.157726i 0.907959 0.419059i \(-0.137640\pi\)
−0.816895 + 0.576786i \(0.804307\pi\)
\(600\) −856.719 + 920.416i −0.0582924 + 0.0626264i
\(601\) 10279.6 17804.8i 0.697692 1.20844i −0.271572 0.962418i \(-0.587544\pi\)
0.969265 0.246021i \(-0.0791231\pi\)
\(602\) 14248.6 7180.44i 0.964670 0.486135i
\(603\) −4189.25 9573.49i −0.282918 0.646539i
\(604\) 16372.2 + 12119.0i 1.10294 + 0.816414i
\(605\) 4524.73 7837.06i 0.304060 0.526647i
\(606\) −11111.4 + 15050.3i −0.744836 + 1.00887i
\(607\) 10811.7 6242.12i 0.722952 0.417396i −0.0928863 0.995677i \(-0.529609\pi\)
0.815838 + 0.578280i \(0.196276\pi\)
\(608\) −21818.9 6369.32i −1.45538 0.424852i
\(609\) 12850.2 6495.86i 0.855038 0.432226i
\(610\) −757.866 + 13327.1i −0.0503034 + 0.884590i
\(611\) 9522.21i 0.630487i
\(612\) −1742.93 + 7624.85i −0.115121 + 0.503622i
\(613\) 18300.4i 1.20579i 0.797822 + 0.602893i \(0.205985\pi\)
−0.797822 + 0.602893i \(0.794015\pi\)
\(614\) −22023.4 1252.39i −1.44754 0.0823164i
\(615\) −2539.76 1660.91i −0.166526 0.108901i
\(616\) −3086.90 8373.74i −0.201907 0.547707i
\(617\) 10889.8 6287.22i 0.710545 0.410233i −0.100718 0.994915i \(-0.532114\pi\)
0.811263 + 0.584682i \(0.198781\pi\)
\(618\) 18516.5 8075.09i 1.20525 0.525611i
\(619\) −604.640 + 1047.27i −0.0392610 + 0.0680020i −0.884988 0.465613i \(-0.845834\pi\)
0.845727 + 0.533616i \(0.179167\pi\)
\(620\) 19345.3 + 14319.7i 1.25311 + 0.927567i
\(621\) 8638.17 + 23164.9i 0.558193 + 1.49690i
\(622\) −7032.18 13954.4i −0.453319 0.899552i
\(623\) 10842.7 18780.1i 0.697276 1.20772i
\(624\) −6677.53 + 1639.92i −0.428390 + 0.105207i
\(625\) 7086.90 + 12274.9i 0.453561 + 0.785591i
\(626\) −4720.77 + 7199.08i −0.301406 + 0.459638i
\(627\) −12020.3 7860.80i −0.765618 0.500686i
\(628\) 1310.61 569.613i 0.0832786 0.0361944i
\(629\) 8098.76 0.513385
\(630\) −2444.97 + 14423.3i −0.154619 + 0.912122i
\(631\) 9244.14i 0.583207i 0.956539 + 0.291603i \(0.0941888\pi\)
−0.956539 + 0.291603i \(0.905811\pi\)
\(632\) 11303.5 + 9405.72i 0.711438 + 0.591993i
\(633\) 345.463 + 683.402i 0.0216918 + 0.0429112i
\(634\) −10035.4 + 15303.8i −0.628638 + 0.958661i
\(635\) 2463.58 1422.35i 0.153960 0.0888886i
\(636\) 6475.28 + 1105.98i 0.403713 + 0.0689541i
\(637\) −393.378 227.117i −0.0244681 0.0141267i
\(638\) 8599.13 4333.43i 0.533609 0.268906i
\(639\) −546.867 61.0159i −0.0338556 0.00377739i
\(640\) 1945.09 + 15360.1i 0.120135 + 0.948689i
\(641\) 13346.5 + 7705.58i 0.822392 + 0.474808i 0.851241 0.524776i \(-0.175851\pi\)
−0.0288488 + 0.999584i \(0.509184\pi\)
\(642\) 2657.61 23552.6i 0.163376 1.44789i
\(643\) 2947.93 + 5105.96i 0.180801 + 0.313156i 0.942154 0.335182i \(-0.108798\pi\)
−0.761353 + 0.648338i \(0.775464\pi\)
\(644\) 2863.54 25096.4i 0.175216 1.53562i
\(645\) −17463.9 971.240i −1.06611 0.0592908i
\(646\) 730.133 12839.5i 0.0444686 0.781984i
\(647\) 30355.3 1.84450 0.922249 0.386596i \(-0.126349\pi\)
0.922249 + 0.386596i \(0.126349\pi\)
\(648\) 15240.1 + 6311.67i 0.923901 + 0.382632i
