Properties

Label 2880.2.u.a.2159.28
Level $2880$
Weight $2$
Character 2880.2159
Analytic conductor $22.997$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2880,2,Mod(719,2880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2880, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2880.719");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.u (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 720)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2159.28
Character \(\chi\) \(=\) 2880.2159
Dual form 2880.2.u.a.719.28

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.419806 - 2.19631i) q^{5} +0.263783i q^{7} +(-0.913594 + 0.913594i) q^{11} +(-1.49018 + 1.49018i) q^{13} +2.90538 q^{17} +(0.296217 - 0.296217i) q^{19} +3.14640 q^{23} +(-4.64753 - 1.84404i) q^{25} +(2.43765 - 2.43765i) q^{29} -2.53546i q^{31} +(0.579348 + 0.110738i) q^{35} +(-1.53556 - 1.53556i) q^{37} +10.7792 q^{41} +(4.51269 - 4.51269i) q^{43} -6.67809i q^{47} +6.93042 q^{49} +(2.95356 - 2.95356i) q^{53} +(1.62300 + 2.39006i) q^{55} +(-9.76773 + 9.76773i) q^{59} +(-1.02388 - 1.02388i) q^{61} +(2.64730 + 3.89847i) q^{65} +(-3.67191 - 3.67191i) q^{67} -7.85546i q^{71} -12.4323 q^{73} +(-0.240990 - 0.240990i) q^{77} -10.7196i q^{79} +(3.50410 - 3.50410i) q^{83} +(1.21970 - 6.38111i) q^{85} +13.2383 q^{89} +(-0.393083 - 0.393083i) q^{91} +(-0.526229 - 0.774936i) q^{95} -11.1057i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 16 q^{19} - 96 q^{49} - 64 q^{55} - 32 q^{61}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.419806 2.19631i 0.187743 0.982218i
\(6\) 0 0
\(7\) 0.263783i 0.0997006i 0.998757 + 0.0498503i \(0.0158744\pi\)
−0.998757 + 0.0498503i \(0.984126\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.913594 + 0.913594i −0.275459 + 0.275459i −0.831293 0.555834i \(-0.812399\pi\)
0.555834 + 0.831293i \(0.312399\pi\)
\(12\) 0 0
\(13\) −1.49018 + 1.49018i −0.413300 + 0.413300i −0.882887 0.469586i \(-0.844403\pi\)
0.469586 + 0.882887i \(0.344403\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.90538 0.704659 0.352329 0.935876i \(-0.385390\pi\)
0.352329 + 0.935876i \(0.385390\pi\)
\(18\) 0 0
\(19\) 0.296217 0.296217i 0.0679568 0.0679568i −0.672312 0.740268i \(-0.734698\pi\)
0.740268 + 0.672312i \(0.234698\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.14640 0.656070 0.328035 0.944666i \(-0.393614\pi\)
0.328035 + 0.944666i \(0.393614\pi\)
\(24\) 0 0
\(25\) −4.64753 1.84404i −0.929505 0.368809i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.43765 2.43765i 0.452660 0.452660i −0.443577 0.896236i \(-0.646291\pi\)
0.896236 + 0.443577i \(0.146291\pi\)
\(30\) 0 0
\(31\) 2.53546i 0.455382i −0.973733 0.227691i \(-0.926882\pi\)
0.973733 0.227691i \(-0.0731177\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.579348 + 0.110738i 0.0979277 + 0.0187181i
\(36\) 0 0
\(37\) −1.53556 1.53556i −0.252444 0.252444i 0.569528 0.821972i \(-0.307126\pi\)
−0.821972 + 0.569528i \(0.807126\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.7792 1.68343 0.841713 0.539925i \(-0.181547\pi\)
0.841713 + 0.539925i \(0.181547\pi\)
\(42\) 0 0
\(43\) 4.51269 4.51269i 0.688178 0.688178i −0.273651 0.961829i \(-0.588231\pi\)
0.961829 + 0.273651i \(0.0882313\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.67809i 0.974100i −0.873374 0.487050i \(-0.838073\pi\)
0.873374 0.487050i \(-0.161927\pi\)
\(48\) 0 0
\(49\) 6.93042 0.990060
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.95356 2.95356i 0.405703 0.405703i −0.474534 0.880237i \(-0.657383\pi\)
0.880237 + 0.474534i \(0.157383\pi\)
\(54\) 0 0
\(55\) 1.62300 + 2.39006i 0.218845 + 0.322276i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.76773 + 9.76773i −1.27165 + 1.27165i −0.326428 + 0.945222i \(0.605845\pi\)
−0.945222 + 0.326428i \(0.894155\pi\)
\(60\) 0 0
\(61\) −1.02388 1.02388i −0.131095 0.131095i 0.638515 0.769610i \(-0.279549\pi\)
−0.769610 + 0.638515i \(0.779549\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.64730 + 3.89847i 0.328357 + 0.483545i
\(66\) 0 0
\(67\) −3.67191 3.67191i −0.448595 0.448595i 0.446292 0.894887i \(-0.352744\pi\)
−0.894887 + 0.446292i \(0.852744\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.85546i 0.932272i −0.884713 0.466136i \(-0.845646\pi\)
0.884713 0.466136i \(-0.154354\pi\)
\(72\) 0 0
\(73\) −12.4323 −1.45509 −0.727543 0.686062i \(-0.759338\pi\)
−0.727543 + 0.686062i \(0.759338\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.240990 0.240990i −0.0274634 0.0274634i
\(78\) 0 0
\(79\) 10.7196i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.50410 3.50410i 0.384625 0.384625i −0.488140 0.872765i \(-0.662325\pi\)
