Properties

Label 288.6.a.l
Level 288288
Weight 66
Character orbit 288.a
Self dual yes
Analytic conductor 46.19146.191
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,6,Mod(1,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 288=2532 288 = 2^{5} \cdot 3^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 288.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 46.190540106146.1905401061
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 243 2^{4}\cdot 3
Twist minimal: no (minimal twist has level 32)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=483\beta = 48\sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q46q5+2βq7+βq1142q13962q17+25βq1938βq231009q25+2554q2924βq3192βq35+11950q37+5078q41+151βq43++163602q97+O(q100) q - 46 q^{5} + 2 \beta q^{7} + \beta q^{11} - 42 q^{13} - 962 q^{17} + 25 \beta q^{19} - 38 \beta q^{23} - 1009 q^{25} + 2554 q^{29} - 24 \beta q^{31} - 92 \beta q^{35} + 11950 q^{37} + 5078 q^{41} + 151 \beta q^{43} + \cdots + 163602 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q92q584q131924q172018q25+5108q29+23900q37+10156q41+21682q49+39428q53+58636q61+3864q65+75828q73+27648q77+88504q85++327204q97+O(q100) 2 q - 92 q^{5} - 84 q^{13} - 1924 q^{17} - 2018 q^{25} + 5108 q^{29} + 23900 q^{37} + 10156 q^{41} + 21682 q^{49} + 39428 q^{53} + 58636 q^{61} + 3864 q^{65} + 75828 q^{73} + 27648 q^{77} + 88504 q^{85}+ \cdots + 327204 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.73205
1.73205
0 0 0 −46.0000 0 −166.277 0 0 0
1.2 0 0 0 −46.0000 0 166.277 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 288.6.a.l 2
3.b odd 2 1 32.6.a.d 2
4.b odd 2 1 inner 288.6.a.l 2
8.b even 2 1 576.6.a.bp 2
8.d odd 2 1 576.6.a.bp 2
12.b even 2 1 32.6.a.d 2
15.d odd 2 1 800.6.a.k 2
15.e even 4 2 800.6.c.d 4
24.f even 2 1 64.6.a.h 2
24.h odd 2 1 64.6.a.h 2
48.i odd 4 2 256.6.b.l 4
48.k even 4 2 256.6.b.l 4
60.h even 2 1 800.6.a.k 2
60.l odd 4 2 800.6.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.6.a.d 2 3.b odd 2 1
32.6.a.d 2 12.b even 2 1
64.6.a.h 2 24.f even 2 1
64.6.a.h 2 24.h odd 2 1
256.6.b.l 4 48.i odd 4 2
256.6.b.l 4 48.k even 4 2
288.6.a.l 2 1.a even 1 1 trivial
288.6.a.l 2 4.b odd 2 1 inner
576.6.a.bp 2 8.b even 2 1
576.6.a.bp 2 8.d odd 2 1
800.6.a.k 2 15.d odd 2 1
800.6.a.k 2 60.h even 2 1
800.6.c.d 4 15.e even 4 2
800.6.c.d 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(288))S_{6}^{\mathrm{new}}(\Gamma_0(288)):

T5+46 T_{5} + 46 Copy content Toggle raw display
T7227648 T_{7}^{2} - 27648 Copy content Toggle raw display
T1126912 T_{11}^{2} - 6912 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+46)2 (T + 46)^{2} Copy content Toggle raw display
77 T227648 T^{2} - 27648 Copy content Toggle raw display
1111 T26912 T^{2} - 6912 Copy content Toggle raw display
1313 (T+42)2 (T + 42)^{2} Copy content Toggle raw display
1717 (T+962)2 (T + 962)^{2} Copy content Toggle raw display
1919 T24320000 T^{2} - 4320000 Copy content Toggle raw display
2323 T29980928 T^{2} - 9980928 Copy content Toggle raw display
2929 (T2554)2 (T - 2554)^{2} Copy content Toggle raw display
3131 T23981312 T^{2} - 3981312 Copy content Toggle raw display
3737 (T11950)2 (T - 11950)^{2} Copy content Toggle raw display
4141 (T5078)2 (T - 5078)^{2} Copy content Toggle raw display
4343 T2157600512 T^{2} - 157600512 Copy content Toggle raw display
4747 T2151400448 T^{2} - 151400448 Copy content Toggle raw display
5353 (T19714)2 (T - 19714)^{2} Copy content Toggle raw display
5959 T279135488 T^{2} - 79135488 Copy content Toggle raw display
6161 (T29318)2 (T - 29318)^{2} Copy content Toggle raw display
6767 T2284836608 T^{2} - 284836608 Copy content Toggle raw display
7171 T26557248512 T^{2} - 6557248512 Copy content Toggle raw display
7373 (T37914)2 (T - 37914)^{2} Copy content Toggle raw display
7979 T27883993088 T^{2} - 7883993088 Copy content Toggle raw display
8383 T21546414848 T^{2} - 1546414848 Copy content Toggle raw display
8989 (T+13930)2 (T + 13930)^{2} Copy content Toggle raw display
9797 (T163602)2 (T - 163602)^{2} Copy content Toggle raw display
show more
show less