\(649\) 10268.5 0.621066
\(650\) 35.5089 624.428i 0.00214273 0.0376801i
\(651\) −26158.4 1454.78i −1.57485 0.0875841i
\(652\) 17732.5 + 2023.30i 1.06512 + 0.121532i
\(653\) 3997.18 + 6923.31i 0.239543 + 0.414901i 0.960583 0.277993i \(-0.0896691\pi\)
−0.721040 + 0.692893i \(0.756336\pi\)
\(654\) −2548.74 + 22587.8i −0.152391 + 1.35054i
\(655\) 3036.74 + 1753.26i 0.181153 + 0.104589i
\(656\) 3343.58 1021.04i 0.199001 0.0607694i
\(657\) −9940.11 1109.05i −0.590260 0.0658574i
\(658\) −20842.2 + 10503.2i −1.23482 + 0.622276i
\(659\) 7708.70 + 4450.62i 0.455673 + 0.263083i 0.710223 0.703977i \(-0.248594\pi\)
−0.254550 + 0.967060i \(0.581927\pi\)
\(660\) −1647.13 + 9643.64i −0.0971432 + 0.568755i
\(661\) −5648.33 + 3261.07i −0.332367 + 0.191892i −0.656892 0.753985i \(-0.728129\pi\)
0.324524 + 0.945877i \(0.394796\pi\)
\(662\) −10186.3 + 15533.9i −0.598038 + 0.911996i
\(663\) −1755.10 3471.97i −0.102809 0.203379i
\(664\) 10372.7 + 8631.19i 0.606233 + 0.504451i
\(665\) 24053.2i 1.40262i
\(666\) 2854.62 16839.9i 0.166087 0.979776i
\(667\) 27253.8 1.58212
\(668\) 5883.56 + 13537.3i 0.340781 + 0.784094i
\(669\) 5249.31 + 3432.85i 0.303363 + 0.198388i
\(670\) 6417.95 9787.25i 0.370070 0.564350i
\(671\) −4858.59 8415.32i −0.279529 0.484158i
\(672\) −10954.9 12806.9i −0.628862 0.735176i
\(673\) −13331.6 + 23091.1i −0.763591 + 1.32258i 0.177397 + 0.984139i \(0.443232\pi\)
−0.940988 + 0.338440i \(0.890101\pi\)
\(674\) −15186.8 30136.1i −0.867911 1.72226i
\(675\) −955.386 + 1156.94i −0.0544783 + 0.0659711i
\(676\) −8422.15 + 11378.0i −0.479185 + 0.647359i
\(677\) 4565.23 7907.21i 0.259167 0.448890i −0.706852 0.707361i \(-0.749885\pi\)
0.966019 + 0.258471i \(0.0832187\pi\)
\(678\) 18559.8 8093.96i 1.05130 0.458476i
\(679\) −24662.6 + 14238.9i −1.39391 + 0.804772i
\(680\) −8219.33 + 3029.97i −0.463525 + 0.170874i
\(681\) 2317.11 + 1515.31i 0.130385 + 0.0852667i
\(682\) −17492.4 994.730i −0.982139 0.0558507i
\(683\) 4081.15i 0.228640i 0.993444 + 0.114320i \(0.0364689\pi\)
−0.993444 + 0.114320i \(0.963531\pi\)
\(684\) −26439.9 6043.77i −1.47800 0.337850i
\(685\) 22138.9i 1.23486i
\(686\) 1050.10 18466.0i 0.0584444 1.02775i
\(687\) −2349.68 + 1187.77i −0.130489 + 0.0659628i
\(688\) 13747.1 14732.3i 0.761779 0.816372i
\(689\) −2829.65 + 1633.70i −0.156460 + 0.0903323i
\(690\) −16446.3 + 22276.3i −0.907390 + 1.22905i
\(691\) 3245.02 5620.54i 0.178649 0.309429i −0.762769 0.646671i \(-0.776161\pi\)
0.941418 + 0.337242i \(0.109494\pi\)
\(692\) −14829.8 + 20034.5i −0.814661 + 1.10057i
\(693\) −4269.13 9756.03i −0.234013 0.534778i
\(694\) −3668.70 + 1848.80i −0.200666 + 0.101123i
\(695\) −9347.10 + 16189.7i −0.510152 + 0.883610i
\(696\) 12389.1 13310.3i 0.674726 0.724892i
\(697\) 989.007 + 1713.01i 0.0537465 + 0.0930916i
\(698\) −7579.85 4970.46i −0.411034 0.269534i
\(699\) 115.975 2085.34i 0.00627550 0.112840i
\(700\) 1405.92 611.036i 0.0759124 0.0329928i
\(701\) 29971.5 1.61485 0.807424 0.589971i \(-0.200861\pi\)