0.872765 + 0.488140i \(0.162325\pi\)
\(84\) 0 0
\(85\) 1.21970 6.38111i 0.132295 0.692129i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.2383 1.40326 0.701629 0.712542i \(-0.252456\pi\)
0.701629 + 0.712542i \(0.252456\pi\)
\(90\) 0 0
\(91\) −0.393083 0.393083i −0.0412063 0.0412063i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.526229 0.774936i −0.0539900 0.0795068i
\(96\) 0 0
\(97\) 11.1057i 1.12761i −0.825908 0.563804i \(-0.809337\pi\)
0.825908 0.563804i \(-0.190663\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.625096 + 0.625096i 0.0621994 + 0.0621994i 0.737522 0.675323i \(-0.235996\pi\)
−0.675323 + 0.737522i \(0.735996\pi\)
\(102\) 0 0
\(103\) 7.47669i 0.736701i −0.929687 0.368350i \(-0.879923\pi\)
0.929687 0.368350i \(-0.120077\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.7929 10.7929i −1.04339 1.04339i −0.999015 0.0443705i \(-0.985872\pi\)
−0.0443705 0.999015i \(-0.514128\pi\)
\(108\) 0 0
\(109\) −0.260948 0.260948i −0.0249942 0.0249942i 0.694499 0.719493i \(-0.255626\pi\)
−0.719493 + 0.694499i \(0.755626\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.88893 −0.365839 −0.182920 0.983128i \(-0.558555\pi\)
−0.182920 + 0.983128i \(0.558555\pi\)
\(114\) 0 0
\(115\) 1.32088 6.91046i 0.123173 0.644404i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.766390i 0.0702549i
\(120\) 0 0
\(121\) 9.33069i 0.848245i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.00115 + 9.43325i −0.536759 + 0.843736i
\(126\) 0 0
\(127\) −18.1176 −1.60768 −0.803840 0.594846i \(-0.797213\pi\)
−0.803840 + 0.594846i \(0.797213\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0610 + 14.0610i 1.22851 + 1.22851i 0.964526 + 0.263988i \(0.0850378\pi\)
0.263988 + 0.964526i \(0.414962\pi\)
\(132\) 0 0
\(133\) 0.0781369 + 0.0781369i 0.00677533 + 0.00677533i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3404i 0.883440i 0.897153 + 0.441720i \(0.145632\pi\)
−0.897153 + 0.441720i \(0.854368\pi\)
\(138\) 0 0
\(139\) −11.8106 11.8106i −1.00176 1.00176i −0.999998 0.00176137i \(-0.999439\pi\)
−0.00176137 0.999998i \(-0.500561\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.72283i 0.227695i
\(144\) 0 0
\(145\) −4.33048 6.37716i −0.359627 0.529594i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.72046 5.72046i −0.468639 0.468639i 0.432835 0.901473i \(-0.357513\pi\)
−0.901473 + 0.432835i \(0.857513\pi\)
\(150\) 0 0
\(151\) 14.9974 1.22047 0.610234 0.792221i \(-0.291075\pi\)
0.610234 + 0.792221i \(0.291075\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.56865 1.06440i −0.447285 0.0854948i
\(156\) 0 0
\(157\) 0.0261720 0.0261720i 0.00208875 0.00208875i −0.706062 0.708150i \(-0.749530\pi\)
0.708150 + 0.706062i \(0.249530\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.829967i 0.0654106i
\(162\) 0 0
\(163\) −17.1126 17.1126i −1.34036 1.34036i −0.895700 0.444659i \(-0.853325\pi\)
−0.444659 0.895700i \(-0.646675\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.4611 1.50594 0.752971 0.658053i \(-0.228620\pi\)
0.752971 + 0.658053i \(0.228620\pi\)
\(168\) 0 0
\(169\) 8.55875i 0.658365i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.3427 11.3427i −0.862367 0.862367i 0.129245 0.991613i \(-0.458744\pi\)
−0.991613 + 0.129245i \(0.958744\pi\)
\(174\) 0 0
\(175\) 0.486428 1.22594i 0.0367705 0.0926722i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.50621 + 4.50621i 0.336810 + 0.336810i 0.855165 0.518356i \(-0.173456\pi\)
−0.518356 + 0.855165i \(0.673456\pi\)
\(180\) 0 0
\(181\) 10.0971 10.0971i 0.750512 0.750512i −0.224062 0.974575i \(-0.571932\pi\)
0.974575 + 0.224062i \(0.0719320\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.01719 + 2.72792i −0.295350 + 0.200561i
\(186\) 0 0
\(187\) −2.65434 + 2.65434i −0.194104 + 0.194104i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.8545 1.72605 0.863025 0.505161i \(-0.168567\pi\)
0.863025 + 0.505161i \(0.168567\pi\)
\(192\) 0 0
\(193\) 13.8585i 0.997560i 0.866729 + 0.498780i \(0.166218\pi\)
−0.866729 + 0.498780i \(0.833782\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.9818 11.9818i 0.853664 0.853664i −0.136918 0.990582i \(-0.543720\pi\)
0.990582 + 0.136918i \(0.0437197\pi\)
\(198\) 0 0
\(199\) 11.4336 0.810507 0.405253 0.914204i \(-0.367183\pi\)
0.405253 + 0.914204i \(0.367183\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.643010 + 0.643010i 0.0451304 + 0.0451304i
\(204\) 0 0
\(205\) 4.52517 23.6744i 0.316051 1.65349i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.541243i 0.0374386i
\(210\) 0 0
\(211\) −6.45820 + 6.45820i −0.444601 + 0.444601i −0.893555 0.448954i \(-0.851797\pi\)
