gp: [N,k,chi] = [32,6,Mod(1,32)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(32, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("32.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 16 3 \beta = 16\sqrt{3} β = 1 6 3 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 2 − 768 T_{3}^{2} - 768 T 3 2 − 7 6 8
T3^2 - 768
acting on S 6 n e w ( Γ 0 ( 32 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(32)) S 6 n e w ( Γ 0 ( 3 2 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 768 T^{2} - 768 T 2 − 7 6 8
T^2 - 768
5 5 5
( T − 46 ) 2 (T - 46)^{2} ( T − 4 6 ) 2
(T - 46)^2
7 7 7
T 2 − 27648 T^{2} - 27648 T 2 − 2 7 6 4 8
T^2 - 27648
11 11 1 1
T 2 − 6912 T^{2} - 6912 T 2 − 6 9 1 2
T^2 - 6912
13 13 1 3
( T + 42 ) 2 (T + 42)^{2} ( T + 4 2 ) 2
(T + 42)^2
17 17 1 7
( T − 962 ) 2 (T - 962)^{2} ( T − 9 6 2 ) 2
(T - 962)^2
19 19 1 9
T 2 − 4320000 T^{2} - 4320000 T 2 − 4 3 2 0 0 0 0
T^2 - 4320000
23 23 2 3
T 2 − 9980928 T^{2} - 9980928 T 2 − 9 9 8 0 9 2 8
T^2 - 9980928
29 29 2 9
( T + 2554 ) 2 (T + 2554)^{2} ( T + 2 5 5 4 ) 2
(T + 2554)^2
31 31 3 1
T 2 − 3981312 T^{2} - 3981312 T 2 − 3 9 8 1 3 1 2
T^2 - 3981312
37 37 3 7
( T − 11950 ) 2 (T - 11950)^{2} ( T − 1 1 9 5 0 ) 2
(T - 11950)^2
41 41 4 1
( T + 5078 ) 2 (T + 5078)^{2} ( T + 5 0 7 8 ) 2
(T + 5078)^2
43 43 4 3
T 2 − 157600512 T^{2} - 157600512 T 2 − 1 5 7 6 0 0 5 1 2
T^2 - 157600512
47 47 4 7
T 2 − 151400448 T^{2} - 151400448 T 2 − 1 5 1 4 0 0 4 4 8
T^2 - 151400448
53 53 5 3
( T + 19714 ) 2 (T + 19714)^{2} ( T + 1 9 7 1 4 ) 2
(T + 19714)^2
59 59 5 9
T 2 − 79135488 T^{2} - 79135488 T 2 − 7 9 1 3 5 4 8 8
T^2 - 79135488
61 61 6 1
( T − 29318 ) 2 (T - 29318)^{2} ( T − 2 9 3 1 8 ) 2
(T - 29318)^2
67 67 6 7
T 2 − 284836608 T^{2} - 284836608 T 2 − 2 8 4 8 3 6 6 0 8
T^2 - 284836608
71 71 7 1
T 2 − 6557248512 T^{2} - 6557248512 T 2 − 6 5 5 7 2 4 8 5 1 2
T^2 - 6557248512
73 73 7 3
( T − 37914 ) 2 (T - 37914)^{2} ( T − 3 7 9 1 4 ) 2
(T - 37914)^2
79 79 7 9
T 2 − 7883993088 T^{2} - 7883993088 T 2 − 7 8 8 3 9 9 3 0 8 8
T^2 - 7883993088
83 83 8 3
T 2 − 1546414848 T^{2} - 1546414848 T 2 − 1 5 4 6 4 1 4 8 4 8
T^2 - 1546414848
89 89 8 9
( T − 13930 ) 2 (T - 13930)^{2} ( T − 1 3 9 3 0 ) 2
(T - 13930)^2
97 97 9 7
( T − 163602 ) 2 (T - 163602)^{2} ( T − 1 6 3 6 0 2 ) 2
(T - 163602)^2
show more
show less