0.807424 + 0.589971i \(0.200861\pi\)
\(702\) −7837.93 + 2425.61i −0.421401 + 0.130411i
\(703\) 28083.2i 1.50665i
\(704\) −7315.50 8573.89i −0.391638 0.459007i
\(705\) 25545.3 + 1420.68i 1.36467 + 0.0758951i
\(706\) 9508.21 + 6234.97i 0.506864 + 0.332374i
\(707\) 19751.3 11403.4i 1.05067 0.606606i
\(708\) 18185.6 6729.73i 0.965334 0.357230i
\(709\) 2923.29 + 1687.77i 0.154847 + 0.0894011i 0.575421 0.817857i \(-0.304838\pi\)
−0.420574 + 0.907258i \(0.638171\pi\)
\(710\) −277.345 550.354i −0.0146599 0.0290907i
\(711\) 14129.3 + 10404.2i 0.745273 + 0.548788i
\(712\) 4644.44 26989.3i 0.244463 1.42060i
\(713\) −42945.1 24794.3i −2.25569 1.30232i
\(714\) 5663.55 7671.22i 0.296853 0.402084i
\(715\) −2433.07 4214.20i −0.127261 0.220422i
\(716\) 2227.56 19522.6i 0.116268 1.01899i
\(717\) 2049.83 + 4055.02i 0.106768 + 0.211210i
\(718\) −12490.2 710.270i −0.649204 0.0369179i
\(719\) −36696.4 −1.90340 −0.951701 0.307025i \(-0.900666\pi\)
−0.951701 + 0.307025i \(0.900666\pi\)
\(720\) 3403.15 + 18158.5i 0.176150 + 0.939901i
\(721\) −24627.1 −1.27207
\(722\) 25153.1 + 1430.36i 1.29654 + 0.0737294i
\(723\) 2728.40 4172.10i 0.140346 0.214609i
\(724\) −2744.75 + 24055.3i −0.140895 + 1.23482i
\(725\) 827.004 + 1432.41i 0.0423644 + 0.0733772i
\(726\) 4972.75 + 11402.7i 0.254210 + 0.582913i
\(727\) 18148.3 + 10477.9i 0.925834 + 0.534531i 0.885492 0.464655i \(-0.153822\pi\)
0.0403426 + 0.999186i \(0.487155\pi\)
\(728\) 8261.19 + 1421.62i 0.420577 + 0.0723748i
\(729\) 18599.5 + 6440.34i 0.944954 + 0.327203i
\(730\) −5041.14 10003.5i −0.255591 0.507186i
\(731\) 9873.34 + 5700.37i 0.499560 + 0.288421i
\(732\) −14119.9 11719.4i −0.712958 0.591753i
\(733\) −11601.1 + 6697.91i −0.584580 + 0.337508i −0.762952 0.646456i \(-0.776251\pi\)
0.178371 + 0.983963i \(0.442917\pi\)
\(734\) −2833.79 1858.25i −0.142503 0.0934458i
\(735\) −667.979 + 1021.43i −0.0335221 + 0.0512600i
\(736\) −7569.32 30988.3i −0.379088 1.55196i
\(737\) 8519.83i 0.425823i
\(738\) 3910.48 1452.66i 0.195050 0.0724568i
\(739\) 5570.50 0.277286 0.138643 0.990342i \(-0.455726\pi\)
0.138643 + 0.990342i \(0.455726\pi\)
\(740\) 17544.2 7625.01i 0.871537 0.378785i
\(741\) 12039.4 6085.96i 0.596865 0.301718i
\(742\) −6697.01 4391.54i −0.331341 0.217276i
\(743\) 2503.74 + 4336.60i 0.123625 + 0.214124i 0.921195 0.389102i \(-0.127215\pi\)
−0.797570 + 0.603227i \(0.793881\pi\)
\(744\) −31631.3 + 9702.49i −1.55868 + 0.478105i
\(745\) −551.551 + 955.314i −0.0271238 + 0.0469799i
\(746\) −5343.08 + 2692.58i −0.262231 + 0.132148i
\(747\) 12965.8 + 9547.45i 0.635064 + 0.467634i
\(748\) 3793.95 5125.47i 0.185455 0.250542i
\(749\) −14447.8 + 25024.4i −0.704822 + 1.22079i
\(750\) −21187.3 2390.72i −1.03153 0.116396i
\(751\) 14755.0 8518.83i 0.716936 0.413923i −0.0966876 0.995315i \(-0.530825\pi\)
0.813624 + 0.581391i \(0.197491\pi\)
\(752\) −20108.6 + 21549.7i −0.975115 + 1.04500i
\(753\) −428.798 + 7710.22i −0.0207520 + 0.373142i
\(754\) −513.500 + 9029.95i −0.0248018 + 0.436142i