0.448954 + 0.893555i \(0.351797\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.01679 11.8057i −0.546741 0.805142i
\(216\) 0 0
\(217\) 0.668811 0.0454019
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.32953 + 4.32953i −0.291236 + 0.291236i
\(222\) 0 0
\(223\) 0.620487 0.0415509 0.0207754 0.999784i \(-0.493386\pi\)
0.0207754 + 0.999784i \(0.493386\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.0579 + 10.0579i −0.667564 + 0.667564i −0.957152 0.289588i \(-0.906482\pi\)
0.289588 + 0.957152i \(0.406482\pi\)
\(228\) 0 0
\(229\) 14.9831 14.9831i 0.990113 0.990113i −0.00983872 0.999952i \(-0.503132\pi\)
0.999952 + 0.00983872i \(0.00313181\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.07914i 0.136209i −0.997678 0.0681046i \(-0.978305\pi\)
0.997678 0.0681046i \(-0.0216952\pi\)
\(234\) 0 0
\(235\) −14.6671 2.80350i −0.956779 0.182880i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.2816 −0.859113 −0.429557 0.903040i \(-0.641330\pi\)
−0.429557 + 0.903040i \(0.641330\pi\)
\(240\) 0 0
\(241\) −3.84064 −0.247397 −0.123699 0.992320i \(-0.539476\pi\)
−0.123699 + 0.992320i \(0.539476\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.90943 15.2213i 0.185877 0.972455i
\(246\) 0 0
\(247\) 0.882830i 0.0561731i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.6627 10.6627i 0.673022 0.673022i −0.285389 0.958412i \(-0.592123\pi\)
0.958412 + 0.285389i \(0.0921229\pi\)
\(252\) 0 0
\(253\) −2.87453 + 2.87453i −0.180720 + 0.180720i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.6239 0.725081 0.362540 0.931968i \(-0.381910\pi\)
0.362540 + 0.931968i \(0.381910\pi\)
\(258\) 0 0
\(259\) 0.405054 0.405054i 0.0251688 0.0251688i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 29.3422 1.80932 0.904658 0.426138i \(-0.140126\pi\)
0.904658 + 0.426138i \(0.140126\pi\)
\(264\) 0 0
\(265\) −5.24701 7.72685i −0.322321 0.474657i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.91793 + 8.91793i −0.543736 + 0.543736i −0.924622 0.380886i \(-0.875619\pi\)
0.380886 + 0.924622i \(0.375619\pi\)
\(270\) 0 0
\(271\) 31.2790i 1.90007i 0.312150 + 0.950033i \(0.398951\pi\)
−0.312150 + 0.950033i \(0.601049\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.93066 2.56124i 0.357632 0.154449i
\(276\) 0 0
\(277\) −4.04579 4.04579i −0.243088 0.243088i 0.575038 0.818126i \(-0.304987\pi\)
−0.818126 + 0.575038i \(0.804987\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.2114 1.14606 0.573029 0.819535i \(-0.305768\pi\)
0.573029 + 0.819535i \(0.305768\pi\)
\(282\) 0 0
\(283\) 10.0809 10.0809i 0.599247 0.599247i −0.340865 0.940112i \(-0.610720\pi\)
0.940112 + 0.340865i \(0.110720\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.84337i 0.167839i
\(288\) 0 0
\(289\) −8.55875 −0.503456
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.81368 4.81368i 0.281218 0.281218i −0.552376 0.833595i \(-0.686279\pi\)
0.833595 + 0.552376i \(0.186279\pi\)
\(294\) 0 0
\(295\) 17.3524 + 25.5535i 1.01029 + 1.48778i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.68869 + 4.68869i −0.271154 + 0.271154i
\(300\) 0 0
\(301\) 1.19037 + 1.19037i 0.0686118 + 0.0686118i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.67859 + 1.81893i −0.153376 + 0.104152i
\(306\) 0 0
\(307\) 17.1791 + 17.1791i 0.980465 + 0.980465i 0.999813 0.0193480i \(-0.00615904\pi\)
−0.0193480 + 0.999813i \(0.506159\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.6032i 0.941479i −0.882272 0.470740i \(-0.843987\pi\)
0.882272 0.470740i \(-0.156013\pi\)
\(312\) 0 0
\(313\) −10.8345 −0.612404 −0.306202 0.951967i \(-0.599058\pi\)
−0.306202 + 0.951967i \(0.599058\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.3464 15.3464i −0.861942 0.861942i 0.129621 0.991564i \(-0.458624\pi\)
−0.991564 + 0.129621i \(0.958624\pi\)
\(318\) 0 0
\(319\) 4.45404i 0.249378i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.860623 0.860623i 0.0478863 0.0478863i
\(324\) 0 0
\(325\) 9.67358 4.17768i 0.536594 0.231736i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.76157 0.0971183
\(330\) 0 0
\(331\) 6.23806 + 6.23806i 0.342875 + 0.342875i 0.857447 0.514572i \(-0.172049\pi\)
−0.514572 + 0.857447i \(0.672049\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.60613 + 6.52315i −0.524839 + 0.356398i
\(336\) 0 0
\(337\) 8.87003i 0.483181i −0.970378 0.241591i \(-0.922331\pi\)
0.970378 0.241591i \(-0.0776691\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.31638 + 2.31638i 0.125439 + 0.125439i
\(342\) 0 0
\(343\) 3.67461i 0.198410i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.3990 + 11.3990i 0.611932 + 0.611932i 0.943449 0.331517i \(-0.107560\pi\)
