Properties

Label 288.6.a.l
Level $288$
Weight $6$
Character orbit 288.a
Self dual yes
Analytic conductor $46.191$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,6,Mod(1,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 288.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1905401061\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 48\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 46 q^{5} + 2 \beta q^{7} + \beta q^{11} - 42 q^{13} - 962 q^{17} + 25 \beta q^{19} - 38 \beta q^{23} - 1009 q^{25} + 2554 q^{29} - 24 \beta q^{31} - 92 \beta q^{35} + 11950 q^{37} + 5078 q^{41} + 151 \beta q^{43} + \cdots + 163602 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 92 q^{5} - 84 q^{13} - 1924 q^{17} - 2018 q^{25} + 5108 q^{29} + 23900 q^{37} + 10156 q^{41} + 21682 q^{49} + 39428 q^{53} + 58636 q^{61} + 3864 q^{65} + 75828 q^{73} + 27648 q^{77} + 88504 q^{85}+ \cdots + 327204 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −46.0000 0 −166.277 0 0 0
1.2 0 0 0 −46.0000 0 166.277 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 288.6.a.l 2
3.b odd 2 1 32.6.a.d 2
4.b odd 2 1 inner 288.6.a.l 2
8.b even 2 1 576.6.a.bp 2
8.d odd 2 1 576.6.a.bp 2
12.b even 2 1 32.6.a.d 2
15.d odd 2 1 800.6.a.k 2
15.e even 4 2 800.6.c.d 4
24.f even 2 1 64.6.a.h 2
24.h odd 2 1 64.6.a.h 2
48.i odd 4 2 256.6.b.l 4
48.k even 4 2 256.6.b.l 4
60.h even 2 1 800.6.a.k 2
60.l odd 4 2 800.6.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.6.a.d 2 3.b odd 2 1
32.6.a.d 2 12.b even 2 1
64.6.a.h 2 24.f even 2 1
64.6.a.h 2 24.h odd 2 1
256.6.b.l 4 48.i odd 4 2
256.6.b.l 4 48.k even 4 2
288.6.a.l 2 1.a even 1 1 trivial
288.6.a.l 2 4.b odd 2 1 inner
576.6.a.bp 2 8.b even 2 1
576.6.a.bp 2 8.d odd 2 1
800.6.a.k 2 15.d odd 2 1
800.6.a.k 2 60.h even 2 1
800.6.c.d 4 15.e even 4 2
800.6.c.d 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(288))\):

\( T_{5} + 46 \) Copy content Toggle raw display
\( T_{7}^{2} - 27648 \) Copy content Toggle raw display
\( T_{11}^{2} - 6912 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 46)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 27648 \) Copy content Toggle raw display
$11$ \( T^{2} - 6912 \) Copy content Toggle raw display
$13$ \( (T + 42)^{2} \) Copy content Toggle raw display
$17$ \( (T + 962)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 4320000 \) Copy content Toggle raw display
$23$ \( T^{2} - 9980928 \) Copy content Toggle raw display
$29$ \( (T - 2554)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 3981312 \) Copy content Toggle raw display
$37$ \( (T - 11950)^{2} \) Copy content Toggle raw display
$41$ \( (T - 5078)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 157600512 \) Copy content Toggle raw display
$47$ \( T^{2} - 151400448 \) Copy content Toggle raw display
$53$ \( (T - 19714)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 79135488 \) Copy content Toggle raw display
$61$ \( (T - 29318)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 284836608 \) Copy content Toggle raw display
$71$ \( T^{2} - 6557248512 \) Copy content Toggle raw display
$73$ \( (T - 37914)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 7883993088 \) Copy content Toggle raw display
$83$ \( T^{2} - 1546414848 \) Copy content Toggle raw display
$89$ \( (T + 13930)^{2} \) Copy content Toggle raw display
$97$ \( (T - 163602)^{2} \) Copy content Toggle raw display
show more
show less