\(755\) 27222.3i 1.31221i
\(756\) −13954.6 14480.2i −0.671328 0.696613i
\(757\) 19829.1i 0.952049i −0.879432 0.476024i \(-0.842077\pi\)
0.879432 0.476024i \(-0.157923\pi\)
\(758\) −11863.8 674.653i −0.568488 0.0323278i
\(759\) 1119.27 20125.6i 0.0535268 0.962466i
\(760\) −10506.7 28501.3i −0.501472 1.36033i
\(761\) 14809.3 8550.18i 0.705438 0.407285i −0.103932 0.994584i \(-0.533142\pi\)
0.809370 + 0.587300i \(0.199809\pi\)
\(762\) −438.466 + 3885.82i −0.0208451 + 0.184736i
\(763\) 13856.0 23999.2i 0.657431 1.13870i
\(764\) −9298.08 + 12561.3i −0.440305 + 0.594833i
\(765\) −9576.14 + 4190.41i −0.452583 + 0.198045i
\(766\) 2647.96 + 5254.52i 0.124902 + 0.247851i
\(767\) −4822.43 + 8352.70i −0.227025 + 0.393218i
\(768\) −18575.0 10390.1i −0.872745 0.488176i
\(769\) −11253.2 19491.1i −0.527699 0.914002i −0.999479 0.0322854i \(-0.989721\pi\)
0.471779 0.881717i \(-0.343612\pi\)
\(770\) 6540.32 9973.86i 0.306100 0.466796i
\(771\) −4339.21 + 2193.49i −0.202688 + 0.102460i
\(772\) 5148.57 + 11846.2i 0.240027 + 0.552273i
\(773\) −5523.17 −0.256992 −0.128496 0.991710i \(-0.541015\pi\)
−0.128496 + 0.991710i \(0.541015\pi\)
\(774\) 15333.0 18520.5i 0.712057 0.860085i
\(775\) 3009.49i 0.139489i
\(776\) −23003.6 + 27645.0i −1.06415 + 1.27886i
\(777\) −11396.6 + 17427.0i −0.526193 + 0.804622i
\(778\) 5260.57 8022.27i 0.242417 0.369681i
\(779\) −5940.02 + 3429.47i −0.273200 + 0.157732i
\(780\) −7070.90 5868.83i −0.324588 0.269407i
\(781\) 388.522 + 224.313i 0.0178008 + 0.0102773i
\(782\) 16117.5 8122.24i 0.737035 0.371421i
\(783\) 13816.0 16730.6i 0.630578 0.763606i
\(784\) −410.636 1344.71i −0.0187061 0.0612567i
\(785\) 1653.93 + 954.899i 0.0751993 + 0.0434163i
\(786\) −4418.38 + 1926.87i −0.200507 + 0.0874415i
\(787\) −3299.97 5715.72i −0.149468 0.258886i 0.781563 0.623826i \(-0.214423\pi\)
−0.931031 + 0.364940i \(0.881089\pi\)
\(788\) 27579.8 + 3146.91i 1.24682 + 0.142264i
\(789\) −4116.71 + 6295.03i −0.185753 + 0.284042i
\(790\) −1115.74 + 19620.4i −0.0502483 + 0.883621i
\(791\) −24684.6 −1.10959
\(792\) −9320.17 9695.40i −0.418154 0.434989i
\(793\) 9127.06 0.408716
\(794\) −458.019 + 8054.30i −0.0204716 + 0.359995i
\(795\) 3960.56 + 7834.87i 0.176688 + 0.349527i
\(796\) −1200.42 + 10520.6i −0.0534521 + 0.468460i
\(797\) −9315.82 16135.5i −0.414032 0.717124i 0.581294 0.813693i \(-0.302546\pi\)
−0.995326 + 0.0965692i \(0.969213\pi\)
\(798\) 26600.7 + 19638.9i 1.18002 + 0.871188i
\(799\) −14442.2 8338.23i −0.639461 0.369193i
\(800\) 1399.00 1338.16i 0.0618278 0.0591387i
\(801\) 3623.53 32476.6i 0.159839 1.43259i
\(802\) 2286.69 1152.35i 0.100681 0.0507368i
\(803\) 7061.95 + 4077.22i 0.310350 + 0.179180i
\(804\) 5583.72 + 15088.7i 0.244929 + 0.661864i
\(805\) 29234.4 16878.5i 1.27997 0.738992i
\(806\) 9024.21 13761.7i 0.394372 0.601410i
\(807\) −12753.2 709.262i −0.556302 0.0309383i
\(808\) 18422.7 22139.9i 0.802116 0.963958i
\(809\) 9731.56i 0.422921i −0.977387 0.211461i \(-0.932178\pi\)