−0.331517 + 0.943449i \(0.607560\pi\)
\(348\) 0 0
\(349\) −11.5358 11.5358i −0.617496 0.617496i 0.327393 0.944888i \(-0.393830\pi\)
−0.944888 + 0.327393i \(0.893830\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.5642 −1.09452 −0.547260 0.836963i \(-0.684329\pi\)
−0.547260 + 0.836963i \(0.684329\pi\)
\(354\) 0 0
\(355\) −17.2530 3.29777i −0.915695 0.175027i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.8141i 0.992972i −0.868045 0.496486i \(-0.834623\pi\)
0.868045 0.496486i \(-0.165377\pi\)
\(360\) 0 0
\(361\) 18.8245i 0.990764i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.21914 + 27.3051i −0.273182 + 1.42921i
\(366\) 0 0
\(367\) 12.1654 0.635031 0.317515 0.948253i \(-0.397151\pi\)
0.317515 + 0.948253i \(0.397151\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.779099 + 0.779099i 0.0404488 + 0.0404488i
\(372\) 0 0
\(373\) 14.7424 + 14.7424i 0.763330 + 0.763330i 0.976923 0.213592i \(-0.0685164\pi\)
−0.213592 + 0.976923i \(0.568516\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.26505i 0.374169i
\(378\) 0 0
\(379\) −1.59803 1.59803i −0.0820853 0.0820853i 0.664872 0.746957i \(-0.268486\pi\)
−0.746957 + 0.664872i \(0.768486\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.9035i 1.27251i 0.771479 + 0.636255i \(0.219517\pi\)
−0.771479 + 0.636255i \(0.780483\pi\)
\(384\) 0 0
\(385\) −0.630458 + 0.428120i −0.0321311 + 0.0218190i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11.9793 11.9793i −0.607375 0.607375i 0.334884 0.942259i \(-0.391303\pi\)
−0.942259 + 0.334884i \(0.891303\pi\)
\(390\) 0 0
\(391\) 9.14150 0.462306
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −23.5435 4.50014i −1.18460 0.226427i
\(396\) 0 0
\(397\) −16.0845 + 16.0845i −0.807258 + 0.807258i −0.984218 0.176960i \(-0.943374\pi\)
0.176960 + 0.984218i \(0.443374\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.56411i 0.177983i 0.996032 + 0.0889915i \(0.0283644\pi\)
−0.996032 + 0.0889915i \(0.971636\pi\)
\(402\) 0 0
\(403\) 3.77828 + 3.77828i 0.188210 + 0.188210i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.80575 0.139076
\(408\) 0 0
\(409\) 0.455458i 0.0225209i −0.999937 0.0112605i \(-0.996416\pi\)
0.999937 0.0112605i \(-0.00358439\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.57656 2.57656i −0.126784 0.126784i
\(414\) 0 0
\(415\) −6.22503 9.16712i −0.305575 0.449996i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.20612 + 7.20612i 0.352042 + 0.352042i 0.860869 0.508827i \(-0.169921\pi\)
−0.508827 + 0.860869i \(0.669921\pi\)
\(420\) 0 0
\(421\) −13.9138 + 13.9138i −0.678119 + 0.678119i −0.959574 0.281455i \(-0.909183\pi\)
0.281455 + 0.959574i \(0.409183\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.5028 5.35766i −0.654984 0.259885i
\(426\) 0 0
\(427\) 0.270083 0.270083i 0.0130702 0.0130702i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.2896 0.977314 0.488657 0.872476i \(-0.337487\pi\)
0.488657 + 0.872476i \(0.337487\pi\)
\(432\) 0 0
\(433\) 13.2049i 0.634587i 0.948327 + 0.317294i \(0.102774\pi\)
−0.948327 + 0.317294i \(0.897226\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.932017 0.932017i 0.0445844 0.0445844i
\(438\) 0 0
\(439\) −4.81740 −0.229922 −0.114961 0.993370i \(-0.536674\pi\)
−0.114961 + 0.993370i \(0.536674\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.16428 + 9.16428i 0.435408 + 0.435408i 0.890463 0.455055i \(-0.150380\pi\)
−0.455055 + 0.890463i \(0.650380\pi\)
\(444\) 0 0
\(445\) 5.55752 29.0754i 0.263452 1.37831i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.67981i 0.173661i −0.996223 0.0868305i \(-0.972326\pi\)
0.996223 0.0868305i \(-0.0276739\pi\)
\(450\) 0 0
\(451\) −9.84780 + 9.84780i −0.463715 + 0.463715i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.02835 + 0.698312i −0.0482098 + 0.0327374i
\(456\) 0 0
\(457\) 18.1968 0.851212 0.425606 0.904908i \(-0.360061\pi\)
0.425606 + 0.904908i \(0.360061\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.4826 20.4826i 0.953971 0.953971i −0.0450155 0.998986i \(-0.514334\pi\)
0.998986 + 0.0450155i \(0.0143337\pi\)
\(462\) 0 0
\(463\) 22.5416 1.04760 0.523799 0.851842i \(-0.324514\pi\)
0.523799 + 0.851842i \(0.324514\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.2704 + 26.2704i −1.21565 + 1.21565i −0.246507 + 0.969141i \(0.579283\pi\)
−0.969141 + 0.246507i \(0.920717\pi\)
\(468\) 0 0
\(469\) 0.968587 0.968587i 0.0447252 0.0447252i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.24552i 0.379130i
\(474\) 0 0
\(475\) −1.92291 + 0.830438i −0.0882292 + 0.0381031i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.723719 0.0330676 0.0165338 0.999863i \(-0.494737\pi\)
0.0165338 + 0.999863i \(0.494737\pi\)
\(480\) 0 0
\(481\) 4.57651 0.208671
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.3914 4.66222i −1.10756 0.211701i
\(486\) 0 0
\(487\) 15.0222i 0.680719i −0.940295 0.340360i \(-0.889451\pi\)
0.940295 0.340360i \(-0.110549\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.04102 + 3.04102i −0.137239 + 0.137239i −0.772389 0.635150i \(-0.780938\pi\)
0.635150 + 0.772389i \(0.280938\pi\)
\(492\) 0 0
\(493\) 7.08230 7.08230i 0.318971 0.318971i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.07214 0.0929481
\(498\) 0 0
\(499\) −11.3545 + 11.3545i −0.508298 + 0.508298i −0.914004 0.405706i \(-0.867026\pi\)
0.405706 + 0.914004i \(0.367026\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.8256 −1.10692 −0.553459 0.832876i \(-0.686692\pi\)
−0.553459 + 0.832876i \(0.686692\pi\)
\(504\) 0 0
\(505\) 1.63532 1.11048i 0.0727708 0.0494159i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.3544 + 22.3544i −0.990841 + 0.990841i −0.999958 0.00911778i \(-0.997098\pi\)
0.00911778 + 0.999958i \(0.497098\pi\)
\(510\) 0 0
\(511\) 3.27942i 0.145073i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.4211 3.13876i −0.723601 0.138310i
\(516\) 0 0
\(517\) 6.10106 + 6.10106i 0.268324 + 0.268324i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.7334 1.34646 0.673228 0.739435i \(-0.264907\pi\)
0.673228 + 0.739435i \(0.264907\pi\)
\(522\) 0 0
\(523\) 12.6215 12.6215i 0.551898 0.551898i −0.375090 0.926988i \(-0.622388\pi\)
0.926988 + 0.375090i \(0.122388\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.36649i 0.320889i
\(528\) 0 0
\(529\) −13.1002 −0.569572
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −16.0629 + 16.0629i −0.695761 + 0.695761i
\(534\) 0 0
\(535\) −28.2353 + 19.1735i −1.22072 + 0.828944i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.33159 + 6.33159i −0.272721 + 0.272721i
\(540\) 0 0
\(541\) 18.0279 + 18.0279i 0.775081 + 0.775081i 0.978990 0.203909i \(-0.0653645\pi\)
−0.203909 + 0.978990i \(0.565365\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.682668 + 0.463574i −0.0292423 + 0.0198573i
\(546\) 0 0
\(547\) 26.0749 + 26.0749i 1.11488 + 1.11488i 0.992480 + 0.122403i \(0.0390600\pi\)
0.122403 + 0.992480i \(0.460940\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.44414i 0.0615226i
\(552\) 0 0
\(553\) 2.82764 0.120244
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.2849 23.2849i −0.986612 0.986612i 0.0132999 0.999912i \(-0.495766\pi\)
−0.999912 + 0.0132999i \(0.995766\pi\)
\(558\) 0 0
\(559\) 13.4494i 0.568849i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.08207 + 2.08207i −0.0877489 + 0.0877489i −0.749619 0.661870i \(-0.769763\pi\)
0.661870 + 0.749619i \(0.269763\pi\)
\(564\) 0 0
\(565\) −1.63259 + 8.54127i −0.0686837 + 0.359334i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.4930 −0.942957 −0.471478 0.881878i \(-0.656279\pi\)
−0.471478 + 0.881878i \(0.656279\pi\)
\(570\) 0 0
\(571\) 17.5867 + 17.5867i 0.735979 + 0.735979i 0.971797 0.235818i \(-0.0757770\pi\)
−0.235818 + 0.971797i \(0.575777\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14.6230 5.80211i −0.609821 0.241965i
\(576\) 0 0
\(577\) 24.8497i 1.03450i −0.855833 0.517252i \(-0.826955\pi\)
0.855833 0.517252i \(-0.173045\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.924321 + 0.924321i 0.0383473 + 0.0383473i
\(582\) 0 0
\(583\) 5.39671i 0.223509i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.8896 22.8896i −0.944753 0.944753i 0.0537988 0.998552i \(-0.482867\pi\)
−0.998552 + 0.0537988i \(0.982867\pi\)
\(588\) 0 0
\(589\) −0.751046 0.751046i −0.0309463 0.0309463i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.3090 −0.546536 −0.273268 0.961938i \(-0.588105\pi\)
−0.273268 + 0.961938i \(0.588105\pi\)
\(594\) 0 0
\(595\) 1.68323 + 0.321735i 0.0690056 + 0.0131899i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.33982i 0.299897i −0.988694 0.149948i \(-0.952089\pi\)
0.988694 0.149948i \(-0.0479108\pi\)
\(600\) 0 0
\(601\) 27.4748i 1.12072i 0.828250 + 0.560359i \(0.189337\pi\)
−0.828250 + 0.560359i \(0.810663\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20.4931 + 3.91708i 0.833162 + 0.159252i
\(606\) 0 0
\(607\) −27.4473 −1.11405 −0.557026 0.830495i \(-0.688058\pi\)
−0.557026 + 0.830495i \(0.688058\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.95153 + 9.95153i 0.402596 + 0.402596i
\(612\) 0 0
\(613\) 17.6219 + 17.6219i 0.711742 + 0.711742i 0.966899 0.255158i \(-0.0821274\pi\)
−0.255158 + 0.966899i \(0.582127\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 41.8102i 1.68322i 0.540088 + 0.841608i \(0.318391\pi\)