0.977387 0.211461i \(-0.0678220\pi\)
\(810\) 5337.81 + 21388.8i 0.231545 + 0.927809i
\(811\) 12468.7 0.539872 0.269936 0.962878i \(-0.412997\pi\)
0.269936 + 0.962878i \(0.412997\pi\)
\(812\) −20331.2 + 8836.28i −0.878675 + 0.381888i
\(813\) −139.742 + 2512.69i −0.00602823 + 0.108394i
\(814\) −7636.13 + 11645.0i −0.328804 + 0.501420i
\(815\) 11925.9 + 20656.3i 0.512572 + 0.887800i
\(816\) 3360.01 11563.8i 0.144147 0.496094i
\(817\) −19766.6 + 34236.7i −0.846444 + 1.46608i
\(818\) −10038.4 19919.9i −0.429076 0.851445i
\(819\) 9940.81 + 1109.13i 0.424127 + 0.0473214i
\(820\) 3755.27 + 2779.71i 0.159926 + 0.118380i
\(821\) −3801.24 + 6583.94i −0.161589 + 0.279880i −0.935439 0.353489i \(-0.884995\pi\)
0.773850 + 0.633369i \(0.218328\pi\)
\(822\) 24483.6 + 18075.9i 1.03889 + 0.766993i
\(823\) 30246.1 17462.6i 1.28106 0.739622i 0.304020 0.952666i \(-0.401671\pi\)
0.977043 + 0.213044i \(0.0683377\pi\)
\(824\) −29181.3 + 10757.4i −1.23371 + 0.454796i
\(825\) 1091.73 551.874i 0.0460717 0.0232895i
\(826\) −23601.7 1342.14i −0.994197 0.0565363i
\(827\) 8660.10i 0.364137i −0.983286 0.182068i \(-0.941721\pi\)
0.983286 0.182068i \(-0.0582792\pi\)
\(828\) −11207.6 36376.2i −0.470402 1.52677i
\(829\) 15475.5i 0.648353i −0.945997 0.324177i \(-0.894913\pi\)
0.945997 0.324177i \(-0.105087\pi\)
\(830\) −1023.86 + 18004.7i −0.0428177 + 0.752954i
\(831\) 17961.5 + 11746.1i 0.749791 + 0.490335i
\(832\) 10409.9 1924.07i 0.433772 0.0801743i
\(833\) 688.932 397.755i 0.0286555 0.0165443i
\(834\) −10272.6 23555.6i −0.426513 0.978012i
\(835\) −9863.19 + 17083.6i −0.408778 + 0.708025i
\(836\) 17773.0 + 13155.9i 0.735278 + 0.544264i
\(837\) −36991.3 + 13794.0i −1.52761 + 0.569643i
\(838\) 35847.4 18064.9i 1.47772 0.744679i
\(839\) −4487.20 + 7772.06i −0.184643 + 0.319811i −0.943456 0.331497i \(-0.892446\pi\)
0.758813 + 0.651308i \(0.225780\pi\)
\(840\) 5046.35 21950.3i 0.207280 0.901614i
\(841\) 235.069 + 407.151i 0.00963831 + 0.0166940i
\(842\) 38229.8 + 25069.1i 1.56471 + 1.02605i
\(843\) −3686.98 2411.15i −0.150636 0.0985105i
\(844\) −469.932 1081.25i −0.0191655 0.0440975i
\(845\) −18918.3 −0.770189
\(846\) −22428.3 + 27090.9i −0.911467 + 1.10095i
\(847\) 15165.7i 0.615230i
\(848\) −9853.76 2278.32i −0.399032 0.0922617i
\(849\) −12689.3 25102.3i −0.512952 1.01473i
\(850\) 915.970 + 600.644i 0.0369618 + 0.0242375i
\(851\) −34132.6 + 19706.4i −1.37491 + 0.793805i
\(852\) 835.088 + 142.633i 0.0335794 + 0.00573535i
\(853\) 11129.3 + 6425.49i 0.446728 + 0.257919i 0.706447 0.707766i \(-0.250297\pi\)
−0.259719 + 0.965684i \(0.583630\pi\)
\(854\) 10067.4 + 19977.3i 0.403393 + 0.800481i
\(855\) −14530.6 33206.1i −0.581212 1.32822i
\(856\) −6188.69 + 35963.1i −0.247109 + 1.43597i
\(857\) −23236.8 13415.7i −0.926199 0.534741i −0.0405914 0.999176i \(-0.512924\pi\)
−0.885607 + 0.464435i \(0.846258\pi\)
\(858\) 6647.08 + 750.039i 0.264484 + 0.0298437i
\(859\) −13594.8 23546.9i −0.539987 0.935284i −0.998904 0.0468052i \(-0.985096\pi\)
0.458918 0.888479i \(-0.348237\pi\)
\(860\) 26755.3 + 3052.83i 1.06087 + 0.121047i
\(861\) −5077.81 282.399i −0.200989 0.0111778i
\(862\) 28113.5 + 1598.71i 1.11085 + 0.0631698i
\(863\) −10963.4 −0.432441 −0.216221 0.976345i \(-0.569373\pi\)
−0.216221 + 0.976345i \(0.569373\pi\)
\(864\) −22860.3 11062.5i −0.900144 0.435593i
\(865\) −33311.6 −1.30940
\(866\) −10690.3 607.917i −0.419480 0.0238543i
\(867\) −18686.5 1039.24i −0.731982 0.0407086i
\(868\) 40075.6 + 4572.70i 1.56712 + 0.178810i
\(869\) −7152.86 12389.1i −0.279222 0.483627i
\(870\) 24148.1 + 2724.81i 0.941032 + 0.106184i
\(871\) −6930.31 4001.21i −0.269603 0.155656i
\(872\) 5935.17 34489.9i 0.230494 1.33942i
\(873\) −25445.6 + 34556.1i −0.986488 + 1.33969i
\(874\) 28164.6 + 55889.0i 1.09003 + 2.16301i
\(875\) 22511.3 + 12996.9i 0.869737 + 0.502143i
\(876\) 15179.0 + 2592.56i 0.585444 + 0.0999938i
\(877\) 23926.8 13814.2i 0.921268 0.531894i 0.0372287 0.999307i \(-0.488147\pi\)
0.884039 + 0.467412i \(0.154814\pi\)
\(878\) 37222.9 + 24408.8i 1.43077 + 0.938219i
\(879\) 19498.0 + 38571.3i 0.748181 + 1.48007i
\(880\) 3393.11 14675.2i 0.129979 0.562160i
\(881\) 3160.30i 0.120855i 0.998173 + 0.0604275i \(0.0192464\pi\)
−0.998173 + 0.0604275i \(0.980754\pi\)
\(882\) −584.225 1572.70i −0.0223037 0.0600404i
\(883\) 25009.6 0.953161 0.476581 0.879131i \(-0.341876\pi\)
0.476581 + 0.879131i \(0.341876\pi\)
\(884\) 2387.45 + 5493.22i 0.0908356 + 0.209001i
\(885\) 21688.4 + 14183.4i 0.823781 + 0.538722i
\(886\) 14070.7 + 9226.82i 0.533538 + 0.349866i
\(887\) 482.657 + 835.987i 0.0182706 + 0.0316457i 0.875016 0.484094i \(-0.160851\pi\)
−0.856746 + 0.515739i \(0.827517\pi\)
\(888\) −5891.85 + 25628.0i −0.222655 + 0.968489i
\(889\) 2383.67 4128.64i 0.0899279 0.155760i
\(890\) 32683.6 16470.6i 1.23096 0.620331i
\(891\) −11787.3 10889.5i −0.443199 0.409441i
\(892\) −7761.57 5745.23i −0.291341 0.215655i
\(893\) 28913.6 50079.8i 1.08349 1.87666i
\(894\) −606.164 1389.96i −0.0226769 0.0519991i
\(895\) 22741.6 13129.9i 0.849348 0.490372i
\(896\) 15693.8 + 20662.9i 0.585147 + 0.770424i
\(897\) 15845.1 + 10362.1i 0.589804 + 0.385710i
\(898\) −2427.47 + 42687.3i −0.0902069 + 1.58630i
\(899\) 43520.7i 1.61457i
\(900\) 1571.78 1692.88i 0.0582142 0.0626991i
\(901\) 5722.27i 0.211583i
\(902\) −3395.59 193.095i −0.125345 0.00712790i
\(903\) −26160.0 + 13224.0i −0.964063 + 0.487338i
\(904\) −29249.5 + 10782.5i −1.07613 + 0.396706i
\(905\) −28021.6 + 16178.3i −1.02925 + 0.594237i
\(906\) −30105.5 22226.4i −1.10396 0.815036i
\(907\) 14900.6 25808.6i 0.545498 0.944830i −0.453078 0.891471i \(-0.649674\pi\)
0.998575 0.0533589i \(-0.0169927\pi\)
\(908\) −3426.06 2536.02i −0.125218 0.0926881i
\(909\) 20378.4 27674.6i 0.743576 1.00980i
\(910\) 5041.50 + 10004.2i 0.183653 + 0.364435i
\(911\) −4525.83 + 7838.97i −0.164597 + 0.285090i −0.936512 0.350636i \(-0.885966\pi\)
0.771915 + 0.635725i \(0.219299\pi\)
\(912\) 40098.4 + 11651.2i 1.45591 + 0.423035i
\(913\) −6563.84 11368.9i −0.237932 0.412110i