−0.540088 + 0.841608i \(0.681609\pi\)
\(618\) 0 0
\(619\) −1.39925 1.39925i −0.0562406 0.0562406i 0.678427 0.734668i \(-0.262662\pi\)
−0.734668 + 0.678427i \(0.762662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.49204i 0.139906i
\(624\) 0 0
\(625\) 18.1990 + 17.1405i 0.727960 + 0.685620i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.46139 4.46139i −0.177887 0.177887i
\(630\) 0 0
\(631\) −33.0559 −1.31593 −0.657967 0.753047i \(-0.728583\pi\)
−0.657967 + 0.753047i \(0.728583\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.60589 + 39.7919i −0.301830 + 1.57909i
\(636\) 0 0
\(637\) −10.3275 + 10.3275i −0.409192 + 0.409192i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.31451i 0.328404i −0.986427 0.164202i \(-0.947495\pi\)
0.986427 0.164202i \(-0.0525048\pi\)
\(642\) 0 0
\(643\) −17.1504 17.1504i −0.676344 0.676344i 0.282827 0.959171i \(-0.408728\pi\)
−0.959171 + 0.282827i \(0.908728\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.95293 −0.234034 −0.117017 0.993130i \(-0.537333\pi\)
−0.117017 + 0.993130i \(0.537333\pi\)
\(648\) 0 0
\(649\) 17.8475i 0.700575i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.1739 + 24.1739i 0.945997 + 0.945997i 0.998615 0.0526174i \(-0.0167564\pi\)
−0.0526174 + 0.998615i \(0.516756\pi\)
\(654\) 0 0
\(655\) 36.7851 24.9793i 1.43731 0.976024i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.0108 25.0108i −0.974284 0.974284i 0.0253938 0.999678i \(-0.491916\pi\)
−0.999678 + 0.0253938i \(0.991916\pi\)
\(660\) 0 0
\(661\) −28.8800 + 28.8800i −1.12330 + 1.12330i −0.132061 + 0.991242i \(0.542159\pi\)
−0.991242 + 0.132061i \(0.957841\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.204415 0.138810i 0.00792687 0.00538283i
\(666\) 0 0
\(667\) 7.66982 7.66982i 0.296977 0.296977i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.87083 0.0722224
\(672\) 0 0
\(673\) 26.0623i 1.00463i 0.864685 + 0.502315i \(0.167518\pi\)
−0.864685 + 0.502315i \(0.832482\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.70043 + 9.70043i −0.372818 + 0.372818i −0.868503 0.495685i \(-0.834917\pi\)
0.495685 + 0.868503i \(0.334917\pi\)
\(678\) 0 0
\(679\) 2.92948 0.112423
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.36855 8.36855i −0.320214 0.320214i 0.528635 0.848849i \(-0.322704\pi\)
−0.848849 + 0.528635i \(0.822704\pi\)
\(684\) 0 0
\(685\) 22.7107 + 4.34096i 0.867731 + 0.165860i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.80266i 0.335355i
\(690\) 0 0
\(691\) −16.7998 + 16.7998i −0.639095 + 0.639095i −0.950332 0.311237i \(-0.899257\pi\)
0.311237 + 0.950332i \(0.399257\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −30.8978 + 20.9815i −1.17202 + 0.795873i
\(696\) 0 0
\(697\) 31.3177 1.18624
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.5344 26.5344i 1.00219 1.00219i 0.00219271 0.999998i \(-0.499302\pi\)
0.999998 0.00219271i \(-0.000697963\pi\)
\(702\) 0 0
\(703\) −0.909716 −0.0343106
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.164890 + 0.164890i −0.00620131 + 0.00620131i
\(708\) 0 0
\(709\) −32.4351 + 32.4351i −1.21813 + 1.21813i −0.249840 + 0.968287i \(0.580378\pi\)
−0.968287 + 0.249840i \(0.919622\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.97758i 0.298763i
\(714\) 0 0
\(715\) −5.98017 1.14306i −0.223646 0.0427480i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.81868 −0.328881 −0.164441 0.986387i \(-0.552582\pi\)
−0.164441 + 0.986387i \(0.552582\pi\)
\(720\) 0 0
\(721\) 1.97222 0.0734495
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −15.8242 + 6.83390i −0.587695 + 0.253805i
\(726\) 0 0
\(727\) 10.5815i 0.392448i −0.980559 0.196224i \(-0.937132\pi\)
0.980559 0.196224i \(-0.0628679\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 13.1111 13.1111i 0.484931 0.484931i
\(732\) 0 0
\(733\) −0.891694 + 0.891694i −0.0329355 + 0.0329355i −0.723383 0.690447i \(-0.757414\pi\)
0.690447 + 0.723383i \(0.257414\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.70927 0.247139
\(738\) 0 0
\(739\) 22.1859 22.1859i 0.816120 0.816120i −0.169423 0.985543i \(-0.554190\pi\)
0.985543 + 0.169423i \(0.0541905\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.89487 0.289635 0.144817 0.989458i \(-0.453741\pi\)
0.144817 + 0.989458i \(0.453741\pi\)
\(744\) 0 0
\(745\) −14.9654 + 10.1624i −0.548289 + 0.372322i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.84697 2.84697i 0.104026 0.104026i
\(750\) 0 0
\(751\) 4.43117i 0.161696i 0.996726 + 0.0808478i \(0.0257628\pi\)
−0.996726 + 0.0808478i \(0.974237\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 6.29598 32.9388i 0.229134 1.19877i