\(914\) 5514.97 8410.23i 0.199583 0.304361i
\(915\) 1361.73 24485.2i 0.0491993 0.884653i
\(916\) 3717.58 1615.72i 0.134096 0.0582806i
\(917\) 5876.48 0.211623
\(918\) 3184.48 14011.7i 0.114492 0.503765i
\(919\) 25649.5i 0.920674i 0.887744 + 0.460337i \(0.152271\pi\)
−0.887744 + 0.460337i \(0.847729\pi\)
\(920\) 27268.0 32769.8i 0.977171 1.17433i
\(921\) 40462.3 + 2250.28i 1.44764 + 0.0805096i
\(922\) 13725.7 20931.4i 0.490273 0.747657i
\(923\) −364.927 + 210.691i −0.0130138 + 0.00751351i
\(924\) 5690.19 + 15376.4i 0.202590 + 0.547455i
\(925\) −2071.47 1195.97i −0.0736320 0.0425115i
\(926\) −33331.5 + 16797.0i −1.18287 + 0.596096i
\(927\) −33998.4 + 14877.3i −1.20459 + 0.527115i
\(928\) −20231.2 + 19351.3i −0.715648 + 0.684522i
\(929\) 48149.3 + 27799.0i 1.70046 + 0.981762i 0.945288 + 0.326237i \(0.105781\pi\)
0.755174 + 0.655525i \(0.227553\pi\)
\(930\) −35572.4 26262.5i −1.25426 0.926002i
\(931\) 1379.25 + 2388.93i 0.0485533 + 0.0840968i
\(932\) −364.535 + 3194.83i −0.0128120 + 0.112285i
\(933\) 12950.9 + 25619.8i 0.454442 + 0.898986i
\(934\) 1431.95 25181.1i 0.0501659 0.882173i
\(935\) 8522.18 0.298080
\(936\) 12263.6 3028.03i 0.428258 0.105742i
\(937\) −24617.9 −0.858304 −0.429152 0.903232i \(-0.641187\pi\)
−0.429152 + 0.903232i \(0.641187\pi\)
\(938\) 1113.59 19582.5i 0.0387632 0.681654i
\(939\) 8656.09 13236.4i 0.300832 0.460014i
\(940\) −39136.4 4465.53i −1.35797 0.154946i
\(941\) 5553.99 + 9619.80i 0.192407 + 0.333259i 0.946047 0.324028i \(-0.105037\pi\)
−0.753640 + 0.657287i \(0.771704\pi\)
\(942\) −2406.43 + 1049.45i −0.0832334 + 0.0362983i
\(943\) −8336.41 4813.03i −0.287880 0.166208i
\(944\) −28552.5 + 8719.15i −0.984434 + 0.300619i
\(945\) 4458.62 26502.8i 0.153480 0.912314i
\(946\) −17505.7 + 8821.81i −0.601649 + 0.303194i
\(947\) 17487.0 + 10096.1i 0.600055 + 0.346442i 0.769063 0.639173i \(-0.220723\pi\)
−0.169008 + 0.985615i \(0.554057\pi\)
\(948\) −20787.4 17253.5i −0.712176 0.591104i
\(949\) −6633.09 + 3829.61i −0.226891 + 0.130995i
\(950\) −2082.79 + 3176.21i −0.0711311 + 0.108474i
\(951\) 18401.1 28137.9i 0.627441 0.959445i
\(952\) −9390.17 + 11284.8i −0.319682 + 0.384183i
\(953\) 18808.4i 0.639310i −0.947534 0.319655i \(-0.896433\pi\)
0.947534 0.319655i \(-0.103567\pi\)
\(954\) −11898.4 2016.96i −0.403799 0.0684502i
\(955\) −20885.9 −0.707697
\(956\) −2788.37 6415.70i −0.0943331 0.217049i
\(957\) −15787.7 + 7980.74i −0.533273 + 0.269572i
\(958\) −10089.1 + 15385.6i −0.340253 + 0.518880i
\(959\) −18550.9 32131.1i −0.624651 1.08193i
\(960\) −3608.58 28213.8i −0.121319 0.948538i
\(961\) 24697.8 42777.8i 0.829035 1.43593i
\(962\) −5886.19 11680.4i −0.197275 0.391466i
\(963\) −4828.34 + 43274.9i −0.161569 + 1.44809i
\(964\) −4566.26 + 6168.82i −0.152561 + 0.206104i
\(965\) −8631.06 + 14949.4i −0.287921 + 0.498694i
\(966\) −5203.11 + 46111.6i −0.173300 + 1.53583i
\(967\) −590.535 + 340.946i −0.0196384 + 0.0113382i −0.509787 0.860301i \(-0.670276\pi\)
0.490149 + 0.871639i \(0.336942\pi\)
\(968\) −6624.57 17970.3i −0.219960 0.596680i
\(969\) −1311.90 + 23589.2i −0.0434925 + 0.782039i
\(970\) −47985.6 2728.77i −1.58838 0.0903252i
\(971\) 54483.2i 1.80067i −0.435197 0.900335i \(-0.643321\pi\)
0.435197 0.900335i \(-0.356679\pi\)
\(972\) −28012.3 11560.3i −0.924378 0.381479i
\(973\) 31329.1i 1.03223i
\(974\) 3348.25 58879.3i 0.110149 1.93697i
\(975\) −63.8022 + 1147.23i −0.00209570 + 0.0376828i
\(976\) 20655.4 + 19274.2i 0.677423 + 0.632122i
\(977\) −26948.6 + 15558.8i −0.882458 + 0.509487i −0.871468 0.490452i \(-0.836832\pi\)
−0.0109896 + 0.999940i \(0.503498\pi\)
\(978\) −32581.2 3676.38i −1.06527 0.120202i
\(979\) −13321.2 + 23073.0i −0.434880 + 0.753234i
\(980\) 1117.93 1510.28i 0.0364398 0.0492287i
\(981\) 4630.55 41502.2i 0.150705 1.35073i
\(982\) −9672.50 + 4874.35i −0.314320 + 0.158398i
\(983\) 5791.66 10031.4i 0.187920 0.325487i −0.756637 0.653836i \(-0.773159\pi\)
0.944557 + 0.328349i \(0.106492\pi\)
\(984\) −6140.20 + 1883.43i −0.198925 + 0.0610178i
\(985\) 18548.7 + 32127.3i 0.600011 + 1.03925i
\(986\) −13246.0 8686.00i −0.427828 0.280546i
\(987\) 38265.5 19343.4i 1.23405 0.623817i
\(988\) −19048.2 + 8278.70i −0.613366 + 0.266580i
\(989\) −55482.1 −1.78385
\(990\) 3003.86 17720.3i 0.0964332 0.568876i
\(991\) 23086.5i 0.740028i 0.929026 + 0.370014i \(0.120647\pi\)
−0.929026 + 0.370014i \(0.879353\pi\)
\(992\) 49484.2 12087.2i 1.58379 0.386864i
\(993\) 18677.8 28560.9i 0.596899 0.912742i
\(994\) −863.684 566.357i −0.0275597 0.0180722i
\(995\) −12255.3 + 7075.61i −0.390472 + 0.225439i
\(996\) −19075.6 15832.7i −0.606862 0.503694i
\(997\) −39030.9 22534.5i −1.23984 0.715822i −0.270779 0.962642i \(-0.587281\pi\)
−0.969062 + 0.246819i \(0.920615\pi\)
\(998\) 4162.02 + 8258.97i 0.132010 + 0.261957i
\(999\) −5205.65 + 30943.3i −0.164864 + 0.979983i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.4.l.b.11.31 yes 64
3.2 odd 2 216.4.l.b.35.2 64
4.3 odd 2 288.4.p.b.47.32 64
8.3 odd 2 inner 72.4.l.b.11.23 64
8.5 even 2 288.4.p.b.47.31 64
9.4 even 3 216.4.l.b.179.10 64
9.5 odd 6 inner 72.4.l.b.59.23 yes 64
12.11 even 2 864.4.p.b.143.8 64
24.5 odd 2 864.4.p.b.143.25 64
24.11 even 2 216.4.l.b.35.10 64
36.23 even 6 288.4.p.b.239.31 64
36.31 odd 6 864.4.p.b.719.25 64
72.5 odd 6 288.4.p.b.239.32 64
72.13 even 6 864.4.p.b.719.8 64
72.59 even 6 inner 72.4.l.b.59.31 yes 64
72.67 odd 6 216.4.l.b.179.2 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.23 64 8.3 odd 2 inner
72.4.l.b.11.31 yes 64 1.1 even 1 trivial
72.4.l.b.59.23 yes 64 9.5 odd 6 inner
72.4.l.b.59.31 yes 64 72.59 even 6 inner
216.4.l.b.35.2 64 3.2 odd 2
216.4.l.b.35.10 64 24.11 even 2
216.4.l.b.179.2 64 72.67 odd 6
216.4.l.b.179.10 64 9.4 even 3
288.4.p.b.47.31 64 8.5 even 2
288.4.p.b.47.32 64 4.3 odd 2
288.4.p.b.239.31 64 36.23 even 6
288.4.p.b.239.32 64 72.5 odd 6
864.4.p.b.143.8 64 12.11 even 2
864.4.p.b.143.25 64 24.5 odd 2
864.4.p.b.719.8 64 72.13 even 6
864.4.p.b.719.25 64 36.31 odd 6