\(756\) 0 0
\(757\) 22.8329 + 22.8329i 0.829876 + 0.829876i 0.987499 0.157623i \(-0.0503832\pi\)
−0.157623 + 0.987499i \(0.550383\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.3941 0.666784 0.333392 0.942788i \(-0.391807\pi\)
0.333392 + 0.942788i \(0.391807\pi\)
\(762\) 0 0
\(763\) 0.0688335 0.0688335i 0.00249194 0.00249194i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29.1113i 1.05115i
\(768\) 0 0
\(769\) 12.2959 0.443402 0.221701 0.975115i \(-0.428839\pi\)
0.221701 + 0.975115i \(0.428839\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16.8697 + 16.8697i −0.606762 + 0.606762i −0.942098 0.335337i \(-0.891150\pi\)
0.335337 + 0.942098i \(0.391150\pi\)
\(774\) 0 0
\(775\) −4.67551 + 11.7836i −0.167949 + 0.423280i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.19298 3.19298i 0.114400 0.114400i
\(780\) 0 0
\(781\) 7.17670 + 7.17670i 0.256803 + 0.256803i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.0464945 0.0684688i −0.00165946 0.00244376i
\(786\) 0 0
\(787\) 32.0462 + 32.0462i 1.14232 + 1.14232i 0.988024 + 0.154299i \(0.0493118\pi\)
0.154299 + 0.988024i \(0.450688\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.02583i 0.0364744i
\(792\) 0 0
\(793\) 3.05153 0.108363
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.6812 + 16.6812i 0.590879 + 0.590879i 0.937869 0.346990i \(-0.112796\pi\)
−0.346990 + 0.937869i \(0.612796\pi\)
\(798\) 0 0
\(799\) 19.4024i 0.686408i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11.3580 11.3580i 0.400816 0.400816i
\(804\) 0 0
\(805\) 1.82286 + 0.348425i 0.0642475 + 0.0122804i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.5382 −0.933032 −0.466516 0.884513i \(-0.654491\pi\)
−0.466516 + 0.884513i \(0.654491\pi\)
\(810\) 0 0
\(811\) −19.0246 19.0246i −0.668044 0.668044i 0.289219 0.957263i \(-0.406604\pi\)
−0.957263 + 0.289219i \(0.906604\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −44.7684 + 30.4005i −1.56817 + 1.06488i
\(816\) 0 0
\(817\) 2.67347i 0.0935328i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.92298 + 8.92298i 0.311414 + 0.311414i 0.845457 0.534043i \(-0.179328\pi\)
−0.534043 + 0.845457i \(0.679328\pi\)
\(822\) 0 0
\(823\) 28.4770i 0.992646i 0.868138 + 0.496323i \(0.165317\pi\)
−0.868138 + 0.496323i \(0.834683\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.8892 + 14.8892i 0.517748 + 0.517748i 0.916889 0.399141i \(-0.130692\pi\)
−0.399141 + 0.916889i \(0.630692\pi\)
\(828\) 0 0
\(829\) 11.4041 + 11.4041i 0.396082 + 0.396082i 0.876849 0.480767i \(-0.159642\pi\)
−0.480767 + 0.876849i \(0.659642\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20.1355 0.697654
\(834\) 0 0
\(835\) 8.16987 42.7425i 0.282730 1.47916i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 16.2531i 0.561118i 0.959837 + 0.280559i \(0.0905199\pi\)
−0.959837 + 0.280559i \(0.909480\pi\)
\(840\) 0 0
\(841\) 17.1157i 0.590198i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.7976 + 3.59301i 0.646659 + 0.123603i
\(846\) 0 0
\(847\) −2.46128 −0.0845705
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.83149 4.83149i −0.165621 0.165621i
\(852\) 0 0
\(853\) −23.0418 23.0418i −0.788935 0.788935i 0.192385 0.981320i \(-0.438378\pi\)
−0.981320 + 0.192385i \(0.938378\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.7846i 1.05158i 0.850614 + 0.525791i \(0.176231\pi\)
−0.850614 + 0.525791i \(0.823769\pi\)
\(858\) 0 0
\(859\) 18.4753 + 18.4753i 0.630370 + 0.630370i 0.948161 0.317791i \(-0.102941\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.8775i 0.880879i −0.897782 0.440440i \(-0.854823\pi\)
0.897782 0.440440i \(-0.145177\pi\)
\(864\) 0 0
\(865\) −29.6737 + 20.1503i −1.00894 + 0.685129i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.79333 + 9.79333i 0.332216 + 0.332216i
\(870\) 0 0
\(871\) 10.9436 0.370809
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.48833 1.58300i −0.0841209 0.0535152i
\(876\) 0 0
\(877\) −21.3569 + 21.3569i −0.721171 + 0.721171i −0.968844 0.247673i \(-0.920334\pi\)
0.247673 + 0.968844i \(0.420334\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.6737i 1.30295i −0.758670 0.651475i \(-0.774151\pi\)
0.758670 0.651475i \(-0.225849\pi\)
\(882\) 0 0
\(883\) 31.7478 + 31.7478i 1.06840 + 1.06840i 0.997482 + 0.0709157i \(0.0225921\pi\)
0.0709157 + 0.997482i \(0.477408\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.1784 0.543217 0.271609 0.962408i \(-0.412444\pi\)
0.271609 + 0.962408i \(0.412444\pi\)
\(888\) 0 0
\(889\) 4.77912i 0.160287i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.97816 1.97816i −0.0661967 0.0661967i
\(894\) 0 0
\(895\) 11.7887 8.00528i 0.394054 0.267587i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.18056 6.18056i −0.206133 0.206133i
\(900\) 0 0
\(901\) 8.58123 8.58123i 0.285882 0.285882i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.9375 26.4152i −0.596264 0.878070i
\(906\) 0 0
\(907\) −28.4899 + 28.4899i −0.945992 + 0.945992i −0.998614 0.0526227i \(-0.983242\pi\)
0.0526227 + 0.998614i \(0.483242\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.49312 0.0826008 0.0413004 0.999147i \(-0.486850\pi\)
0.0413004 + 0.999147i \(0.486850\pi\)
\(912\) 0 0
\(913\) 6.40264i 0.211897i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.70905 + 3.70905i −0.122484 + 0.122484i
\(918\) 0 0
\(919\) −22.3205 −0.736287 −0.368143 0.929769i \(-0.620006\pi\)
−0.368143 + 0.929769i \(0.620006\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.7060 + 11.7060i 0.385308 + 0.385308i
\(924\) 0 0
\(925\) 4.30491 + 9.96819i 0.141545 + 0.327752i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.44533i 0.211464i 0.994395 + 0.105732i \(0.0337186\pi\)
−0.994395 + 0.105732i \(0.966281\pi\)
\(930\) 0 0
\(931\) 2.05291 2.05291i 0.0672813 0.0672813i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.71544 + 6.94405i 0.154211 + 0.227095i
\(936\) 0 0
\(937\) 56.5439 1.84721 0.923605 0.383346i \(-0.125228\pi\)
0.923605 + 0.383346i \(0.125228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.57877 1.57877i 0.0514663 0.0514663i −0.680905 0.732372i \(-0.738413\pi\)
0.732372 + 0.680905i \(0.238413\pi\)
\(942\) 0 0
\(943\) 33.9157 1.10445
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.1004 + 12.1004i −0.393210 + 0.393210i −0.875830 0.482620i \(-0.839685\pi\)
0.482620 + 0.875830i \(0.339685\pi\)
\(948\) 0 0
\(949\) 18.5263 18.5263i 0.601388 0.601388i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.9757i 0.841435i −0.907192 0.420718i \(-0.861778\pi\)
0.907192 0.420718i \(-0.138222\pi\)
\(954\) 0 0
\(955\) 10.0143 52.3918i 0.324054 1.69536i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.72762 −0.0880795
\(960\) 0 0
\(961\) 24.5714 0.792627
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.4376 + 5.81790i 0.979822 + 0.187285i
\(966\) 0 0
\(967\) 61.3307i 1.97226i −0.165969 0.986131i \(-0.553075\pi\)
0.165969 0.986131i \(-0.446925\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.0810 30.0810i 0.965346 0.965346i −0.0340737 0.999419i \(-0.510848\pi\)
0.999419 + 0.0340737i \(0.0108481\pi\)
\(972\) 0 0
\(973\) 3.11543 3.11543i 0.0998760 0.0998760i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 33.3131 1.06578 0.532891 0.846184i \(-0.321106\pi\)
0.532891 + 0.846184i \(0.321106\pi\)
\(978\) 0 0
\(979\) −12.0944 + 12.0944i −0.386540 + 0.386540i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −54.1424 −1.72687 −0.863437 0.504456i \(-0.831693\pi\)
−0.863437 + 0.504456i \(0.831693\pi\)
\(984\) 0 0
\(985\) −21.2856 31.3456i −0.678215 0.998754i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.1987 14.1987i 0.451493 0.451493i
\(990\) 0 0
\(991\) 39.3653i 1.25048i 0.780433 + 0.625240i \(0.214999\pi\)
−0.780433 + 0.625240i \(0.785001\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.79989 25.1117i 0.152167 0.796094i
\(996\) 0 0
\(997\) −28.9457 28.9457i −0.916720 0.916720i 0.0800697 0.996789i \(-0.474486\pi\)
−0.996789 + 0.0800697i \(0.974486\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2880.2.u.a.2159.28 96
3.2 odd 2 inner 2880.2.u.a.2159.21 96
4.3 odd 2 720.2.u.a.179.41 yes 96
5.4 even 2 inner 2880.2.u.a.2159.4 96
12.11 even 2 720.2.u.a.179.8 yes 96
15.14 odd 2 inner 2880.2.u.a.2159.45 96
16.5 even 4 720.2.u.a.539.42 yes 96
16.11 odd 4 inner 2880.2.u.a.719.45 96
20.19 odd 2 720.2.u.a.179.7 96
48.5 odd 4 720.2.u.a.539.7 yes 96
48.11 even 4 inner 2880.2.u.a.719.4 96
60.59 even 2 720.2.u.a.179.42 yes 96
80.59 odd 4 inner 2880.2.u.a.719.21 96
80.69 even 4 720.2.u.a.539.8 yes 96
240.59 even 4 inner 2880.2.u.a.719.28 96
240.149 odd 4 720.2.u.a.539.41 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
720.2.u.a.179.7 96 20.19 odd 2
720.2.u.a.179.8 yes 96 12.11 even 2
720.2.u.a.179.41 yes 96 4.3 odd 2
720.2.u.a.179.42 yes 96 60.59 even 2
720.2.u.a.539.7 yes 96 48.5 odd 4
720.2.u.a.539.8 yes 96 80.69 even 4
720.2.u.a.539.41 yes 96 240.149 odd 4
720.2.u.a.539.42 yes 96 16.5 even 4
2880.2.u.a.719.4 96 48.11 even 4 inner
2880.2.u.a.719.21 96 80.59 odd 4 inner
2880.2.u.a.719.28 96 240.59 even 4 inner
2880.2.u.a.719.45 96 16.11 odd 4 inner
2880.2.u.a.2159.4 96 5.4 even 2 inner
2880.2.u.a.2159.21 96 3.2 odd 2 inner
2880.2.u.a.2159.28 96 1.1 even 1 trivial
2880.2.u.a.2159.45 96 15.14 odd 2 inner